
DISCRETE SNAKES WITH GLOBALLY CENTERED

DISPLACEMENTS

LOUIGI ADDARIO-BERRY, SERTE DONDERWINKEL, CHRISTINA GOLDSCHMIDT,
AND RIVKA MITCHELL

Abstract. We prove a scaling limit for globally centered discrete snakes on
size-conditioned critical Bienaymé trees. More specifically, under a global finite variance
condition, we prove convergence in the sense of random finite-dimensional distributions
of the head of the discrete snake (suitably rescaled) to the head of the Brownian snake
driven by a Brownian excursion. When the third moment of the offspring distribution is
finite, we further prove the uniform functional convergence under a tail condition on the
displacements. We also consider displacement distributions with heavier tails, for which
we instead obtain convergence to a variant of the hairy snake introduced by Janson and
Marckert. We further give two applications of our main result. Firstly, we obtain a
scaling limit for the difference between the height process and the  Lukasiewicz path of
a size-conditioned critical Bienaymé tree. Secondly, we obtain a scaling limit for the
difference between the height process of a size-conditioned critical Bienaymé tree and
the height process of its associated looptree.

1. Introduction

We consider a branching random walk whose genealogy is given by the family tree of a
Bienaymé branching process (which we refer to as a Bienaymé tree) conditioned to have n
vertices. We assume that the offspring distribution µ = (µk)k≥0 is critical and has finite,
non-zero variance, so that the genealogical tree has the Brownian continuum random tree
as its scaling limit.1 Each vertex of the tree is endowed with a spatial location in R:
the root is fixed to be at 0; for every other vertex, its location is obtained via a random
displacement away from the location of its parent. The random displacements of children
of distinct vertices will always be independent but, in general, the displacements of siblings
may be dependent and may, moreover, depend on the vertex degree. For a vertex v with k
children, the distribution of the vector of displacements from v to its children is denoted
by νk. In the sequel, Yk = (Yk,1, . . . , Yk,k) always denotes a random vector with law νk.
In this paper, we explore conditions on µ and ν = (νk)k≥1 such that the whole object
converges to a Brownian motion indexed by the Brownian tree.

A convenient formulation is via the notion of a discrete snake. We imagine exploring
the vertices of the tree one by one in depth-first order (we shall give precise definitions in
Section 2 below) and record a list of the spatial locations of the ancestors of the vertex
we are currently visiting. In other words, the snake is a process taking values in the set of
finite random walk paths (one should imagine it wiggling around as we explore the tree!).
In fact, it turns out to be sufficient for many purposes to track the spatial location of
the vertex that we are visiting only: this gives the so-called head of the discrete snake,
which is our primary object of interest. We aim to prove convergence, after an appropriate
rescaling, of the head of the discrete snake to the head of the Brownian snake driven by
a normalised Brownian excursion (BSBE), first introduced by Le Gall [23, 24]. This is a
stochastic process (e, r) = (et, rt)0≤t≤1 taking values in R+×R, such that e is a normalised
Brownian excursion and, conditionally on e, the second coordinate r is a centered Gaussian

1To avoid technicalities, we shall also assume that the support of µ has greatest common divisor 1, so
that the event that the tree has size n has strictly positive probability for all n large enough.
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process with covariance function

cov (rs, rt) = min
u∈[s∧t,s∨t]

eu. (1.1)

Let us give some interpretation. For any pair of vertices in the Brownian tree, encoded by
s, t ∈ [0, 1], having heights es and et, the spatial locations along their genealogical paths
evolve as a common Brownian motion until their most recent common ancestor (which
lies at distance minu∈[s∧t,s∨t] eu from the root) is reached, and they evolve as independent
Brownian motions thereafter.

The problem of proving convergence of rescaled discrete snakes to the BSBE has been
studied by a number of authors, under a wide range of different conditions on µ and
(νk)k≥1. We shall give a review of the literature after we state our main results.

In order to obtain a Brownian limit for the displacements along a lineage, we require
appropriate centering and moment conditions, which we now explain. Let ξ be a random
variable with distribution µ and let ξ̄ be a size-biased version, that is, having distribution
µ̄ := (µ̄k)k≥1, where for all k ≥ 1,

µ̄k =
kµk

E [ξ]
= kµk.

(Recall that the offspring distribution µ is assumed to be critical, so that E [ξ] = 1.)
Conditionally on ξ̄, let Yξ̄ = (Yξ̄,1, . . . , Yξ̄,ξ̄) be νξ̄-distributed and, independently, let Uξ̄

be a Uniform([ξ̄]) random variable (where [m] := {1, 2, . . . ,m}). Then we say that the
discrete snake is globally centered if

E
[
Yξ̄,Uξ̄

]
= 0.

In other words, the expected displacement of a uniform child of a vertex with a size-biased
number of offspring is 0. We define the global variance to be

β2 := E
[
Y 2
ξ̄,Uξ̄

]
,

and will prove our results under the condition that β2 < ∞. Since distances in the tree
scale as n1/2, the spatial displacements along a lineage will then scale as n1/4.

1.1. Main result. Denote by Tn a Bienaymé tree with offspring distribution µ, condi-
tioned to have n vertices. Write v(Tn) for the vertex set of Tn and ∂Tn for its set of

leaves. Conditionally given Tn, let Y = (Y (v), v ∈ v(Tn) \ ∂Tn) be independent random

vectors, such that if v ∈ v(Tn) \ ∂Tn has k children then Y (v) has distribution νk. Endow

the vertices of Tn with spatial locations using the displacement vectors Y (v) as described
above. We call the pair Tn = (Tn, Y ) a (µ, ν)-branching random walk conditioned to have
n vertices, or simply a (µ, ν)-branching random walk.

Let Hn = (Hn(i))0≤i≤n and H̃n = (H̃n(i))0≤i≤2n be the height and contour processes
of Tn, respectively. Let Rn(i) be the spatial location of the i-th vertex visited in a depth-
first exploration of Tn. We call the process (Hn, Rn) the head of the discrete snake (see
Section 2 for a careful description of this). We may alternatively encode the endpoints

of the random walk trajectories using the process (H̃n, R̃n), where R̃n(i) is the spatial
location of the i-th vertex visited in a contour exploration of Tn. (Compared to (Hn, Rn),
this simply revisits some vertices.) We interpolate all of these functions linearly between

integer times which turns Hn and Rn into elements of C([0, n],R) and turns H̃n and R̃n

into elements of C([0, 2n],R).
We use two different notions of convergence for a sequence of random elements (fn)n≥1 of

C([0, 1],R) such that fn(0) = fn(1) = 0 for all n ≥ 1. Let U1, U2, . . . be iid Uniform([0, 1])
random variables, independent of everything else. For k ≥ 1, write Uk

(1), . . . , U
k
(k) for

the order statistics of U1, . . . , Uk. For another random element f of C([0, 1],R) such
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Figure 1. Top: a (rescaled) discrete snake; bottom: its head. The under-
lying tree is a size-conditioned Poisson(1) Bienaymé tree with n = 25000
vertices and deterministic displacement distributions given by (1.5), below.
The area under the contour process of the underlying tree is illustrated by
the gray shaded region.

that f(0) = f(1) = 0, we say that fn
d−→ f in the sense of random finite-dimensional

distributions if, for every k ≥ 1,

(fn(Uk
(1)), . . . , fn(Uk

(k)))
d−→ (f(Uk

(1)), . . . , f(Uk
(k)))

as n → ∞. (We will discuss our choice of this notion of convergence in more detail below.)
We will also use the stronger notion of convergence with respect to the topology generated
by the uniform norm.
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Theorem 1.1. Let µ = (µk)k≥0 be a critical offspring distribution with variance σ2 ∈
(0,∞). If ν = (νk)k≥1 is such that

[A1] E
[
Yξ̄,Uξ̄

]
= 0 and β2 = E

[
Y 2
ξ̄,Uξ̄

]
< ∞,

then as n → ∞ the following joint convergence holds in the sense of random finite-
dimensional distributions:(

Hn(nt)√
n

,
Rn(nt)

n1/4
,
H̃n(2nt)√

n
,
R̃n(2nt)

n1/4

)
0≤t≤1

d−→

(
2

σ
et, β

√
2

σ
rt,

2

σ
et, β

√
2

σ
rt

)
0≤t≤1

.

(1.2)
The convergence (1.2) holds in distribution in C([0, 1],R4) endowed with the topology of
uniform convergence if, additionally,

[A2] P

{
max
1≤i≤ξ

|Yξ,i| > y

}
= o(y−4) as y → ∞ and E

[
ξ3
]
< ∞.

Theorem 1.1 follows immediately from Corollary 4.2 and Proposition 5.1 below.
Let Φn(i) be the random walk trajectory associated with path from the root to the

i-th vertex visited in the contour exploration of Tn, for 0 ≤ i ≤ 2n. Then (H̃n,Φn) is the

discrete snake driven by H̃n. By the homeomorphism theorem of Marckert and Mokkadem

(Theorem 2.1 of [31]), Theorem 1.1 entails also that (H̃n,Φn) has the BSBE as its scaling
limit; see Figure 1 for an illustration.

By [12, Corollary 2.5.1] and [30] it turns out that the convergence of the parametrisations
of the head of the snake via the height and contour processes are essentially equivalent.
In particular, in order to prove Theorem 1.1, it suffices to show that, under assumption
[A1], we have (

Hn(nt)√
n

,
Rn(nt)

n1/4

)
0≤t≤1

d−→

(
2

σ
et, β

√
2

σ
rt

)
0≤t≤1

, (1.3)

as n → ∞ in the sense of random finite-dimensional distributions, and in C([0, 1],R2)
endowed with the topology of uniform convergence under the additional assumption [A2].

It is not clear to us whether the requirement that E
[
ξ3
]
< ∞ in [A2] is necessary or

just an artefact of our approach to proving tightness. We shall see in the next subsection
that the tail condition in [A2] is necessary.

1.2. Necessity of the tail condition. If we adjust assumption [A2] to allow for heavier
tails, displacements start to appear near the leaves which are not negligible in the limit.
In this case, one can no longer expect a continuous limit process. Furthermore, since the
displacements from a vertex with k children need not be independent, in this setting the
limit depends on the joint distribution of the displacements from a vertex to its children.
To state our convergence result in this case we introduce a further assumption, [A3] below.
For k ≥ 1 and j ∈ [k] denote by

Y +
k,j := Yk,j ∨ 0 and Y −

k,j := (−Yk,j) ∨ 0,

the positive and negative displacements of the j-th child of a vertex with k children,
respectively. Further let Y +

k := (Y +
k,j)j∈[k] and Y −

k = (Y −
k,j)j∈[k].
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[A3]

Suppose that E
[
ξ3
]
< ∞. Furthermore, suppose that there exists a Borel mea-

sure π on R2
+ \ {(0, 0)} such that for any ε > 0, both π(R+ × (ε,∞)) < ∞ and

π((ε,∞) × R+) < ∞, and there exists η ∈ [0, 2) such that for all Borel sets
A ⊂ R2

+ \ {(0, 0)} for which π(∂A) = 0,

r4−ηP

{
1

r

(
max
1≤i≤ξ

Y +
ξ,i, max

1≤i≤ξ
Y −
ξ,i

)
∈ A

}
→ π(A)

as r → ∞.

Remark 1.2. Observe that [A3] implies that the projection of π onto either of its coor-
dinates has no atom in any x > 0. To see this, we argue by contradiction. Fix T > 0.
Without loss of generality, assume that π({x} × R+) = δ > 0 for some x > 0. We
show that this implies that π((x/2,∞) × R+) > T , which contradicts the requirement that
π((x/2,∞) × R+) < ∞ because T > 0 was chosen arbitrarily. Fix 0 < ε < x/4 small
enough that δ⌊ x

8ε⌋ > T and π({x− ε, x+ ε}×R+) = 0. Define A0 = (x− ε, x+ ε), so that
by [A3],

r4−ηP

{
1

r
max
1≤i≤ξ

Y +
ξ,i ∈ A0

}
→ π(A0 × R+) ≥ δ as r → ∞.

Then, letting J = ⌊ x
8ε⌋−1, for j ∈ {1, . . . , J}, we can find θj ∈ (0, 1] such that Aj := θj(x−

ε, x+ε) ⊂ (x−(2j+1)ε, x−(2j−1)ε) and π({θj(x−ε), θj(x+ε)}×R+) = 0. By definition,
A0, . . . , AJ are pairwise disjoint, and by our choice for J , ∪0≤j≤JAj ⊂ (x/2, x + ε), so
π((x/2,∞) × R+) ≥

∑
0≤j≤J π(Aj × R+). Moreover, setting r = θjs in the above limit

shows that

s4−ηP

{
1

s
max
1≤i≤ξ

Y +
ξ,i ∈ θj(x− ϵ, x + ϵ)

}
→ θη−4

j π(A0 × R+) ≥ δ as s → ∞.

But [A3] implies that

s4−ηP

{
1

s
max
1≤i≤ξ

Y +
ξ,i ∈ θj(x− ϵ, x + ϵ)

}
→ π(Aj × R+),

so π((x/2,∞) × R+) ≥ (J + 1)δ > T , which implies the claim.

Under assumption [A3] we prove convergence results for the head of the discrete snake
in the space of non-empty compact subsets of [0, 1] × R equipped with the Hausdorff
topology. In what follows, for a continuous function f : [0, 1] → R and a set S ⊂ [0, 1] ×
R2
+ \ {(0, 0)}, write U(f, S) for the union of the graph of f and the vertical line segments

[(t, f(t)−y), (t, f(t)+x)] for each (t, x, y) ∈ S. The next theorem relates to the case η = 0
in [A3].

Theorem 1.3. Let µ = (µk)k≥0 be a critical offspring distribution with variance σ2 ∈
(0,∞), and let ν = (νk)k≥1 be such that [A1] holds and [A3] holds for a given measure π
with η = 0. Then, taking Ξ to be a Poisson process on [0, 1] ×R2

+ \ {(0, 0)} with intensity
dt⊗ π(dx, dy), we have((

Hn(nt)√
n

)
0≤t≤1

, U

(
Rn(n·)
n1/4

, ∅
))

d−→

((
2

σ
et

)
0≤t≤1

, U

(
β

√
2

σ
r,Ξ

))
, (1.4)

as n → ∞, where the convergence in the first coordinate is in C([0, 1],R) endowed with
the topology of uniform convergence, and the convergence in the second is in the space of
non-empty, compact subsets of [0, 1] × R endowed with the Hausdorff topology.

We refer to the object on the right-hand side of (1.4) as the hairy tour, in keeping with
the previous work of Janson and Marckert [18].

When η ∈ (0, 2), the large jumps dominate the smaller ones to such an extent that, in
the limit, we obtain a pure jump process.
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Theorem 1.4. Let µ = (µk)k≥0 be a critical offspring distribution with variance σ2 ∈
(0,∞), and let ν = (νk)k≥1 be such that [A1] holds and [A3] holds for a given measure
π with η ∈ (0, 2). Then, taking Ξ to be a Poisson process on [0, 1] × R2

+ \ {(0, 0)} with
intensity dt⊗ π(dx, dy), we have((

Hn(nt)√
n

)
0≤t≤1

, U

(
Rn(n·)
n1/(4−η)

, ∅
))

d−→

((
2

σ
et

)
0≤t≤1

, U(0,Ξ)

)
,

as n → ∞, where the convergence in the first coordinate is in C([0, 1],R) endowed with
the topology of uniform convergence, and the convergence in the second is in the space of
non-empty, compact subsets of [0, 1] × R endowed with the Hausdorff topology.

In contrast to Theorem 1.1, in Theorems 1.3 and 1.4 we need the condition E
[
ξ3
]
<

∞ not just for tightness but also for the convergence of the random finite-dimensional
distributions. The reason for this is that we apply a quantitative local central limit theorem
which requires a third moment on the offspring distribution. (See Theorem A.3 for the
precise statement.)

The fact that we obtain a continuous function decorated by intervals in both Theo-
rems 1.3 and 1.4 is really an artefact of the choice to interpolate Rn linearly between
integer times. Indeed, the endpoints of the intervals capture the asymptotic behaviour of
the two extremities of the displacements away from vertices, but tell us nothing about how
the “point process” of displacements in between behaves. If we instead consider the graph

of
(
Rn(⌊nt⌋)

n1/4

)
0≤t≤1

in the case where we do not have P {max1≤i≤ξ |Yξ,i| > y} = o(y−4)

there are, in fact, many possible behaviours. We will not undertake any sort of exhaustive
classification here, but let us give a couple of illustrative examples.

Suppose first that the displacements are simply iid copies of a random variable Y such
that, for some Borel measure π on R+ \ {0} such that for any ε > 0, π((ε,∞)) < ∞,
we have r4P {Y ∈ rA} → π(A) as r → ∞ for every Borel set A ⊂ R \ {0} such that

π(∂A) = 0. Then we will not, in the limit, observe two or more Θ(n1/4) displacements

away from the same vertex of Tn (nor, indeed, from vertices at distance o(n1/2) from one
another), and so we just obtain the graph of r decorated by isolated points which occur
as a Poisson process of intensity dt⊗ π(dy) on [0, 1] × R \ {0}.

On the other hand, suppose that we have the following deterministic displacements:

Yk,j = σ − 2

σ
(k − j) for 1 ≤ j ≤ k. (1.5)

These displacements have a particular significance, which we will discuss in the next sub-
section. For the moment, let us just observe that it is straightforward to check that they
are globally centered and of finite global variance whenever the offspring distribution is
critical and admits a finite third moment. Suppose that there exists a Borel measure π1
on (0,∞) with π1((ε,∞)) < ∞ for all ε > 0, such that r4P {ξ ∈ rA} → π1(A) as r → ∞
for any Borel set A ⊂ (0,∞) with π1(∂A) = 0. Then all of the children of a vertex with

Θ(n1/4) children will have Θ(n1/4) displacements which are regularly spaced with spacing

2/σ. Again, with high probability, we will not see two vertices of degree Θ(n1/4) within

distance o(n1/2) in Tn. So in the limit for the graph of
(
Rn(⌊nt⌋)

n1/4

)
0≤t≤1

we will see decora-

tions driven by a Poisson process on [0, 1] ×R+ with intensity dt⊗ π(dx) such that when
we observe a point (t, x) of the Poisson process, we attach the whole interval [−2x/σ, 0] to
the graph of r at t.

1.3. Related work. As mentioned earlier, versions of the topic studied in this paper have
received extensive attention in the literature. One reason for this is that discrete snakes
play a crucial role in the study of random planar maps; see [1, 2, 8, 25, 29, 34].
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The earliest discrete snake convergence results were proved in models with a fixed off-
spring distribution. Chassaing and Schaeffer [8] treated the setting of a Geometric(1/2)
offspring distribution (which results in uniformly random planar trees) with iid displace-
ments uniform on {−1, 0, 1}. Marckert and Mokkadem [31] treated the same offspring
distribution, but where the displacements away from a vertex all have the same centered
marginal distribution (but may depend on one another) with a 6 + ε moment. Gitten-
berger [13] later generalised these results to critical, finite variance offspring distributions
with centered (but not necessarily iid) displacements having finite 8 + ε moment.

Work on the iid displacement case culminated in a paper of Janson and Marckert [18]
which established the following result.

Theorem 1.5 ([18], Theorems 1 and 2). Let µ = (µk)k≥0 be a critical offspring distribution
with variance σ2 ∈ (0,∞) such that µ has a finite exponential moment. For each k ≥ 1,
let νk be the law of a vector of k iid copies of a random variable Y with E [Y ] = 0 and
E
[
Y 2
]

= β2 ∈ (0,∞). Then(
H̃n(2nt)√

n
,
R̃n(2nt)

n1/4

)
0≤t≤1

d−→

(
2

σ
et, β

√
2

σ
rt

)
0≤t≤1

(1.6)

as n → ∞, in the sense of finite-dimensional distributions. The convergence also holds in
distribution in C([0, 1],R2) endowed with the topology of uniform convergence if and only
if

P {|Y | > y} = o(y−4) as y → ∞. (1.7)

The finite exponential moment condition on the offspring distribution has subsequently
been shown to be unnecessary, and may be weakened to a finite second moment assump-
tion; see, for example, Marzouk [33]. Our Theorem 1.1 recovers this theorem under the ad-
ditional assumption of a finite third moment for µ (and replacing convergence in the sense
of finite-dimensional distributions in the first statement with random finite-dimensional
distributions).

Janson and Marckert [18] also considered what happens in some of the “heavy-tailed”
cases for which the tail condition P {|Y | > y} = o(y−4) fails. In particular, they considered
the setting in which

P {Y ≥ y} ∼ a+y
−q, P {Y ≤ −y} ∼ a−y

−q as y → ∞

for some constants a+, a− ≥ 0 and q ∈ (2, 4], and prove analogues of Theorems 1.3 and 1.4
in such cases. They call the limiting object in this setting the hairy tour, and the associated
snake the jumping snake. Their results were an important inspiration for Theorems 1.3
and 1.4.

Marzouk [33] later extended Janson and Marckert’s results in [18] to the situation where
the offspring distribution is in the domain of attraction of a stable law, and the displace-
ments are iid.

Returning now to non-iid displacements, there are several notions of centering and finite
variance which have been imposed in order to obtain convergence to the BSBE. Marckert
and Miermont [29] worked under the “local centering” assumption that E [Yk,j ] = 0 for all
1 ≤ j ≤ k. For multi-type Bienaymé trees, [2] establishes convergence of discrete snakes
under assumptions that impose in particular that the displacements away from vertices of
each type are centered.

Most closely related to our results is a paper of Marckert [32], which proves the following
theorem.
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Theorem 1.6 ([32], Theorem 1). Let µ = (µk)k≥0 be a critical offspring distribution with
µ0 + µ1 < 1 and with bounded support. Suppose further that ν = (νk)k≥1 is such that

E
[
Yξ̄,Uξ̄

]
= 0 and β2 = E

[
Y 2
ξ̄,Uξ̄

]
< ∞,

and that there exists p > 4 such that

sup
1≤j≤k≤K

E [|Yk,j − E [Yk,j ] |p] < ∞.

where µ is supported by {0, . . . ,K}. Then, as n → ∞,(
Hn(nt)√

n
,
Rn(nt)

n1/4
,
H̃n(2nt)√

n
,
R̃n(2nt)

n1/4

)
0≤t≤1

d−→

(
2

σ
et, β

√
2

σ
rt,

2

σ
et, β

√
2

σ
rt

)
0≤t≤1

(1.8)
in C([0, 1],R4) endowed with the topology of uniform convergence.

The boundedness condition is a necessary requirement of Marckert’s proof technique,
which is a tour de force involving tracking very detailed information about the number of
vertices of each possible different degree along a lineage, which converge on appropriate
rescaling to a Gaussian field. Our approach removes the boundedness requirement, but
we do not obtain such fine information on the limit object.

Finally, we mention a forthcoming work of Duquesne and Rebei [10], which proves limit
theorems for snakes whose jumps are centered and sibling-independent and such that the
underlying family tree converges to Lévy trees. Our understanding is that the results and
technique of [10] are rather different from those of the current work.

1.4. A first application. One nice consequence of Theorem 1.1 is a strengthening of
a result of Marckert and Mokkadem [30], concerning the difference between the height
process, Hn, and the  Lukasiewicz path, here denoted by Wn (and formally defined in
Section 2) of Tn. It is proved in [30] that if ξ is critical with variance σ2 ∈ (0,∞) and has
a finite exponential moment, then(

H̃n(2nt)√
n

,
Hn(nt)√

n
,
Wn(nt)√

n

)
0≤t≤1

d−→
(

2

σ
et,

2

σ
et, σet

)
0≤t≤1

as n → ∞ in C([0, 1],R3). (As mentioned after Theorem 1.5, the finite exponential
moment condition is unnecessary and may be removed; see Duquesne [11] for this result
in the context of trees rather than snakes.)

Moreover, under the same assumptions, [30] establishes that, for any ε > 0, there exists
γ > 0 such that for n > 0 sufficiently large

P

{
sup

0≤i≤n

∣∣∣∣σHn(i) − 2σ−1Wn(i)

∣∣∣∣ ≥ n1/4+ε

}
≤ exp (−γnε) .

It is natural to conjecture that, under suitable conditions, the difference varies precisely
on the order of n1/4. We are able to prove this conjecture in a large degree of generality. It
turns out that the difference (σHn(i)−2σ−1Wn(i), 0 ≤ i ≤ n) evolves precisely as the head
of a discrete snake (see Lemma 2.1 for a proof of this fact). The relevant displacements
are given by Yk,j = σ − (2/σ)(k − j); this formula already appeared at (1.5). We have

∞∑
k=1

µk

k∑
j=1

E [Yk,j ] =

∞∑
k=1

µk

k∑
j=1

(
σ − 2

σ
(k − j)

)
=

∞∑
k=1

µk

(
σk − k(k − 1)

σ

)
= σ − σ2

σ
= 0,
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so that the associated discrete snake is globally centered. Moreover, the global variance is

∞∑
k=1

µk

k∑
j=1

E
[
Y 2
k,j

]
=

∞∑
k=1

µk

k∑
j=1

(
σ − 2

σ
(k − j)

)2

=
∞∑
k=1

µk

(
σ2k − 2k(k − 1) +

2

3σ2
k(k − 1)(2k − 1)

)
=

4

3σ2
(E
[
ξ3
]
− 1) − (σ2 + 2),

which is finite provided that E
[
ξ3
]
< ∞. Also,

P

{
max
1≤i≤ξ

|Yξ,i| > y

}
= P

{∣∣∣∣σ − 2

σ
(ξ − 1)

∣∣∣∣ ∨ σ > y

}
= o(y−4)

as y → ∞ if and only if P {ξ > y} = o(y−4) as y → ∞; moreover, the latter condition
implies E

[
ξ3
]
< ∞. We obtain the following corollary of Theorem 1.1.

Corollary 1.7. Let µ = (µk)k≥1 be a critical offspring distribution with variance σ2 ∈
(0,∞). Let β2 = 4

3σ2 (E
[
ξ3
]
− 1) − (σ2 + 2). Then(

Hn(nt)√
n

,
σHn(nt) − 2σ−1Wn(nt)

n1/4

)
0≤t≤1

d−→

(
2

σ
et, β

√
2

σ
rt

)
0≤t≤1

,

as n → ∞ in C([0, 1],R2) if and only if P {ξ > y} = o(y−4) as y → ∞.

The necessity of the condition P {ξ > y} = o(y−4) as y → ∞ follows from a straightfor-
ward argument concerning the largest degrees, which we defer to Lemma A.13 below.

Let us observe that, while Corollary 1.7 concerns the difference between the height
process and the  Lukasiewicz path, the joint convergence in Theorem 1.1 can be used to
prove an analogous result for the difference between the  Lukasiewicz path and the contour
process encoding of the head of the same discrete snake. (We leave the details of this
statement to the reader.)

In the case where ξ is bounded, Marckert’s result (Theorem 1.6) applies, so the corollary
is new only in the case of unbounded offspring distributions. In an earlier paper [28], Mar-
ckert had already observed that the difference between the left and right pathlengths (also
known as the imbalance) of a size-conditioned Bienaymé tree with offspring distribution

µ0 = µ2 = 1/2 converges in distribution after rescaling to 21/4S, where S =
∫ 1
0 rtdt. We

note that such trees are binary, and recall that the left pathlength (resp. right pathlength)
of a vertex v is the number of vertices in its ancestral lineage who precede (resp. succeed)
their siblings in the lexicographical order. The left (resp. right) pathlength of binary trees
is then the sum of the left (resp. right) path lengths over all vertices in the tree. Jan-
son [15] later used the method of moments to give an alternate proof of this convergence
in distribution.

It can also be the case that the sequence (n−1/4 max0≤i≤n |σHn(i) − 2σ−1Wn(i)|)n≥1

is tight without converging in distribution to the maximum modulus of the head of the
BSBE; indeed, by Theorem 1.3, if r4P {ξ ∈ rA} → π(A) as r → ∞ for all Borel sets
A such that π(∂A) = 0 and a Borel measure π on R+ \ {0} such that for any ε > 0,

π((ε,∞)) < ∞, then it is possible to prove that n−1/4 max0≤i≤n |σHn(i) − 2σ−1Wn(i)|
converges in distribution to the maximum modulus of the appropriate hairy tour. If, on
the other hand, we have r4−ηP {ξ ∈ rA} → π(A) as r → ∞ for some η ∈ (0, 2), then
Theorem 1.4 yields the convergence

n−1/(4−η) max
0≤i≤n

|σHn(i) − 2σ−1Wn(i)| d−→ L,
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where P {L ≤ ℓ} = exp(−
∫∞
ℓ π(x)dx) is the probability that no point of a Poisson point

process of intensity dtπ(dx) on [0, 1] × R+ has second co-ordinate greater than ℓ.

1.5. A second application. A second consequence of Theorem 1.1 concerns the differ-
ence between the height process of Tn and the height process of the corresponding looptree.
The looptree corresponding to Tn, denoted by T◦

n, is the connected multigraph obtained
by replacing the edges from a vertex to its children by a cycle going through the parent
and all of its children in order (whose length, therefore, equals its number of children plus
one). See Figure 2 for an illustration. (It turns out that it is possible to make sense of a
continuum analogue of this notion, as proved by Curien and Kortchemski [9].)

d◦Tn
(ρ, v) = 4

ρ

v

Figure 2. In the top left figure, a tree, and in the bottom left figure its
corresponding looptree. The top-right figure serves to aid in understanding
the construction, and the bottom-right figure illustrates how distances are
calculated in the loop-tree.

Vertices in the original tree naturally correspond to vertices in the looptree. Let
v1, . . . , vn be the vertices of Tn listed in lexicographical order. We define the height
function of the looptree, denoted H◦

n : [0, n] → R, to give the graph distance between
the root and each of the vertices in the looptree, visited in the order v1, . . . , vn. This is
the height process (in the usual sense) of the spanning tree of the looptree made up of
the union of the geodesic paths from each of its vertices to the root. Formally, using the
Ulam-Harris notation (see Section 2 for details) for 0 ≤ i ≤ n− 1 let

H◦
n(i) :=

∑
(u,uj)∈e(Tn) : uj⪯vi+1

min{j, c(u,Tn) + 1 − j},

where for u ∈ v(Tn), c(u,Tn) denotes the number of children of u in Tn. Finally let
H◦

n(n) = 0, and extend the domain to [0, n] by linear interpolation. For c ∈ R, it is readily
seen that the difference (cHn(i) −H◦

n(i), 0 ≤ i ≤ n) evolves as the head of a discrete snake
whose displacements are given by

Yk,j = c− min{j, k + 1 − j}.
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Moreover, if we fix c = 1
4E
[
ξ3
]

+ 1
2 + 1

4P {ξ ∈ 2Z + 1}, then

∞∑
k=1

µk

k∑
j=1

E [Yk,j ] =

∞∑
k=1

µk

k∑
j=1

(c− min{j, k + 1 − j})

=
∞∑
k=1

µk

ck − 2

⌊k/2⌋∑
i=1

i−
⌈
k

2

⌉
1[k∈2Z+1]


=

∞∑
k=1

µk

(
ck − k

2

(
k

2
+ 1

)
− 1

4
1[k∈2Z+1]

)
= c− 1

4
E
[
ξ3
]
− 1

2
− 1

4
P {ξ ∈ 2Z + 1}

= 0,

so that the associated discrete snake is globally centered. Moreover, the global variance is

∞∑
k=1

µk

k∑
j=1

E [Yk,j ] (1.9)

=
∞∑
k=1

µk

k∑
j=1

(c− min{j, k + 1 − j})2

=

∞∑
k=1

µk

c2k − ck

(
k

2
+ 1

)
− c

2
1[k∈2Z+1] + 2

⌊k/2⌋∑
i=1

i2 +

⌈
k

2

⌉2
1[k∈2Z+1]


=

∞∑
k=1

µk

(
c2k + k

(
k

2
+ 1

)(
k

6
+

1

6
− c

)
+

(
k2

12
+

k

3
+

1

4
− c

2

)
1[k∈2Z+1]

)

= c2 +
E
[
ξ3
]

12
+

(
1

4
− c

2

)
E
[
ξ2
]

+
1

6
− c + E

[(
ξ2

12
+

ξ

3
+

1

4
− c

2

)
1[ξ∈2Z+1]

]
=: β2, (1.10)

which is finite provided E
[
ξ3
]
< ∞.

Finally,

P

{
max
1≤i≤ξ

|Yξ,i| > y

}
= P {|c− ⌈ξ/2⌉| ∨ |c− 1| > y} = o(y−4)

as y → ∞ if and only if P {ξ > y} = o(y−4) as y → ∞ and, moreover, the latter condition
implies E

[
ξ3
]
< ∞. We obtain the following corollary of Theorem 1.1.

Corollary 1.8. Let µ = (µk)k≥1 be a critical offspring distribution with variance σ2 ∈
(0,∞), and let ξ be a random variable with distribution µ. Let c = 1

4E
[
ξ2
]

+ 1
2 +

1
4P {ξ ∈ 2Z + 1} and β2 be as in (1.9). Then,(

Hn(nt)√
n

,
H◦

n(nt)√
n

,
cHn(nt) −H◦

n(nt)

n1/4

)
0≤t≤1

d−→

(
2

σ
et,

2

σ
et,

√
2

σ
βrt

)
0≤t≤1

, (1.11)

as n → ∞ in C([0, 1],R3) endowed with the topology of uniform convergence if and only
if P {ξ > y} = o(y−4) as y → ∞.

Again, the proof of the necessity of the condition P {ξ > y} = o(y−4) is deferred to
Lemma A.13.
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Analogues of this result also hold in the settings of Theorems 1.3 and 1.4. Even the
functional convergence for the height process of looptrees of Bienaymé trees, expressed in
the second coordinate of (1.11), is new, although pointwise convergence was proved by
Kortchemski and Marzouk [21]. (The convergence of looptrees in the Gromov–Hausdorff
topology was proved in [22] via spinal decomposition (see Theorem 1.2 and the generic case
in Corollary 1.4 for the application to maps), and convergence in the Gromov–Hausdorff–
Prokhorov topology was shown in [20, Theorem 15].)

1.6. Overview of the proofs. We will prove weak convergence of the head of the snake
by making use of the following variant of the usual formulation of weak convergence for a
sequence of random continuous functions. (This formulation is inspired by Theorem 20 of
[4], and can be proved by essentially the same method as the second proof of Theorem 7.5
of [6].)

Proposition 1.9. Let (fn)n≥1 and f be random elements of C([0, 1],R) such that fn(0) =
fn(1) = 0 for every n ≥ 1 and f(0) = f(1) = 0. Let U1, U2, . . . be iid U [0, 1] random
variables, independent of (fn)n≥1 and f . For k ≥ 1, write Uk

(1), U
k
(2), . . . , U

k
(k) for the

values of U1, U2, . . . , Uk written in increasing order, and set Uk
(0) = 0 and Uk

(k+1) = 1.

Suppose that for each k ≥ 1 we have(
fn(Uk

(1)), . . . , fn(Uk
(k))
)

d−→
(
f(Uk

(1)), . . . , f(Uk
(k))
)
, (1.12)

as n → ∞, and that for any ε > 0,

lim
k→∞

lim sup
n→∞

P

max
0≤i≤k

sup
s,t∈[Uk

(i)
,Uk

(i+1)
]

|fn(s) − fn(t)| > ε

 = 0. (1.13)

Then fn
d−→ f as n → ∞, for the topology generated by the uniform norm on C([0, 1],R).

We will refer to assumption (1.12) as the convergence of random finite-dimensional
distributions and to (1.13) as tightness. Observe that (1.12) is weaker than the usual
convergence of finite-dimensional distributions. However, it is more natural in the context
of random trees, and indeed plays a key role in Aldous’ theory of continuum random trees
as developed in [4]. (See the appendix of [5] for a discussion and for further references.)

Let T2e be the real tree encoded by 2e, where e is a normalised Brownian excursion.
(We refer to the survey of Le Gall [26] for standard definitions concerning random real
trees.) Fix k ≥ 1 and let U1, . . . , Uk be iid Uniform([0, 1]) random variables. Furthermore,
let T k

2e be the subtree of T2e spanned by the images of 0 and of U1, . . . , Uk in T2e. Formally,
it is useful to think of this as an ordered rooted tree with leaves labeled by 1, 2, . . . , k and
edge-lengths, where we use the relative ordering of U1, U2, . . . , Uk to determine the planar
ordering of the leaves. Using Aldous’ line-breaking construction [4] we may construct a
tree which is equal in distribution to T k

2e as follows.
Let J1, . . . , Jk be the first k jump times of a Poisson point process on [0,∞) with inten-

sity tdt at time t. For i = 1, . . . , k−1, sample an attachment point Ai ∼ Uniform([0, Ji]), in-
dependent of (Aj)j ̸=i. Take the completion of each of the line segments [0, J1], (J1, J2], . . . ,
(Jk−1, Jk], and for each i ∈ {1, . . . , k−1} let J∗

i denote the limit point as x ↓ Ji−1. Identify
the points J∗

i and Ai, and think of the line-segment as being attached to the left side of
the branch containing Ai with probability 1/2 and to the right side with probability 1/2.
Denote the resulting rooted ordered tree with leaf-labels and edge-lengths by T k. Then,

T k
2e

d
= T k; see [4, p. 279].

The proof of Theorem 1.1 (and similarly Theorems 1.3 and 1.4) relies on proving that
a certain discrete line-breaking construction of Tn, described formally in Section 2.2, con-
verges to Aldous’ line-breaking construction upon rescaling. The discrete construction
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builds a tree on [n] by first constructing paths P (1), . . . , P (ℓ∗) and then attaching them to

one another by identifying one endpoint of each path P (i) with a point in (P (j))j<i. The
proof of convergence of the random finite-dimensional distributions relies on the observa-
tion that, along each path, the sequence of partial sums of the displacements essentially
a random walk trajectory with iid steps with the same distribution as Yξ̄,Uξ̄

and, more-

over, that random displacements appearing at branch points do not contribute to the
displacements of the discrete snake on the “macroscopic” spatial scale of Θ(n1/4).

For the proofs of tightness, we adapt a method of Haas and Miermont [34] used to prove
tightness for the height process of a Markov branching tree. (Note that size-conditioned
Bienaymé trees are examples of Markov branching trees.) Let Tk

n be a subtree of Tn

spanned by its root and k uniform vertices. The difference Tn \ Tk
n is a forest Fk

n, and to
prove tightness we bound the maximum modulus of the spatial locations in each tree in
Fk
n. Following Haas and Miermont, we reduce this bound to an expression involving only

a size-biased pick among the trees in Fk
n. The proof of tightness then reduces to proving

an explicit tail bound for the maximum modulus of the spatial location of a vertex in Tn

when rescaled by n−1/4. As a key part of our argument, we require a strong control on the
total variation distance between the laws of ξ̄ and of the number of children of the root of

Tn, which we denote by D̂n
1 . For k ∈ [n], by Kemperman’s formula [37, Chapter 6],

P
{
D̂n

1 = k
}

=

(
n

n− 1

)
P {Sn−1 = n− 1 − k}

P {Sn = n− 1}
P
{
ξ̄ = k

}
, (1.14)

where (Sn)n≥1 is a random walk with iid µ-distributed increments. In order to control this
total variation distance, we use a version of the local central limit theorem ([35, Theorem
13, Chapter VII] which, for completeness, we also state below in Theorem A.2) which
holds whenever E

[
ξ3
]
< ∞; this is the origin of the third moment condition in our main

theorem.

1.7. Asymptotic notation. We will use the following notation related to the asymptotics
of random variables (Xn)n≥ ∈ R. (See Janson [16].) For (yn)n≥1 ∈ R>0,

• Xn = oP(yn) means that Xn/yn
p→ 0 as n → ∞;

• Xn = ωP(yn) means that Xn/yn
p→ ∞ as n → ∞;

• Xn = OP(yn) means that for all ε > 0, there exist constants nε, Cε > 0 such that
for all n ≥ nε,

P {Xn ≤ Cεyn} ≥ 1 − ε;

• Xn = ΩP(yn) means that for all ε > 0 there exist constants nε, Cε > 0 such that
for all n ≥ nε,

P {Xn ≥ Cεyn} ≥ 1 − ε;

• Xn = ΘP(yn) means that Xn = OP(yn) and Xn = ΩP(yn).
• Lastly, “with high probability” always means “with probability tending to 1 as
n → ∞.
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2. Trees, branching random walks, and their encodings

We require a number of different tree models, which we now define.
First, a tree is simply a connected acyclic graph T = (v(T ), e(T )). A rooted tree consists

of a tree together with a distinguished root vertex ρ = ρ(T ) ∈ v(T ). Given a rooted tree T
and a vertex v of T write C(v, T ) for the set of children of v in T and c(v, T ) = |C(v, T )|;
vertex v is a leaf of T if c(v, T ) = 0. We write ∂T for the set of leaves of T . Also, for a
non-root vertex v we write p(v) = p(v, T ) for the parent of v in T . For vertices v, w ∈ v(T )
we write v ≺ w if v is an ancestor of w, and for an edge e we also write e ≺ v if at least
one endpoint of e is an ancestor of v. For S ⊂ v(T ), the subtree of T spanned by S is the
minimal subtree of T containing all elements of S.

Letting N0 := {∅}, the Ulam–Harris tree is the rooted tree with root ∅ and vertex set

U :=
⋃
n≥0

Nn

in which, for each v ∈ U , the set of children of v is {vi, i ∈ N}. (Here, and in the sequel,
for a string v = (v1, . . . , vk) we write vi := (v1, . . . , vk, i).) We say w is a younger sibling
of u if w = vj, u = vi and j > i. We will make use of the usual lexicographic order on U ,
which is the total order in which each vertex precedes all of its descendants and all of its
younger siblings. Also, for v ∈ Nn ⊂ U we write |v| = n for the depth of v in U .

∅

3

31

311

31123111

31111

21

11

111

4

3

10

1

119

7

(σ1(9), σ1(11))

= (1, 2)

28

5

6

(σ4(8), σ4(2), σ4(3))

= (1, 2, 3) 4

3

10

1

11

(1, 2)

9

7

(9, 1)

(1, 1)

(10, 1)

(3, 1)

(4, 3)

2

(4, 2)

8

5

6

(5, 1)

(8, 1)

(4, 1)

Figure 3. Left: an ordered rooted tree. Center: a labeled ordered rooted
tree, with the functions σv indicated for v ∈ {1, 4}. Right: the edge labeling
of T , introduced in Section 2.2.

The definitions of the coming paragraph are illustrated in Figure 3. An ordered rooted
tree is a tree T with v(T ) ⊂ U and the following properties: (i) ∅ ∈ v(T ); (ii) if v ∈ v(T )
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then p(v,U) ∈ v(T ); (iii) if vi ∈ v(T ) then vj ∈ v(T ) for all 1 ≤ j ≤ i. Note that the
edge set of an ordered rooted tree may be recovered from its vertex set, and we will often
identify ordered rooted trees with their vertex sets. The lexicographic order on v(T ) is
simply the restriction of the lexicographic order on U to v(T ).

A labeled ordered rooted tree is a finite rooted tree T = (v(T ), e(T )) with v(T ) = [n]
in which, for each non-leaf vertex of T , the set of children is endowed with a total order
σv = σv,T : C(v, T ) → [c(v, T )]. We will sometimes abuse notation by writing vi =
σ−1
v (i) for the i-th child of v under this total order. This abuse of notation is justified

by the observation that the ordering of the children of each non-leaf induces an injection
φ : v(T ) → U defined inductively by φ(ρ(T )) = ∅ and φ(vi) = φ(σ−1

v (i)) = φ(v)i for
i ∈ [c(v, T )]; and φ(v(T )) is indeed (the vertex set of) an ordered rooted tree. As such, a
labeled ordered rooted tree could equivalently be represented as a pair (T, f) where T ⊂ U
is a finite ordered rooted tree and f : T → [n] is a bijection (so n = |T |). However, the
first representation is more natural in the context of the methods we shall shortly use for
constructing random labeled ordered rooted trees. Moreover, the second representation
would be confusing, as it is very similar to our representations of branching random walks
and of spatial trees, which we now describe.

2.1. Branching random walks,  Lukasiewicz path, contour and height processes.
A branching random walk is a pair T = (T, Y ), where T is an ordered rooted tree (possibly

labeled) and Y = (Y (v), v ∈ v(T ) \ ∂T ), where Y (v) = (Y
(v)
j , j ∈ [c(v, T )]) ∈ Rc(v,T ). We

think of Y (v) as a set of spatial displacements from vertex v to its children, so Y
(v)
j is the

difference in the spatial locations of vertices v and vj. The spatial location of u ∈ v(T ) is
then given by the sum of displacements along u’s ancestral path:

ℓ(u) = ℓ(u,T) :=
∑

{(v,vj)∈e(T ):vj⪯u}

Y
(v)
j .

We refer to the pair (T, ℓ) as a spatial tree. The branching random walk (T, Y ) can clearly
be recovered from the spatial tree (T, ℓ), and vice versa.

Let T = (v(T ), e(T )) be a finite ordered rooted tree and write n = |T |. The  Lukasiewicz
path of T is the function WT : [0, n] → R defined as follows. List the elements of v(T )
in lexicographic order as v1, . . . , vn. Set WT (0) = 0. For 1 ≤ i ≤ n, set WT (i) =∑i

j=1(c(vi, T ) − 1), and then extend the domain of WT to [0, n] by linear interpolation.

The height process of T is the function HT : [0, n] → R≥0 defined as follows. For
0 ≤ i < n set HT (i) = |vi+1| and set HT (n) = 0; then extend the domain of HT to [0, n]
by linear interpolation.

The contour order of v(T ) is the sequence w0, . . . , w2(n−1) of elements of v(T ) defined
as follows. First, w0 = ∅ is the root of T . Inductively, for each 0 ≤ i < 2(n − 1), if wi

has at least one child in T which does not appear in the sequence w0, . . . , wi−1, then
let wi+1 be the lexicographically least such child. Otherwise, let wi+1 = p(wi, T ). It is
straightforward to verify that each vertex v of T appears in the resulting sequence exactly

1+c(v, T ) times. The contour process of T is the function H̃T : [0, 2(n−1)] → R≥0 defined

by setting H̃T (i) = |wi| for integers i with 0 ≤ i ≤ 2(n − 1), letting H̃T (2n) = 0, and
extending to [0, 2n] by linear interpolation.

If T = (T, Y ) is a branching random walk with underlying tree T then we encode the
spatial locations by a function RT : [0, n] → R given by setting RT(i) = ℓ(vi+1,T), for
i ∈ {0, . . . , n−1}, RT(n) = 0, and extending to [0, n] by linear interpolation. We also define

a process R̃T : [0, 2n] → R by setting R̃T(i) = ℓ(wi,T) for integers i with 0 ≤ i ≤ 2(n− 1),

R̃T(2n) = 0, and extending to [0, 2n] by linear interpolation.
The following result appears somewhat implicitly in Section 3 of [7]. For completeness

we give a proof.
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Lemma 2.1. Fix α1, α2 ̸= 0. Let T = (T, Y ) be the branching random walk with Y =

(Y (v), v ∈ v(T ) \ ∂T ) such that Y (v) = (α1 − 2
α2

(c(v, T ) − j), j ∈ [c(v, T )]), v ∈ v(T ). Let

RT be the function encoding the spatial locations of T. Then for all t ∈ [0, n],

RT(t) = α1HT (t) − 2

α2
WT (t).

Proof. It is sufficient to prove that

RT(i) = α1HT (i) − 2

α2
WT (i)

for i ∈ {0, 1, . . . , n − 1}. Let i ∈ {0, . . . , n − 1}. Then HT (i) is the number of ancestors
of vi+1 in T . Further, WT (i) is the number of younger siblings of ancestors of vi+1. It
follows that

α1HT (i) − 2

α2
WT (i) = α1 ·

 ∑
(u,uj)∈e(T ):uj⪯vi+1

1

− 2

α2

∑
(u,uj)∈e(T ):uj⪯vi+1

(c(u, T ) − j)

=
∑

(u,uj)∈e(T ):uj⪯vi+1

(
α1 −

2

α2
(c(u, T ) − j)

)
=

∑
(u,uj)∈e(T ):uj⪯vi+1

Y
(u)
j

= RT(i). □

2.2. Sequential encodings of labeled ordered rooted trees. Given a labeled ordered
rooted tree T = ([n], e(T )), we assign labels to the edges of T as follows. For v ∈ [n] and
i ∈ [c(v, T )], assign label (v, i) to the edge {v, vi} = {v, σ−1

v (i)}. The set of all edge labels
is then L(T ) = {(v, i) : v ∈ v(T ), i ∈ [c(v, T )]}. Given any path P = v0v1 . . . vk from a
vertex v0 of T to one of its descendants, let πP be the sequence of edge labels along the
path from v0 to vk: formally, πP = πP (T ) = ((v0, c0), . . . , (vk−1, ck−1)), where c0, . . . , ck−1

are such that vj = vj−1cj−1 for each j ∈ [k].
We say a sequence d = (d1, . . . , dn) of non-negative integers is a degree sequence if∑
v∈[n] dv = n − 1. We say a labeled tree T with v(T ) = [n] has degree sequence d if

c(v, T ) = dv for all v ∈ [n]. Write Ld for the set of labeled ordered rooted trees with degree
sequence d. For any tree T ∈ Ld, it is the case that L(T ) = {(v, c) : v ∈ [n], c ∈ [dv]}.
Write Pd for the set of permutations of {(v, c) : v ∈ [n], c ∈ [dv]}; this set has size (n− 1)!.
For a fixed degree sequence d, we will make extensive use of a bijection B : Pd → Ld for
d = (d1, . . . , dn) a degree sequence of length n ≥ 2, which we give below. We first describe
B−1, as it is slightly simpler.

The bijection B−1 : Ld → Pd. Input: T ∈ Ld.

• Let T (0) be the subtree of T consisting of the root alone.
• For ℓ ≥ 1, if T (ℓ−1) ̸= T then let y(ℓ) be the smallest label of a vertex in T

which is not in T (ℓ−1), let P (ℓ) be the path in T from T (ℓ−1) to y(ℓ), and let
T (ℓ) be the subtree of T spanned by {P (ℓ), y(1), . . . , y(ℓ−1)}.

• Let ℓ∗ be the first value for which T (ℓ∗) = T .
• Let πT be the concatenation of the sequences πP (1) , . . . , πP (ℓ∗) , and set
B−1(T ) = πT .

In the example of Figure 3, ℓ∗ = 6 and the paths are P (1) = 4, 3, 10, P (2) = 4, P (3) = 4, 8,
P (4) = 5, P (5) = 1, 9 and P (6) = 1, so

πT = ((4, 3), (3, 1), (10, 1), (4, 2), (4, 1), (8, 1), (5, 1), (1, 1), (9, 1), (1, 2)) . (2.1)
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We next describe B; for this we make use of the fact that to specify a labeled ordered
rooted tree T with vertex set [n] it suffices to specify the set C(v, t) and the total orderings
σv : C(v, T ) → [c(v, T )] for each v ∈ [n].

Informally, this construction can be thought of as a discrete analog of the continuous
line-breaking construction from the second paragraph of Section 1.6. More specifically,
given π = ((v1, c1), . . . , (vn−1, cn−1)) ∈ Pd, certain substrings of π will correspond to paths

in the tree B(π). We will list these paths as P (1), . . . , P (ℓ∗). As in the continuous line-

breaking construction, for each i ≥ 2 we will identify one endpoint of the path P (i), with
a vertex in (P (j))j<i. In the following formal description we denote the i-th identified

vertex by vji . When we identify the endpoint of path P (i) with vertex vji , we use the
second coordinate of the pair (vji , cji) to determine the position of the unique child of vji
belonging to P (i) among the children of vji .

The bijection B : Pd → Ld. Input: π = ((v1, c1), . . . , (vn−1, cn−1)) ∈ Pd.

• Set m1 = min{m ∈ N : m ̸= v1} and let

j1 = inf{j > 1 : vj ∈ {m1, v1, . . . , vj−1}} ∧ n .

• For i ≥ 1 , if ji < n then:
– set mi+1 = min{m > mi : m ̸∈ {v1, . . . , vji}};
– let

ji+1 = inf{j > ji : vj ∈ {m1, . . . ,mi+1, v1, . . . , vj−1}} ∧ n.

• Let ℓ∗ = min{i ≥ 1 : ji = n}.
• Define a labeled ordered rooted tree T ∈ Ld as follows. For 1 ≤ i ≤ n − 1,

if i+ 1 ̸∈ {j1, . . . , jℓ∗} then set vici = σ−1
vi (ci) := vi+1. If i+ 1 = jk for some

1 ≤ k ≤ ℓ∗ then set σ−1
vi (ci) = mk.

• Set B(π) = T .

The rightmost tree in Figure 3 is the tree B(π) where π is equal to πT from (2.1).
When needed, we will emphasise the dependence of the quantities mi, ji and ℓ∗ on π by

writing mi(π), ji(π) and ℓ∗(π). Setting j0 = 1 for convenience, we may think of T = B(π)

as the union of the paths P (1), . . . , P (ℓ∗), where Pi = vji−1 . . . vji−1mi is the path in T from
vji−1 to mi. Note that since mi ≥ i for all i ∈ [ℓ∗], vertices 1, . . . , k are contained within

the union of paths P (1), . . . , P (k∧ℓ∗) for all k ∈ [n].
Recall from Section 1.1 that Tn denotes a Bienaymé tree with offspring distribution µ

conditioned to have n vertices. Suppose now that Dn = (Dn
1 , . . . , D

n
n) is a sequence

of iid µ-distributed random variables conditioned to have total sum
∑n

i=1D
n
i = n − 1,

and let ΠDn ∈U PDn . Then the tree Tn has the same law as B(ΠDn). Furthermore,
Tn = (Tn, Y ), which we refer to as a (µ, ν)-branching random walk (conditioned to have
size n), has the same law as (B(ΠDn), Y ). (Here, conditionally on the underlying tree T ,

Y = (Y (v), v ∈ v(T ) \ ∂T ) are independent random vectors such that if c(v, T ) = k then

Y (v) has distribution νk). The associated spatial tree (B(ΠDn), ℓ) is such that ℓ(v1) = 0,
and for 0 ≤ i ≤ n− 1 if i + 1 ̸∈ {j1, . . . , jℓ∗},

ℓ(vi+1) = ℓ(vi) + Y (vi)
ci ,

and if i + 1 = jk for some 1 ≤ k ≤ ℓ∗, then

ℓ(mk) = ℓ(vi) + Y (vi)
ci .

In Section 3 we study the above bijective construction of uniform trees with a given
deterministic degree sequence d; that is, for T = B(Πd) for Πd ∈U Pd. We note however,
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that by conditioning on Dn, all results in Section 3 also apply to Tn and, consequently, to
the underlying tree of Tn = (Tn, Y ).

3. Sampling from Ld

Fix a degree sequence d = (d1, . . . , dn). The bijection B applied to a uniform element
Πd ∈U Pd yields a uniform element T = B(Πd) of Ld. We can think of the bijection as
constructing T from Πd by adding vertices one at a time in order of their first appearance
in a pair (V,C) of Πd. Below, we use this perspective to study properties of T , in particular
the law of the sequence of vertices ordered by first appearance in a pair (V,C) of Πd, and

the law of the number of vertices contained in the union of the paths P (1), .., P (k), for
given k ≥ 1.

3.1. Size-biased random re-ordering. For n ≥ 1 let Sn denote the set of permutations
of [n]. For (k1, . . . , kn) ∈ Nn, let Σ = Σ(k1,...,kn) be the random permutation of [n] with
law given by

P {Σ = σ} =
n∏

i=1

kσ(i)∑n
j=i kσ(j)

, for σ ∈ Sn.

We call (kΣ(1), . . . , kΣ(n)) the size-biased random re-ordering of (k1, . . . , kn).
For a degree sequence d, let Nd = |{i ∈ [n] : di > 0}|. For π = ((v1, c1), . . . , (vn, cn)) ∈

Pd we let v̂1(π), . . . , v̂Nd
(π) denote the internal vertices in T = B(π) ordered by their first

appearance in a pair (v, c) in π. When π = Πd = ((V1, C1), . . . , (Vn−1, Cn−1)) ∈U Pd is

random, we write V̂i(Πd) = v̂i(Πd) to reinforce the fact that the order of the vertices is

random. The next lemma states that (V̂1(Πd), . . . , V̂Nd
(Πd)) are the vertices corresponding

to a size-biased random reordering of {di : di > 0, i ∈ [n]}.

Lemma 3.1. Fix a degree sequence d = (d1, . . . , dn) and let Πd ∈U Pd. Then for any
permutation (i1, . . . , iNd

) of {i ∈ [n] : di > 0},

P
{

(V̂1(Πd), . . . , V̂Nd
(Πd)) = (i1, . . . , iNd

)
}

=
di1

n− 1

di2
n− 1 − di1

. . .
diNd

n− 1 −
∑Nd−1

j=1 dij

Consequently, the size-biased random reordering of the positive entries of d is equal in
distribution to (d

V̂1(Πd)
, . . . , d

V̂Nd
(Πd)

).

Proof. We show the statement by induction on Nd. For Nd = 1, the statement is immediate
for all n and for all degree sequences of length n with |{i : di > 0}| = 1 since if Nd = 1

there is a single vertex of positive degree and V̂1(Πd) = i1.
Next, fix ℓ ∈ N and suppose the statement holds for all degree sequences d with Nd ≤ ℓ.

Then fix any degree sequence d = (d1, . . . , dn) with Nd = ℓ + 1, and any permutation
(i1, . . . , iNd

) of {i ∈ [n] : di > 0}. To specify an element of {π ∈ Pd : (v̂1(π), . . . , v̂ℓ+1(π)) =
(i1, . . . , iℓ+1)}, it is necessary and sufficient to specify

(1) π1 = (v1, c1) ∈ {(i1, c) : c ∈ [di1 ]};
(2) The di1 − 1 values j ∈ {2, 3, . . . , n− 1} for which πj = (i1, c) for some 1 ≤ c ≤ di1 ;
(3) The order of the di1 − 1 elements of {(i1, c), 1 ≤ c ≤ dij}\{π1} in π;
(4) The order of the elements of {(ij , c), 2 ≤ j ≤ ℓ + 1, 1 ≤ c ≤ dij} in π, which must

ensure that (v̂2(π), . . . , v̂ℓ+1(π)) = (i2, . . . , iℓ+1).
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By the induction hypothesis applied to the degree sequence (di2 , . . . , diℓ+1
, 0, . . . , 0) ∈

Zn−di1
≥0 this implies that

|{π ∈ Pd : (v̂1(π), . . . , v̂ℓ+1(π)) = (i1, . . . , iℓ+1)}|

= di1

(
n− 2

di1 − 1

)
(di1 − 1)!(n− 1 − di1)!

di2
n− 1 − di1

. . .
diℓ+1

n− 1 −
∑ℓ

j=1 dij

= (n− 1)!
di1

n− 1

di2
n− 1 − di1

. . .
diℓ+1

n− 1 −
∑ℓ

j=1 dij
; (3.1)

since |Pd| = (n− 1)!, the claim follows. □

3.2. Repeats in Πd. Let Πd = ((V1, C1), . . . , (Vn−1, Cn−1)) ∈U Pd. Recall that

V̂1(Πd), . . . , V̂Nd
(Πd) are the internal vertices in B(Πd) ordered by their first appearance

in a pair (V,C) in Πd.
For i ∈ [ℓ∗(Πd)] let Md

i = md
i (Πd) and Jd

i = jdi (Πd). We introduce this notation to
emphasise that Md

1 , . . . ,M
d
ℓ∗(Πd)

and Jd
1 , . . . , J

d
ℓ∗(Πd)

are random variables. We will see

later that for the random degree sequences Dn = (Dn
1 , . . . , D

n
n) arising in this paper, for

k ≥ 1 fixed and for n large, {V1, . . . , VJDn
k

}∩ [k] = ∅ with high probability. In this case, for

each i ∈ [k] the first coordinate of the pair (VJDn
i

, CJDn
i

) ∈ ΠDn , corresponds to a repeated

first coordinate of ΠDn . It is therefore convenient to define a second set of indices which
correspond to the indices of Πd for which the first coordinate is a repeat. Specifically, let

J̃d
1 = inf{j > 1 : Vj ∈ {V1, . . . , Vj−1}} ∧ n, and for i ≥ 1, let

J̃d
i+1 = inf{j > J̃d

i : Vj ∈ {V1, . . . , Vj−1}} ∧ n.

The next two lemmas describe the laws of J̃d
1 and (J̃d

i , i ≥ 2), respectively.

Lemma 3.2. Fix an integer n ≥ 2 and a degree sequence d = (d1, . . . , dn) and let Πd ∈U
Pd. Then for 1 ≤ k ≤ Nd,

P
{
J̃d
1 > k

∣∣∣ V̂1(Πd), . . . , V̂Nd
(Πd)

}
=

k∏
j=1

(
1 −

∑j
i=1(dV̂i(Πd)

+ 1)

n− 1 − j

)
,

and, for k > Nd,

P
{
J̃d
1 > k

∣∣∣ V̂1(Πd), . . . , V̂Nd
(Πd)

}
= 0.

Proof. Observe that J̃d
1 ≤ Nd + 1 deterministically, so the statement for k > Nd is

immediate. To prove the statement for 1 ≤ k ≤ Nd, fix any ordering i1, . . . , iNd
of

{i ∈ [n] : di > 0}. Then using Bayes’ formula and the fact that |Pd| = (n − 1)!, the
probability

P
{
J̃d
1 > k

∣∣∣ (V̂1(Πd), . . . , V̂Nd
(Πd)) = (i1, . . . , iNd

)
}

may be expressed as a ratio with denominator

|{π = ((vi, ci), i ∈ [n]) ∈ Pd : (v̂1(π), . . . , v̂Nd
(π)) = (i1, . . . , iNd

)}|
and numerator

|{π=((vi, ci), i ∈ [n]) ∈ Pd : (v̂1(π), . . . , v̂Nd
(π)) = (i1, . . . , iNd

), (v1, . . . , vk) = (i1, . . . , ik)}|.
Equation (3.1) directly yields a formula for the denominator. Also, letting d′ be the degree

sequence (dik+1, . . . , dNd
, 0, . . . , 0) ∈ Zn−di1−...−dik

≥0 , then the numerator is

k∏
j=1

dij · (n− 1 − k)di1+...+dik−k · |{π′ ∈ Pd′ : (v̂1(π
′), . . . , v̂Nd−k(π′)) = (ik+1, . . . , iNd

)}| .
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The first term selects cj ∈ [dij ] for each j ∈ [k]; the second, falling factorial term selects
the locations of the remaining entries of π whose first coordinate belongs to {i1, . . . , ik};
and the third term specifies the order of the remaining entries of π ∈ Pd. Equation (3.1)
also gives a formula for this final term, and the lemma then follows by routine algebra. □

Lemma 3.3. Fix a degree sequence d = (d1, . . . , dn) and let Πd ∈U Pd. Let i ≥ 1. Then

for n ≥ 2 and k such that J̃d
i + k ∈ [Nd],

P
{
J̃d
i+1 > J̃d

i + k
∣∣∣ J̃d

1 , . . . , J̃
d
i , V̂1(Πd), . . . , V̂Nd

(Πd)
}

=

J̃d
i +k∏

j=J̃d
i

(
1 −

∑j
ℓ=1(dV̂ℓ(Πd)

− 1) − i

n− j

)

and, for k > Nd,

P
{
J̃d
i+1 > k

∣∣∣ V̂1(Πd), . . . , V̂Nd
(Πd)

}
= 0.

The proof of Lemma 3.3 is analogous to that of Lemma 3.2 and is therefore omitted.
Finally, a bound we will need in Section 5, whose proof relies on the bijective construction
of Tn, is the following; its proof is postponed to Appendix A.

Lemma 3.4. Let d = (d1, . . . , dn) be a degree sequence and let B ⊂ [n] be a set of vertices.
Suppose that |B| ≤ K and suppose that max1≤i≤n di ≤ ∆. Let Bd be the smallest distance
between two vertices in B that are ancestrally related in Td = B(Πd) (with Bd = ∞ if no
vertices in B are ancestrally related). Then, for any b ≥ 0

P {Bd ≤ b} ≤ K

(
1 −

(
1 − K∆

n− 1 − b∆

)b
)
.

4. Random finite-dimensional distributions

In this section we use the bijection B to prove the convergence of the random finite-
dimensional distributions of the head of the discrete snake (Hn, Rn). We assume through-
out this section that µ is critical and has variance σ2 ∈ (0,∞), and that assumption [A1]
holds.

Recall that Tn is a Bienaymé tree with offspring distribution µ conditioned to have n
vertices, and that Tn = (Tn, Y ) denotes the conditioned (µ, ν)-branching random walk.
By Section 2.2, Tn has the same distribution as (B(ΠDn), Y ), where Dn = (Dn

1 , . . . , D
n
n) is

a sequence of iid µ-distributed random variables conditioned to have total sum
∑n

i=1D
n
i =

n− 1 and, conditionally on Dn, ΠDn = ((V1, C1), . . . , (Vn−1, Cn−1)) ∈U PDn .
Fix k ≥ 1. Let Un

1 , . . . , U
n
k be a uniformly random k-set of indices chosen from [n]. Let

Tn(Un
1 , . . . , U

n
k ) be the subtree of Tn spanned by the root of Tn and the vertices vUn

1
, . . . ,

vUn
k

, where for i ∈ [n], we recall that vi is the i-th vertex in the lexicographical order

of Tn. (For fixed k, as n → ∞, a collection of k iid Uniform([n]) random variables will
be distinct with probability tending to 1, so we can treat Un

1 , . . . , U
n
k as indistinguish-

able from independent uniform picks from the vertices.) We immediately observe that
Tn(Un

1 , . . . , U
n
k ) has the same distribution as Tk

n, the subtree of B(ΠDn) spanned by the

root and the vertices 1, . . . , k. Since Tk
n is more convenient for our analysis, we will work

with it instead. Note that Tk
n is a labeled ordered rooted tree whose leaves are labeled by

1, 2, . . . , k. Write ℓkn for the map from Tk
n into R which gives the spatial locations of the

vertices, so that (Tk
n, ℓ

k
n) is the spatial tree (Tn, ℓ) restricted to the subtree spanned by

the root and the vertices 1, . . . , k.
Let T2e denote the Brownian tree encoded by the excursion 2e, and let U1, . . . , Uk be

iid Uniform([0, 1]) random variables, independent of e. Recall that T k
2e = T2e(U1, . . . , Uk)
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denotes the subtree of T2e spanned by the images of 0 and U1, . . . , Uk in T2e, thought
of as an ordered rooted tree with leaves labeled by 1, 2, . . . , k and with real-valued edge
lengths. Recall that T k

2e has the same distribution as the tree T k built by Aldous’ line-
breaking construction. We now introduce a version of the line-breaking construction which
incorporates spatial locations.

Line-breaking construction of the Brownian tree with spatial locations

We construct a sequence (T k)k≥1 of trees along with two functions h : [0,∞) →
[0,∞) and l : [0,∞) → R recursively. Let J1, J2, . . . be the jump times of a Pois-
son point process on [0,∞) with intensity tdt at time t, listed in increasing order.
Independently, let (Bt)t≥0 be a standard Brownian motion. Start from the tree
T 1 which consists of the line-segment [0, J1]. Define h(t) = t and l(t) = Bt for
0 ≤ t ≤ J1. Recursively, for k ≥ 2, conditionally on Jk−1, sample an attachment
point Ak−1 ∼ Uniform([0, Jk−1]), independent of (Aj)j<k−1. Take the completion
of the line segment (Jk−1, Jk], and let J∗

k−1 denote the limit point as x ↓ Jk−1.
Identify the points J∗

k−1 and Ak−1. This has the effect of gluing the line-segment

(Jk−1, Jk] onto T k−1. We do this with probability 1/2 to the left side and with
probability 1/2 to the right side. This yields T k. Define h(t) = h(Ak−1) + t− Jk−1

and l(t) = l(Ak−1) + Bt − BJk−1
for t ∈ (Jk−1, Jk] to determine the height and

location processes on the new line-segment.

The planar embedding of T k is captured by a permutation τk : [k] → [k] which is
such that τk(1), . . . , τk(k) is the order in which we observe the leaves when exploring the
tree from left to right. Using the notation Uk

(1), . . . , U
k
(k) for the increasing ordering of

U1, . . . , Uk as in Proposition 1.9, we then have(
h(Jτk(1)), . . . ,h(Jτk(k)), l(Jτk(1)), . . . , l(Jτk(k))

)
d
=
(

2eUk
(1)
, . . . , 2eUk

(k)
,
√

2rUk
(1)
, . . . ,

√
2rUk

(k)

)
, (4.1)

where the equality in distribution of the first k co-ordinates on the two sides is a conse-
quence of Corollary 22 of Aldous [4], and that of the final k co-ordinates is a consequence
of the definition of the Brownian snake given at (1.1). So the line-breaking construction
indeed realises the random finite-dimensional distributions of the head of the Brownian
snake.

We show that the scaling limit of (Tk
n, ℓ

k
n) is (T k, l|[0,Jk]) in an appropriate sense, which

will allow us to prove the convergence of the random finite-dimensional distributions, along
with a certain amount of extra information which will be useful to us in Section 5 where
we prove tightness.

Recall that the tree Tk
n necessarily sits within the first k paths, P (1), . . . , P (k), in the

discrete line-breaking construction. We need to understand the lengths of these paths, and
the positions at which the paths are glued onto one another. It is convenient to use the
indices of the vertices in ΠDn for this purpose rather than the vertex labels themselves.
Recall that JDn

1 , JDn

2 , . . . , JDn

k are the first k indices at which we see either a repeat or an

element of {1, 2, . . . , k}. Let us henceforth write Jn
i = JDn

i (and also J̃n
i = J̃Dn

i ) for i ≥ 1.

Then the lengths of the paths P (1), . . . , P (k) are given by Jn
1 , J

n
2 − Jn

1 , . . . , J
n
k − Jn

k−1. For

1 ≤ m ≤ k− 1, the index at which the path P (m+1) attaches onto the subtree constructed

from the first m paths is given by the value i such that VJn
m

= V̂i(ΠDn) (i.e. we find the

index of the vertex VJn
m

within the vector (V̂1(ΠDn), . . . , V̂Nn(ΠDn))). We write An
m for

this value i and call this the m-th attachment point. See Figure 4.
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V̂1(ΠDn) V̂2(ΠDn) V̂3(ΠDn)

21

An
2 = 3

V̂4(ΠDn) V̂5(ΠDn) V̂6(ΠDn) V̂7(ΠDn)

3

An
1 = 4

Figure 4. Illustration of the first and second attachment points, An
1 and

An
2 .

Since Tk
n is an ordered tree, we will need to understand where the paths P (2), . . . , P (k)

attach relative to the pre-existing children of their attachment points. If we are looking
to attach to a vertex which has only one pre-existing child (i.e. for which there has been
no previous repeat) then that vertex must have degree d ≥ 2, and then whether we attach
to the left or to the right of the pre-existing child is simply determined by the relative
ordering of the corresponding second coordinates in the sequence ΠDn . If there has been
no previous repeat at this vertex then this pair of second coordinates is chosen uniformly
at random without replacement from [d] and, in particular, we attach to the left and
right sides each with probability 1/2. This ceases to be true after the first repeat (not
least because then there are three or more children whose relative ordering we need to
understand), but as we shall show below, we observe a second repeat of any vertex in
Tk
n with vanishing probability as n → ∞. Let Fn

1 , . . . , F
n
k be random variables taking

values in {0, 1, 2} such that Fn
i = 1 if P (i+1) attaches at a first repeat and to the left-hand

side, Fn
i = 2 if P (i+1) attaches at a first repeat and to the right-hand side and Fn

i+1 = 0
otherwise, for 1 ≤ i ≤ k.

Finally, recall that vertex V̂i(ΠDn) has degree Dn
V̂i(ΠDn )

for i ≤ NDn = |{i ∈ [n] : Dn
i >

0}|. Let Ln(0) = 0 and let Ln(i) be the spatial location of the Ci-th child of vertex Vi in
line-breaking construction B(ΠDn), for 1 ≤ i ≤ n− 1.

The following proposition shows that, on rescaling, these quantities converge in dis-
tribution to their analogues in the line-breaking construction of the Brownian tree with
spatial locations.

Proposition 4.1. Fix k ≥ 1. Then

σ√
n

(Jn
1 , J

n
2 , . . . , J

n
k , A

n
1 , . . . , A

n
k)

d−→ (J1, J2, . . . , Jk, A1, . . . , Ak) (4.2)

as n → ∞. Jointly with this convergence, we have that

(Fn
1 , F

n
2 , . . . , F

n
k )

d−→ (F1, F2, . . . , Fk), (4.3)

where F1, F2, . . . , Fk are iid random variables, independent of everything else, such that
P {Fi = 1} = P {Fi = 2} = 1/2 and

n−1/4(Ln(⌊tn1/2⌋ ∧ (Jn
1 − 1)))t≥0

d−→ β(Bt∧(J1/σ))t≥0,

n−1/4(Ln((Jn
i + ⌊tn1/2⌋) ∧ (Jn

i+1 − 1)))t≥0
d−→ β(BAi/σ + B((Ji/σ)+t)∧(Ji+1/σ) −B(Ji/σ))t≥0

(4.4)

for 1 ≤ i ≤ k − 1, in each case for the uniform norm.

As a corollary, we obtain the convergence of the random finite-dimensional distributions
in (1.3).
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Corollary 4.2. For any k ≥ 1, as n → ∞(
Hn(nUk

(1))√
n

, . . . ,
Hn(nUk

(k))√
n

,
Rn(nUk

(1))

n1/4
, . . . ,

Rn(nUk
(k))

n1/4

)
d−→

(
2

σ
eUk

(1)
, . . . ,

2

σ
eUk

(k)
, β

√
2

σ
rUk

(1)
, . . . , β

√
2

σ
rUk

(k)

)
,

where Uk
(1), . . . , U

k
(k) are the order statistics of k iid Uniform([0, 1]) random variables.

Proof. Let (Un
1 , . . . , U

n
k ) be a uniformly random k-set chosen from [n], and (Un,k

(1) , . . . , U
n,k
(k) )

be the order statistics of (Un
1 , . . . , U

n
k ). As argued above, we may straightforwardly replace

nUk
(1), . . . , nU

k
(k) by (Un,k

(1) − 1, . . . , Un,k
(k) − 1) at no asymptotic cost. Recall that Hn(i) gives

the distance from the root of the (i + 1)-th vertex visited in a depth-first exploration of
the tree. The random variables

(Hn(Un
1 − 1), . . . ,Hn(Un

k − 1))

have the joint law of the distances from the root to the leaves labeled 1, 2, . . . , k in Tk
n (these

may be expressed in terms of sums and differences of elements of (Jn
1 , . . . , J

n
k , A

n
1 , . . . , A

n
k)

analogously to the definition of h in the line-breaking construction of the Brownian tree
with spatial locations), and

(Rn(Un
1 − 1), . . . , Rn(Un

k − 1)) = (Ln(Jn
1 − 1), . . . , Ln(Jn

k − 1)).

The effect of ordering the uniforms is simply to apply the same permutation of the entries to
each of (Hn(Un

1 −1), . . . ,Hn(Un
k −1)) and (Rn(Un

1 −1), . . . , Rn(Un
k −1)). This permutation

is straightforwardly induced by the choices (Fn
1 , . . . , F

n
k−1). By (4.3), this permutation

then converges in distribution to τk. But then the claimed convergence follows from
Proposition 4.1 using the scaling property of Brownian motion and (4.1). □

We begin by studying the vertex degrees at the start of the bijective construction,
and show that, on the timescale of

√
n, the degrees that we observe are asymptotically

indistinguishable from iid copies of ξ̄. We show further that the subtree Tk
n is constructed

on a timescale of order
√
n. This allows us to prove (4.2) in Proposition 4.7. To get the

convergence of the spatial locations, we observe that, with the exception of branch points,
the displacements along the ancestral lineages in Tk

n are asymptotically indistinguishable
from iid copies of Yξ̄,Uξ̄

. Combining this with the convergence of the tree allows us to

obtain the convergence of the spatial locations along the branches of the subtree.

4.1. A discrete change of measure. In this subsection, we show that the size-biased
random re-ordering of the positive entries of Dn may be viewed as a vector of iid copies
of the size-biased offspring random variable ξ̄ up to a change of measure. We study the
behaviour of the Radon-Nikodym derivative and show that its effect is trivial on the first
O(

√
n) entries of the vector. Recall that NDn = |{i ∈ [n] : Dn

i > 0}|. To ease the notation,
we write Nn = NDn . Let

D̂n =
(
D̂n

1 , . . . , D̂
n
Nn

)
be the size-biased random re-ordering of the positive entries of Dn. We note that

D̂n d
=
(
Dn

V̂1(ΠDn )
, . . . , Dn

V̂Nn (ΠDn )

)
.

Later we will often somewhat abuse notation and write (D̂n
1 , . . . , D̂

n
Nn

) in place of
(Dn

V̂1(ΠDn )
, . . . D

V̂Nn (ΠDn )
), for example in the proof of Proposition 4.7.
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Proposition 4.3. Let ξ1, ξ2, . . . , ξn be iid random variables with distribution µ. Further,
let ξ̄1, ξ̄2, . . . be iid samples from the size-biased distribution of ξ1. Then for 1 ≤ m < n,
and any non-negative measurable function f : Zm → R+,

E
[
f(D̂n

1 , . . . , D̂
n
m)1[Nn≥m]

]
= E

[
f(ξ̄1, . . . , ξ̄m)Θn(ξ̄1, . . . , ξ̄m)

]
,

where for k1, . . . , km ∈ N,

Θn(k1, . . . , km) =
P
{∑n

i=m+1 ξi = n− 1 −
∑m

i=1 ki
}

P {
∑n

i=1 ξi = n− 1}

m∏
i=1

(
n− i + 1

n− 1 −
∑i−1

j=1 kj

)
, (4.5)

if k1 + . . . + km ≤ n− 1, and Θn(k1, . . . , km) = 0 otherwise.

Proposition 4.3 is a special case of Proposition A.4 that we state and prove in the
appendix, and use in full generality to prove Theorems 1.3 and 1.4 in Section 7. We state
only the special case here as the more general formulation is much more technical and
requires definitions are only relevant in settings where assumption [A3] holds.

The next lemma shows that the change of measure Θn appearing in Proposition 4.3 is
asymptotically unimportant provided that m = Θ(

√
n).

Lemma 4.4. Let µ be a critical offspring distribution with variance σ2 ∈ (0,∞), and let
(ξ̄i)i≥1 be iid samples from the size-biased distribution of µ. Suppose that m = m(n) =
Θ(

√
n). Then as n → ∞

Θn(ξ̄1, . . . , ξ̄m)
p→ 1,

and (Θn(ξ̄1, . . . , ξ̄m))n≥1 is a uniformly integrable sequence of random variables.

Proof. By a subsubsequence argument we may assume that m/
√
n → t as n → ∞ for some

t > 0. Let ξ1, . . . , ξn be iid random variables with distribution µ. We deal with the ratio
of probabilities in the definition of Θn using the local central limit theorem. Specifically,
since E [ξ1] = 1 and Var {ξ1} = σ2, we have that

sup
k∈Z

∣∣∣∣∣√n−m · P

{
n∑

i=m+1

ξi = n− 1 −m + k

}
− 1√

2πσ2
exp

(
− k2

2σ2(n−m)

)∣∣∣∣∣→ 0

as n → ∞, so for k1, . . . , km ∈ N,

P

{
n∑

i=m+1

ξi = n− 1 −
m∑
i=1

ki

}

= P

{
n∑

i=m+1

ξi − (n−m) = −1 −mσ2 −
m∑
i=1

(ki − 1 − σ2)

}

=

exp

(
− 1

2σ2(n−m)

(
1 + mσ2 +

∑m
i=1(ki − 1 − σ2)

)2)
√

2πσ2(n−m)
+ o(n−1/2).

Similarly, we have that

P

{
n∑

i=1

ξi = n− 1

}
=

1√
2πσ2n

+ o(n−1/2).
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Therefore,

P
{∑n

i=m+1 ξi = n− 1 −
∑m

i=1 ki
}

P {
∑n

i=1 ξi = n− 1}

= exp

−

(
1 + mσ2 +

∑m
i=1(ki − 1 − σ2)√

2σ2(n−m)

)2
+ o(1). (4.6)

Since the random variables ξ̄1, . . . , ξ̄n are iid with mean σ2 + 1, by the functional strong
law of large numbers (as stated in Lemma A.1), as n → ∞,

1√
n

max
1≤i≤⌊t

√
n⌋

∣∣∣∣∣∣
i∑

j=1

(ξ̄j − 1 − σ2)

∣∣∣∣∣∣ a.s.−→ 0. (4.7)

Since m = (1 + o(1))t
√
n this in particular yields that

exp

−

(
1 + mσ2 +

∑m
i=1(ξ̄i − (1 + σ2))√

2σ2(n−m)

)2
 p→ exp

(
− t2σ2

2

)
. (4.8)

We claim that n → ∞,

m∏
i=1

(
n− i + 1

n− 1 −
∑i−1

j=1 ξ̄j

)
p→ exp

(
t2σ2

2

)
. (4.9)

Indeed,

m∏
i=1

(
n− i + 1

n− 1 −
∑i−1

j=1 ξ̄j

)
= exp

(
−

m∑
i=1

log

(
1 −

∑i−1
j=1(ξ̄j − 1 − σ2) + σ2(i− 1)

n− i + 1

))
.

It follows by Taylor’s theorem and (4.7) that the last expression is equal to

exp

(
m∑
i=1

∑i−1
j=1(ξ̄j − 1 − σ2) + σ2(i− 1)

n− i + 1
+ oP(1)

)

= exp

(
σ2⌊t

√
n⌋(⌊t

√
n⌋ − 1)

2n
+ oP(1)

)
p→ exp

(
t2σ2

2

)
, (4.10)

establishing (4.9). Combining this with (4.6) and (4.8) yields that

Θn(ξ̄1, . . . , ξ̄m)
p→ 1.

To prove uniform integrability, notice that, by applying Proposition 4.3 with f ≡ 1,

E
[
Θn(ξ̄1, . . . , ξ̄m)

]
= P {Nn ≥ m} .

We claim that this tends to 1 as n → ∞. To this end, note that

#{i ∈ [n] : ξi > 0} d
= Binomial(n, 1 − µ0).

So by conditioning on the event {
∑n

i=1 ξi = n−1}, which occurs with probability Θ(n−1/2),
there are (1 + oP(1))n(1− µ0) non-zero entries of (ξ1, . . . , ξn). Since m = (1 + o(1))t

√
n it

follows that as n → ∞,

P {Nn ≥ m} = P

{
#{i ∈ [n] : ξi > 0} ≥ m

∣∣∣∣ n∑
i=1

ξi = n− 1

}
→ 1.

Uniform integrability then follows by the generalised Scheffé lemma, see [19, Theorem
5.12]. □



26 L. ADDARIO-BERRY, S. DONDERWINKEL, C. GOLDSCHMIDT, AND R. MITCHELL

Lemma 4.4 implies that if the offspring distribution has finite variance then, on a
timescale of

√
n in the bijective construction B(ΠDn) of Tn, the degrees we observe are

asymptotically indistiguishable from iid copies of ξ̄. To prove Proposition 4.1, we use this
fact in the form of Proposition 4.5 stated below.

Proposition 4.5. Given D̂n, let U1, . . . , Un be independent random variables such that,

for each i ∈ [n], Ui is uniformly distributed on [D̂n
i ]. Further, let Y

D̂n
1 ,U1

, . . . Y
D̂n

n ,Un
be

independent random variables such that, for each i ∈ [n], Y
D̂n

i ,Ui
is a uniform entry of a

ν
D̂n

i
-distributed displacement vector. If [A1] holds then as n → ∞, 1√

n

⌊t
√
n⌋∑

i=1

(D̂n
i − 1),

1

n1/4

⌊t
√
n⌋∑

i=1

Y
D̂n

i ,Ui


t≥0

d−→ (σ2t, βBt)t≥0,

for the topology of uniform convergence on compact time-intervals, where (Bt)t≥0 is a
standard Brownian motion.

Proof. Fix T > 0 and let F : D([0, T ],R)2 → R be a bounded continuous function, where
D([0, T ],R) is the space of real-valued functions on [0, T ] that are right-continuous with
left limits equipped with the Skorokhod topology. Let ξ̄1, ξ̄2, . . . be iid samples from the
size biased distribution of ξ. Further, independently for i ≥ 1, let U i be a Uniform([ξ̄i])
random variable.

By Proposition 4.3,

E

F
 1√

n

⌊t
√
n⌋∑

i=1

(D̂n
i − 1),

1

n1/4

⌊t
√
n⌋∑

i=1

Y
D̂n

i ,Ui


0≤t≤T

1[Nn≥⌊T
√
n⌋]


= E

F
 1√

n

⌊t
√
n⌋∑

i=1

(ξ̄i − 1),
1

n1/4

⌊t
√
n⌋∑

i=1

Yξ̄,U i


0≤t≤T

Θn
(
ξ̄1, . . . , ξ̄⌊T

√
n⌋

) , (4.11)

where the random variables (Yξ̄i,U i
)i≥1 are independent, and given ξ̄i, Yξ̄i,U i

is a uniform

entry of a νξ̄i distributed displacement vector. Since E
[
ξ̄1
]

= σ2 + 1, by the functional

strong law of large numbers (Lemma A.1), as n → ∞, 1√
n

⌊t
√
n⌋∑

i=1

(ξ̄i − 1)


t≥0

p→ (σ2t)t≥0

in D((0, T ),R).
Furthermore, the random variables (Yξ̄,U i

)i≥1 are iid with mean and variance given by

E
[
Yξ̄1,U1

]
=

∞∑
k=1

µk

k∑
j=1

E [Yk,j ] = 0, Var
{
Yξ̄1,U1

}
=

∞∑
k=1

µk

k∑
j=1

E
[
Y 2
k,j

]
= β2.

It then follows from Donsker’s theorem that as n → ∞ 1

n1/4

⌊t
√
n⌋∑

i=1

Yξ̄i,U i


t≥0

d−→ (βBt)t≥0

in D([0, T ],R). Therefore by the continuity of F , as n → ∞

E

F
 1√

n

⌊t
√
n⌋∑

i=1

(ξ̄i − 1),
1

n1/4

⌊t
√
n⌋∑

i=1

Yξ̄i,U i


0≤t≤T

→ E
[
F
(
(σ2t, βBt)0≤t≤T

)]
.
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Combining this with Lemma 4.4, and the boundedness of F , yields that (4.11) converges
to

E
[
F
(
(σ2t, βBt)0≤t≤T

)]
,

as n → ∞ and the result follows. □

4.2. Bijective construction on the timescale
√
n. In this subsection we show that the

subtree Tk
n is constructed on a timescale of order

√
n with high probability. We then prove

that the lengths of the paths which are glued together to form Tk
n converge on rescaling,

as do the positions at which they attach to one another.
We begin by showing that, with high probability, the vertices 1, . . . , k do not appear in

the first Θ(
√
n) entries of ΠDn .

Lemma 4.6. Fix T > 0 and k ≥ 1, and let

Gn,k(T ) =
{{

V̂1(ΠDn), . . . , V̂⌊T
√
n⌋(ΠDn)

}
∩ {1, . . . , k} = ∅, Nn ≥ ⌊T

√
n⌋
}
.

Then

P {Gn,k(T )} → 1

as n → ∞.

Notice that on the good event Gn,k(T ), if Jn
k ≤ ⌊T

√
n⌋ then JDn

i = J̃Dn

i for all i ∈ [k],

and Tk
n is precisely the tree spanned by the root and the paths P (1), . . . , P (k) in the bijective

construction B(ΠDn) of Tn.

Proof. We have

P {Gn,k(T )} = P
{
{V̂1(ΠDn), . . . , V̂⌊T

√
n⌋(ΠDn))} ∩ {1, . . . , k} = ∅, Nn ≥ ⌊T

√
n⌋
}

≥ E

[(
1 −

Dn
1 + · · · + Dn

k

n− 1 − T
√
nmax1≤i≤nDn

i

)⌊T
√
n⌋
]
− P

{
Nn < ⌊T

√
n⌋
}
.

Let ε > 0 and (ξi)i≥1 be a sequence of iid random variables with distribution µ. Then,

P

{
max
1≤i≤n

Dn
i > ε

√
n

}
=

P {max1≤i≤n ξi > ε
√
n,
∑n

i=1 ξi = n− 1}
P {
∑n

i=1 ξi = n− 1}

≤
nP {ξ1 > ε

√
n,
∑n

i=1 ξi = n− 1}
P {
∑n

i=1 ξi = n− 1}
. (4.12)

Since E
[
ξ2
]
< ∞ we have nP {ξ1 > ε

√
n} → 0 as n → ∞. Hence,

nP {ξ1 > ε
√
n,
∑n

i=1 ξi = n− 1}
P {
∑n

i=1 ξi = n− 1}

≤
nP {ξ1 > ε

√
n}maxε

√
n<m≤n−1 P {

∑n
i=2 ξi = n− 1 −m}

P {
∑n

i=1 ξi = n− 1}
→ 0

as n → ∞. Combining this with (4.12) gives that

1√
n

max
1≤i≤n

Dn
i

p→ 0

and so
Dn

1 + · · · + Dn
k√

n

p→ 0

as n → ∞. Therefore, by the bounded convergence theorem,

E

[(
1 −

Dn
1 + · · · + Dn

k

n− 1 − T
√
nmax1≤i≤nDi

)⌊T
√
n⌋
]
→ 1



28 L. ADDARIO-BERRY, S. DONDERWINKEL, C. GOLDSCHMIDT, AND R. MITCHELL

as n → ∞. The result then follows by noting (as at the end of the proof of Lemma 4.4)
that as n → ∞,

P
{
Nn < ⌊T

√
n⌋
}
≤ P {Binomial(n, 1 − µ0) < ⌊T

√
n⌋}

P {
∑n

i=1 ξi = n− 1}
→ 0. □

Proposition 4.7. Fix k ≥ 1. Then as n → ∞,

σ√
n

(Jn
1 , J

n
2 , . . . , J

n
k , A

n
1 , . . . , A

n
k)

d−→ (J1, J2, . . . , Jk, A1, . . . , Ak) (4.13)

as n → ∞, where J1, J2, . . . , Jk are the first k jump-times of an inhomogeneous Poisson
process of intensity t with respect to the Lebesgue measure at t ∈ R+ and, for i ∈ [k],
conditionally on J1, . . . , Ji, Ai is uniform on [0, Ji], independently of A1, . . . , Ai−1.

Proof. Fix T > 0. Let 0 ≤ t1 ≤ · · · ≤ tk ≤ T and s1 < t1, . . . , sk < tk. We will prove that

P
{
Jn
1 ≤ t1

√
n, . . . , Jn

k ≤ tk
√
n,An

1 ≤ s1
√
n, . . . , An

k ≤ sk
√
n
}

→ σ2k

 k∏
j=1

sj

∫ t1

0
· · ·
∫ tk

rk−1

exp(−σ2t2k/2)drk . . . dr1

= P {J1 ≤ σt1, . . . Jk ≤ σtk, A1 ≤ σs1, . . . , Ak ≤ σsk} . (4.14)

We will often work conditionally on the random variables D̂n = (D̂n
1 , . . . , D̂

n
Nn

). To make

the equations easier to read, we write P
D̂n for the conditional probability given D̂n and

E
D̂n for the corresponding expectation.
Fix T ′ > T . By Skorokhod’s representation theorem, there exists a probability space

on which the uniform convergence 1√
n

⌊t
√
n⌋∑

i=1

(D̂n
i − 1)


0≤t≤T ′

d−→ (σ2t)0≤t≤T ′ (4.15)

from Proposition 4.5 occurs in the almost sure sense. We work on this probability space
for the rest of the proof. Note, in particular, that if the above convergence occurs almost
surely then it is also the case that

1[Nn≥⌊T
√
n⌋]

a.s.−→ 1.

We first show that

nk/2P
D̂n

{
J̃n
1 = ⌊t1

√
n⌋, J̃n

2 = ⌊t2
√
n⌋, . . . , J̃n

k = ⌊tk
√
n⌋
}

1[Nn≥⌊T
√
n⌋]

a.s.−→ σ2kt1t2 . . . tk exp
(
−σ2t2k/2

)
, (4.16)

as n → ∞.
By Lemma 3.1, whenever the bijective construction B(ΠDn) of Tn encounters a new

vertex, its degree is distributionally equivalent to the next one on the list (D̂n
1 , . . . , D̂

n
Nn

).
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So by Lemma 3.2, on the event {Nn ≥ ⌊T
√
n⌋}, we have

P
D̂n

{
J̃n
1 = ⌊t1

√
n⌋
}

=

∑⌊t1
√
n⌋−1

ℓ=1 (D̂n
ℓ − 1)

n− ⌊t1
√
n⌋

⌊t1
√
n⌋−2∏

j=1

(
1 −

∑j
ℓ=1(D̂

n
ℓ − 1)

n− 1 − j

)

=

∑⌊t1
√
n⌋−1

ℓ=1 (D̂n
ℓ − 1)

n− ⌊t1
√
n⌋

exp

⌊t1
√
n⌋−2∑

j=1

log

(
1 −

∑j
ℓ=1(D̂

n
ℓ − 1)

n− 1 − j

)
=

∑⌊t1
√
n⌋−1

ℓ=1 (D̂n
ℓ − 1)

n− ⌊t1
√
n⌋

exp

⌊t1
√
n⌋−2∑

j=1

log

(
1 −

∑j
ℓ=1(D̂

n
ℓ − 1 − σ2) + σ2j

n− 1 − j

) .

By (4.15) and a similar argument to that used in the proof of (4.10), we get that as n → ∞,

√
nP

D̂n

{
J̃n
1 = ⌊t1

√
n⌋
}

1[Nn≥⌊T
√
n⌋]

a.s.−→ σ2t1 exp

(
− t21σ

2

2

)
.

We now proceed to prove the joint convergence of the first k coordinates in (4.16) by

induction. Suppose that the claimed convergence holds for J̃n
1 ,. . . , J̃n

m−1. By Lemma 3.3,
on the event {Nn ≥ ⌊T

√
n⌋},

P
D̂n

{
J̃n
m − J̃n

m−1 = ⌊tm
√
n⌋ − ⌊tm−1

√
n⌋
∣∣∣ J̃n

1 = ⌊t1
√
n⌋, . . . , J̃n

m−1 = ⌊tm−1

√
n⌋
}

=

∑⌊tm
√
n⌋−m

ℓ=1 (D̂n
ℓ − 1) −m + 1

n− ⌊tm
√
n⌋

⌊tm
√
n⌋−2∏

j=⌊tm−1
√
n⌋

(
1 −

∑j−m+1
ℓ=1 (D̂n

ℓ − 1) −m + 1

n− 1 − j

)
.

Arguing as above, we obtain

√
nP

D̂n

{
J̃n
m = ⌊tm

√
n⌋
∣∣∣ J̃n

1 = ⌊t1
√
n⌋, . . . , J̃n

m−1 = ⌊tm−1

√
n⌋
}

1[Nn≥⌊tm
√
n⌋]

a.s.−→ σ2tm exp

(
−
∫ tm

tm−1

σ2rdr

)
.

By induction on m, we get this for all 1 ≤ m ≤ k. Taking the product of the conditional
probabilities, we obtain (4.16).

We now wish to add in the random variables (An
i )i∈[k]. We work conditionally on the

event Gn,k(T ). Given also Jn
1 = ⌊t1

√
n⌋, . . . , Jn

m = ⌊tm
√
n⌋, D̂n

1 , . . . , D̂
n
Nn

and An
1 , . . . , A

n
m−1,

since Nn ≥ ⌊T
√
n⌋, at time Jn

m there are D̂n
i − 1 −

∑m−1
ℓ=1 1[An

ℓ =i] remaining instances of

the vertex V̂i(ΠDn) to appear in the bijective construction. So, the repeated vertex that

we see is V̂i(ΠDn), i.e. An
m = i, with probability

D̂n
i − 1 −

∑m−1
ℓ=1 1[An

ℓ =i]∑⌊tm
√
n⌋−m

j=1 (D̂n
i − 1) −m

,

for 1 ≤ i ≤ ⌊tm
√
n⌋ −m. Hence,

P
D̂n

{
An

m ≤ sm
√
n | Gn,k(T ), Jn

1 = ⌊t1
√
n⌋, . . . , Jn

m = ⌊tm
√
n⌋, An

1 , . . . , A
n
m−1

}
=

∑⌊sm
√
n⌋

i=1 (D̂n
i − 1) −

∑m−1
ℓ=1 1[An

ℓ ≤sm
√
n]∑⌊tm

√
n⌋−m

j=1 (D̂n
j − 1) −m

. (4.17)
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This quantity lies in the interval∑⌊sm
√
n⌋

i=1 (D̂n
i − 1) −m + 1∑⌊tm

√
n⌋−m

j=1 (D̂n
j − 1) −m

,

∑⌊sm
√
n⌋

i=1 (D̂n
i − 1)∑⌊tm

√
n⌋−m

j=1 (D̂n
j − 1) −m


whose end-points do not depend on An

1 , A
n
2 , . . . , A

n
m−1. Iterating, we thus obtain that

P
D̂n

{
An

1 ≤ s1
√
n, . . . , An

k ≤ sk
√
m
∣∣∣ Gn,k(T ), Jn

1 = ⌊t1
√
n⌋, . . . , Jn

m = ⌊tm
√
n⌋
}

lies in a random interval depending only on D̂n
1 , . . . , D̂⌊tk

√
n⌋, both of whose end-points

converge almost surely to
∏k

m=1(sm/tm) by (4.15). So the same is true by sandwiching
for our conditional probability which lies in that interval.

Putting everything together, we then have

P
{
Jn
1 ≤ t1

√
n, . . . , Jn

k ≤ tk
√
n,An

1 ≤ s1
√
n, . . . , Ak ≤ sk

√
n
}

= P
{
Jn
1 ≤ t1

√
n, . . . , Jn

k ≤ tk
√
n,An

1 ≤ s1
√
n, . . . , An

k ≤ sk
√
n,Gn,k(T )c

}
+ E

[
P

D̂n

{
Jn
1 ≤ t1

√
n, . . . , Jn

k ≤ tk
√
n,An

1 ≤ s1
√
n, . . . , An

k ≤ sk
√
n,Gn,k(T )

}]
.

The first term on the right-hand side of this equation clearly tends to 0 by Lemma 4.6.
Since the second is the expectation of a conditional probability, it is sufficient to show

that the conditional probability itself tends to exp(−σ2tk/2)
∏k

m=1 sk in distribution. For
1 ≤ m ≤ k and n ≥ 1, let us write

tnm =
⌊tm

√
n⌋ + 1√
n

.

Then we have

P
D̂n

{
Jn
1 ≤ t1

√
n, . . . , Jn

k ≤ tk
√
n,An

1 ≤ s1
√
n, . . . , An

k ≤ sk
√
n,Gn,k(T )

}
=

∫ tn1

0
. . .

∫ tnk

rk−1

P
D̂n

{
An

1 ≤ s1
√
n, . . . , Ak ≤ sk

√
n
∣∣∣Gn,k(T ), Jn

1 = ⌊r1
√
n⌋, . . . , Jn

k = ⌊rk
√
n⌋
}

× nk/2P
D̂n

{
J̃n
1 = ⌊r1

√
n⌋, . . . , J̃n

k = ⌊rk
√
n⌋,Gn,k(T )

}
drk . . . dr1

=

∫ tn1

0
. . .

∫ tnk

rk−1

P
D̂n

{
An

1 ≤ s1
√
n, . . . , Ak ≤ sk

√
n
∣∣∣Gn,k(T ), Jn

1 = ⌊r1
√
n⌋, . . . , Jn

k = ⌊rk
√
n⌋
}

× nk/2P
D̂n

{
J̃n
1 = ⌊r1

√
n⌋, . . . , J̃n

k = ⌊rk
√
n⌋
}

1[Nn≥⌊T
√
n⌋]drk . . . dr1 − En,

where En is an error term with the property that 0 ≤ En ≤ P
D̂n {Gn,k(T )c} and so tends

to 0 in distribution as n → ∞. The first term in the product which forms the integrand

tends to
∏k

m=1(sm/rm) as n → ∞ and the second term tends to σ2kr1 . . . rk exp(−σ2r2k/2),
both almost surely. Write gn(r1, . . . , rk) for the integrand above, considered as a function
of r1, . . . , rk. Then we have just shown that

gn(r1, . . . , rk)
a.s.−→ g(r1, . . . , rk),

where g(r1, . . . , rk) = σ2k
∏k

m=1 sm exp(−σ2r2k/2). Then∣∣∣∣∣
∫ tn1

0
· · ·
∫ tnk

rk−1

gn(r1, . . . , rk)drk . . . dr1 −
∫ t1

0
· · ·
∫ tk

rk−1

g(r1, . . . , rk)drk . . . dr1

∣∣∣∣∣
≤
∫ ∞

0
· · ·
∫ ∞

rk−1

|gn(r1, . . . , rk) − g(r1, . . . , rk)|drk . . . dr1 +
k√
n

sup
r1,...,rk≤T

g(r1, . . . , rk).

The final term clearly vanishes as n → ∞ (we note that g is a continuous function). We
have

0 ≤ |gn(r1, . . . , rk) − g(r1, . . . , rk)| ≤ gn(r1, . . . , rk) + g(r1, . . . , rk)
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where the upper bound is clearly integrable. So by dominated convergence, we obtain∫ tn1

0
· · ·
∫ tnk

rk−1

gn(r1, . . . , rk)drk . . . dr1

a.s.−→ σ2k

(
k∏

m=1

sm

)∫ t1

0
· · ·
∫ tk

rk−1

exp(−σ2r2k/2)drk . . . dr1,

which yields (4.14). The result follows, since T > 0 was arbitrary. □

This completes the proof of (4.2) in Proposition 4.1.

4.3. Displacements at repeats. As shown above, for fixed k and large n, Tk
n is with

high probability the subtree of B(ΠDn) composed of the union of the paths P (1), . . . , P (k).
Moreover, for i ∈ [k], under the bijective construction, by Proposition 4.5, with the excep-

tion of the first vertex in each path P (i), the displacements of the vertices in P (i) away from
their parents are asymptotically indistinguishable from iid copies of uniform entries of a
νξ̄ distributed displacement vector. On the other hand, the displacement away from of the

first vertex in P (i) cannot be compared to a random variable with the same distribution as
a uniform entry of a νξ̄ distributed displacement vector. However, in the following lemma

we will prove that such displacements are OP(1) and so negligible on the scale of n1/4.
We first introduce some notation. Recall that for i ∈ [ℓ∗(ΠDn)], vertex VJn

i
is the i-th

repeated vertex encountered in the bijective construction (B(ΠDn), Y ) of Tn = (Tn, Y )
(and hence a branchpoint). For i ∈ [ℓ∗(ΠDn)], let ∆n

i be the displacement of VJn
i +1 away

from its parent VJn
i

in Tn.

Lemma 4.8. For any ℓ ≥ 0, max{|∆n
1 |, . . . , |∆n

ℓ |} is a tight sequence of random variables
for n ≥ 1.

Proof. We will prove that for all ε > 0 there exists N > 0 such that for all n ≥ N ,
P {|∆n

1 | > N} < ε.
To prove the result for |∆n

2 |, . . . , |∆n
ℓ |, note that by Proposition 4.7, since (Ai)i∈[k] are

almost surely distinct, we have

P
{

(An
i )i∈[k] are distinct

}
→ 1

as n → ∞. On the event {(An
i )i∈[k] are distinct} the proof for |∆n

2 |, . . . , |∆n
ℓ | is analogous

to that for |∆n
1 | and so we omit it.

Recall from Proposition 4.7 that σn−1/2Jn
1

d−→ J1. Recalling also that An
1 is such

that VJn
1

= V̂An
1
(ΠDn), it follows that conditionally on D̂n

An
1

= k, ∆n
1

d
= Yk,Uk

, where

Uk
d
= Uniform([k]) and Yk,Uk

is distributed as a uniform entry of a displacement vector
with law νk, independent of Dn. Fix T > 0 large. We work on the event {Jn

1 ≤ T
√
n}.

For N > 0 and K ≥ 1,

P
{
|∆n

1 | > N, Jn
1 ≤ T

√
n
}

≤ P
{
D̂n

An
1
> K, Jn

1 ≤ T
√
n
}

+ P
{
|∆n

1 | > N, D̂n
An

1
≤ K, Jn

1 ≤ T
√
n
}

≤ P
{
D̂n

An
1
> K, Jn

1 ≤ T
√
n
}

+

K∑
k=2

k(k − 1)µk

σ2
P {|Yk,Uk

| > N}P {J1 ≤ σT}

+
K∑
k=2

∣∣∣∣P{|∆n
1 | > N, D̂n

An
1

= k, Jn
1 ≤ T

√
n
}
− k(k − 1)µk

σ2
P {|Yk,Uk

| > N}P {J1 ≤ σT}
∣∣∣∣ .
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We have

P
{
|∆n

1 | > N, D̂n
An

1
= k, Jn

1 ≤ T
√
n
}

= P {|Yk,Uk
| > N}P

{
D̂n

An
1

= k, Jn
1 ≤ T

√
n
}

and so

P
{
|∆n

1 | > N, Jn
1 ≤ T

√
n
}

≤ P
{
D̂n

An
1
> K, Jn

1 ≤ T
√
n
}

+
K∑
k=2

k(k − 1)µk

σ2
P {|Yk,Uk

| > N}

+
K∑
k=2

∣∣∣∣P{D̂n
An

1
= k, Jn

1 ≤ T
√
n
}
− k(k − 1)µk

σ2
P {J1 ≤ σT}

∣∣∣∣ . (4.18)

Since kµk ≤ 1 for all k, it follows that (4.18) is at most

P
{
D̂n

An
1
> K, Jn

1 ≤ T
√
n
}

+
K − 1

σ2
P
{
|Yξ̄,Uξ̄

| > N
}

+ K max
2≤k≤K

∣∣∣∣P{D̂n
An

1
= k, Jn

1 ≤ T
√
n
}
− k(k − 1)µk

σ2
P {J1 ≤ σT}

∣∣∣∣ .
(4.19)

Fix ε > 0. Since |Yξ̄,Uξ̄
| is a random variable with support in [0,∞), we may take

M = M(K) > 0 large enough so that

K − 1

σ2
P
{
|Yξ̄,Uξ̄

| > N
}
<

ε

4
.

It remains to prove that for sufficiently large n ≥ 1 and K ≥ 1 the sum of the first and
third terms in (4.19) is at most 3ε/4. To this end, observe that for i ≥ 1,

P
D̂n

{
An

1 = i, Jn
1 ≤ T

√
n
∣∣ Jn

1

}
=

D̂n
i − 1∑Jn

1 −1
j=1 (D̂n

j − 1)
1[1≤i≤Jn

1 ]1[Jn
1 ≤T

√
n].

Therefore, for any k ≥ 2,

P
D̂n

{
D̂n

An
1

= k, Jn
1 ≤ T

√
n
∣∣ Jn

1

}
= (k − 1)

∣∣∣{1 ≤ i ≤ Jn
1 : D̂n

i = k
}∣∣∣∑Jn

1 −1
j=1 (D̂n

j − 1)
1[Jn

1 ≤T
√
n].

It follows that

P
{
D̂n

An
1

= k, Jn
1 ≤ T

√
n
}

= (k − 1)E


∣∣∣{1 ≤ i < Jn

1 : D̂n
i = k

}∣∣∣∑Jn
1 −1

j=1 (D̂n
j − 1)

1[Jn
1 ≤T

√
n]


= (k − 1)E

[∣∣{1 ≤ i < Jn
1 : ξ̄i = k

}∣∣∑Jn
1 −1

j=1 (ξ̄j − 1)
1[Jn

1 ≤T
√
n]Θ

n
(
ξ̄1, . . . , ξ̄⌊T

√
n⌋

)]
,

where the final equality holds by Proposition 4.3.
By Proposition 4.7, Jn

1 = ΘP(
√
n), and so by a functional law of large numbers (see

Lemma A.1 in the appendix),∣∣{1 ≤ i < Jn
1 : ξ̄i = k

}∣∣∑Jn
1 −1

j=1 (ξ̄j − 1)

p→ kµk

σ2
.

Combining this with Lemma 4.4 we obtain that as n → ∞

P
{
D̂n

An
1

= k, Jn
1 ≤ T

√
n
}
→ k(k − 1)µk

σ2
P {J1 ≤ σT} . (4.20)
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Since
∑∞

k=1 k(k − 1)µk/σ
2 = 1, we can take K ≥ 1 and T > 0 large enough so that

P {J1 ≤ σT}
K∑
k=2

k(k − 1)µk

σ2
> 1 − ε

4
.

Further, by (4.20) we can take n ≥ 1 large enough such that

max
2≤k≤K

∣∣∣∣P{D̂n
An

1
= k, Jn

1 ≤ T
√
n
}
− k(k − 1)µk

σ2
P {J1 ≤ σT}

∣∣∣∣ < ε

4K
,

For such n and T , we have P
{
D̂n

An
1
> K, Jn

1 ≤ T
√
n
}
< ε/2. The result follows. □

4.4. Convergence to the continuous line-breaking construction. We are now ready
to complete the proof of Proposition 4.1.

Proof of Proposition 4.1. In view of Proposition 4.7, it remains to prove (4.3) and (4.4).
For (4.3), we recall from the discussion at the start of Section 4 (where (Fn

1 , . . . , F
n
k )

were defined) that at attachment points which are first repeats, the attachment is to the
left with probability 1/2 and to the right with probability 1/2. By Proposition 4.7, the
first k attachment points are distinct and are, therefore, all first repeats with probability
tending to 1 as n → ∞. The statement (4.3) follows.

For (4.4), we must consider the spatial locations of the vertices along the first k paths in

the bijective construction. We work on the event that the paths P (1), . . . , P (k) terminate in
vertices 1, 2, . . . , k respectively, which we have already shown holds with high probability
as n → ∞. For the first path, we have

Ln(⌊tn1/2⌋ ∧ (Jn
1 − 1)) =

⌊tn1/2⌋∧(Jn
1 −1)∑

j=1

Y
D̂n

j ,Uj

and, for 1 ≤ i ≤ k − 1,

Ln((Jn
i + ⌊tn1/2⌋) ∧ (Jn

i+1 − 1)) = Ln(An
i + i− 2) + ∆n

i +

(Jn
i +⌊tn1/2⌋)∧(Jn

i+1−1)∑
j=Jn

i +1

Y
D̂n

j ,Uj
.

The desired convergence then follows from Proposition 4.5, Proposition 4.7 and Lemma 4.8.
□

5. Tightness

We assume throughout the section that µ is critical and has finite variance σ2 ∈ (0,∞),
and that [A1] and [A2] hold.

Let k ≥ 1. Recall that Tk
n is the subtree of Tn spanned by the root and the vertices

vUn
1
, . . . vUn

k
∈ Tn, where (Un

1 , . . . , U
n
k ) is a uniformly random k-set sampled from [n] and,

for i ∈ [n], vi is the i-th vertex in the lexicographical order of Tn. In what follows we write

(Un,k
(1) , . . . , U

n,k
(k) ) for the increasing rearrangement of (Un

1 , . . . , U
n
k ). Further, recall from

Section 2 that Tn = (Tn, Y ) is the (µ, ν)-branching random walk conditioned to have size
n.

Proposition 5.1. Suppose that [A1] holds. Then for all γ > 0,

lim
k→∞

lim sup
n→∞

P

max
0≤i≤k

sup
s,t∈[Un,k

(i)
−1,Un,k

(i+1)
−1]

|Hn(s) −Hn(t)| > γn1/2

 = 0 (5.1)



34 L. ADDARIO-BERRY, S. DONDERWINKEL, C. GOLDSCHMIDT, AND R. MITCHELL

and, additionally, if [A2] holds, then

lim
k→∞

lim sup
n→∞

P

max
0≤i≤k

sup
s,t∈[Un,k

(i)
−1,Un,k

(i+1)
−1]

|Rn(s) −Rn(t)| > γn1/4

 = 0. (5.2)

Under [A1], we have that(
Hn(nt)√

n

)
0≤t≤1

d−→
(

2

σ
et

)
0≤t≤1

in C([0, 1],R) and so (5.1) holds. It follows that we only need to prove (5.2).
Let us immediately observe that the vertices of the tree Tn either belong to Tk

n or
belong to a subtree hanging off Tk

n. In Proposition 4.1, we showed the convergence of the
spatial locations along the subtree Tk

n to those given by a Brownian motion indexed by

T k. This has the consequence that for values s, t ∈ [Un,k
(i) − 1, Un,k

(i+1) − 1] such that both

corresponding vertices lie in Tk
n, we have that |Rn(s) − Rn(t)| is bounded above by the

maximum modulus Υn,k
i of an increment of the location process along the path from Un,k

(i)

to Un,k
(i+1) in Tk

n. Moreover, this upper bound converges in distribution on rescaling to the

analogous quantity in the limit tree, which has the same distribution as the maximum
modulus Υk

i of an increment of β times a Brownian motion run for time Dk
i , where Dk

i

is the distance between the ith and (i + 1)st leaves of (2/σ)T k in planar order. We thus
have that

max
0≤i≤k

Υk
i

d
= β

√
2

σ
max
0≤i≤k

sup
s,t∈[Uk

(i)
,Uk

(i+1)
]

|rs − rt|.

But

max
0≤i≤k

(
Uk
(i+1) − Uk

(i)

)
a.s.−→ 0

as k → ∞ and so, since r is uniformly continuous, we may deduce that for any γ > 0,

lim
k→∞

lim
n→∞

P

{
max
0≤i≤k

Υn,k
i > γn1/4

}
= lim

k→∞
P

{
max
0≤i≤k

Υk
i > γ

}
= 0. (5.3)

For values s, t ∈ [Un,k
(i) , U

n,k
(i+1)] for some 0 ≤ i ≤ k such that at least one of the corre-

sponding vertices does not lie in T k
n , we may bound |Rn(s)−Rn(t)| by Υn,k

i plus twice the

maximum modulus of the difference in spatial location between the parent in Tk
n of the

root of a pendant subtree and some other vertex inside the tree. We have already dealt

with Υn,k
i , and so it remains to deal with the pendant subtrees. Before we can do so, we

need to do some truncation of the displacements.
Fix γ > 0 and δ ∈ (0, 1/4). We will consider three “restrictions” of the branching

random walk Tn = (Tn, Y ), which we denote by Tn,δ = (Tn, Yn,δ), Tγ
n,δ = (Tn, Y

γ
n,δ), and

Tγ
n = (Tn, Y

γ
n ). These branching random walks capture the “typical”, “mid-range”, and

“large” spatial displacements in Tn.

(1) (typical displacements): Yn,δ = (Y
(v)
n,δ , v ∈ v(Tn) \ ∂Tn) is such that for v ∈

v(Tn) \ ∂Tn,

Y
(v)
n,δ = Y (v)1[∥Y (v)∥∞≤n1/4−δ].

(2) (mid-range displacements): Y γ
n,δ = (Y

γ,(v)
n,δ , v ∈ v(Tn) \ ∂Tn) is such that for

all v ∈ v(Tn) \ ∂Tn,

Y
γ,(v)
n,δ = Y (v)1[n1/4−δ<∥Y (v)∥∞≤γn1/4].
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(3) (large displacements): Y γ
n = (Y

γ,(v)
n , v ∈ v(Tn) \ ∂Tn) is such that for v ∈

v(Tn) \ ∂Tn,

Y γ,(v)
n = Y (v)1[∥Y (v)∥∞>γn1/4].

For v ∈ v(Tn) \ ∂Tn, the vectors Y
(v)
n,δ , Y

γ,(v)
n,δ , Y

γ,(v)
n are all of length c(v,Tn), however in

what follows we will not refer to their individual entries.
Let Rn,δ, R

γ
n,δ, and Rγ

n denote the functions encoding the spatial locations of the branch-

ing random walks Tn,δ, Tγ
n,δ, and Tγ

n, respectively. Then, for all n large enough so that

n1/4−δ ≤ γn1/4,

Rn = Rn,δ + Rγ
n,δ + Rγ

n.

By the triangle inequality, for all γ > 0, we then have

max
0≤i≤k

sup
s,t∈[Un,k

(i)
−1,Un,k

(i+1)
−1]

|Rn(s) −Rn(t)|

≤ max
0≤i≤k

sup
s,t∈[Un,k

(i)
−1,Un,k

(i+1)
−1]

|Rn,δ(s) −Rn,δ(t)| + 2∥Rγ
n,δ∥∞ + 2∥Rγ

n∥∞ (5.4)

We deal with each of these three terms separately.

5.1. Large and mid-range displacements. Under assumption [A2], we show that the

probability that there is a displacement in Tn with modulus exceeding γn1/4 goes to zero,
so that the contribution of the large displacements is negligible.

Proposition 5.2. For all γ > 0, as n → ∞,

P
{
∥Rγ

n∥∞ > γn1/4
}

= o(1).

Proof. Let

Mγ
n :=

∣∣∣{v ∈ v(Tn) \ ∂Tn : ∥Y (v)∥∞ > γn1/4
}∣∣∣ .

It suffices to prove that P {Mγ
n > 0} → 0 as n → ∞. To this end, let ξ1, . . . , ξn be iid

random variables with distribution µ. By assumption [A2],

P
{
∥Yξ1∥∞ > γn1/4

}
= o(n−1).

Fixing ε > 0, this implies that for n large enough,

M̃γ
n :=

∣∣∣{i ∈ [n] : ∥Yξi∥∞ > γn1/4
}∣∣∣ ⪯st Bin

(
n,

ε

n

)
, (5.5)

where ⪯st denotes stochastic domination. It follows from a Chernoff bound that there
exists c > 0 such that for n sufficiently large,

P
{
M̃γ

n ≥ nε
}
≤ exp (−cnε) .

Since P {
∑n

i=1 ξi = n− 1} = Θ(n−1/2), we obtain

P {Mγ
n ≥ nε} = P

{
M̃γ

n ≥ nε |
n∑

i=1

ξi = n− 1

}

≤
P
{
M̃γ

n ≥ nε
}

P {
∑n

i=1 ξi = n− 1}

= O
(
n1/2 exp(−cnε)

)
.
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Let S̃γ
n :=

∑n
i=1 ξi1[∥Yξi

∥∞>γn1/4] and let Sγ
n :=

∑
v∈v(Tn)

c(v,Tn)1[∥Y (v)∥∞>γn1/4]. Since

E
[
ξ3
]

< ∞, by [17, Corollary 19.11], both max1≤i≤n ξi and maxv∈v(Tn) c(v,Tn) are

OP(n1/3), and so

P
{
Mγ

n ≥ nε or Sγ
n ≥ n1/3+ε

}
≤ o(1) + P

{
Sγ
n ≥ n1/3+ε ∩ max

v∈v(Tn)
c(v,Tn) ≤ n1/3

}

≤ o(1) + P

 ∑
v∈v(Tn)

1[∥Y (v)∥∞≥γn1/4] > nε


≤ o(1) +

P
{

Bin
(
n, ε

n

)
> nε

}
P {
∑n

i=1 ξi = n− 1}
= o(1), (5.6)

where the final inequality holds by (5.5). Further, for ξn1 , ξ
n
2 , . . . independent random

variables such that for each i ≥ 1, ξni is distributed as ξi conditional on ∥Yξi∥∞ < γn1/4,
we have that

P

{
n∑

i=1

ξi = n− 1

∣∣∣∣ S̃γ
n, M̃

γ
n

}
= P

S̃γ
n +

n−M̃γ
n∑

i=1

ξni = n− 1

∣∣∣∣ S̃γ
n, M̃

γ
n

 .

Therefore,

P {Mγ
n > 0} = P

{
0 < Mγ

n < nε, Sγ
n < n1/3+ε

}
+ o(1)

= P

{
0 < M̃γ

n < nε, S̃γ
n < n1/3+ε

∣∣∣∣ n∑
i=1

ξi = n− 1

}
+ o(1)

=
P
{

0 < M̃γ
n < nε, S̃γ

n < n1/3+ε,
∑n

i=1 ξi = n− 1
}

P {
∑n

i=1 ξi = n− 1}
+ o(1)

= E

P

{
S̃γ
n +

∑n−M̃γ
n

i=1 ξni = n− 1

∣∣∣∣ S̃γ
n, M̃

γ
n

}
P {
∑n

i=1 ξi = n− 1}
1
[0<M̃γ

n<nε, S̃γ
n<n1/3+ε]

+ o(1).

By a quantitative local limit theorem (see Lemma A.3 in the appendix), we obtain that
as n → ∞

P
{∑n−m

i ξni = n− 1 − s
}

P {
∑n

i=1 ξi = n− 1}
→ 1,

uniformly over all 0 < m < nε and 0 < s < n1/3+ε. It follows that

P {Mγ
n > 0} = P

{
0 < M̃γ

n < nε, S̃γ
n < n1/3+ε

}
+ o(1) ≤ P

{
M̃γ

n > 0
}

+ o(1).

The result follows since for n sufficiently large M̃γ
n ⪯st Bin(n, ε/n), and ε > 0 is arbitrary.

□

Similarly to the large displacements, the mid-range displacements are also negligible on
the order of n−1/4. However, the argument required to prove this is more refined.

Proposition 5.3. Fix γ > 0. For δ > 0 sufficiently small, as n → ∞,

P
{
∥Rγ

n,δ∥∞ > γn1/4
}

= o(1).
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To prove this proposition, we will require some further results pertaining to the positions
of non-typical displacements in the branching random walk Tn. More specifically, we will
need to study the law of the number and positions of the vertices v ∈ v(Tn) \ ∂Tn such

that ∥Y (v)∥∞ > n1/4−δ, for fixed, small δ > 0. The next lemma pertains to the number of
such vertices.

Lemma 5.4. For δ > 0 sufficiently small,∣∣∣{v ∈ v(Tn) \ ∂Tn such that ∥Y (v)∥∞ > n1/4−δ
}∣∣∣ = oP(n1/12).

Proof. Let ξ1, . . . , ξn be iid with distribution µ. By [A2] there exists C > 0 such that

P
{
∥Yξ1∥∞ > n1/4−δ

}
≤ Cn−1+4δ. It follows that

An :=
∣∣∣{i ∈ [n] : ∥Yξi∥∞ > n1/4−δ

}∣∣∣ ⪯st Bin
(
n,Cn−1+4δ

)
.

By a Chernoff bound, this implies that for δ ∈ (0, 1/48), and n ≥ 1 sufficiently large,
for any ε > 0,

P
{
An > εn1/12

}
≤ P

{
Bin

(
n,Cn−1+4δ

)
> εn1/12

}
= P

{
Bin

(
n,Cn−1+4δ

)
> Cn4δ

(
1 +

( ε

C
n1/12−4δ − 1

))}
= O

(
exp(−n4δ)

)
,

so

P

{
An > εn1/12

∣∣∣∣ n∑
i=1

ξi = n− 1

}
= O

(
n1/2 exp(−n4δ)

)
= o(1). □

We say that two vertices u, v ∈ U are ancestrally related, if either u ≺ v or v ≺ u. The
following lemma establishes that with high probability there are no ancestrally related
vertices u, v ∈ v(Tn) \ ∂Tn such that ∥Y (u)∥∞ ∧ ∥Y (v)∥∞ > n1/4−δ.

Proposition 5.5. for δ > 0 sufficiently small, as n → ∞,

P
{
∃u, v ∈ Tn, u ≺ v, such that ∥Y (u)∥∞ ∧ ∥Y (v)∥∞ > n1/4−δ

}
= o(1).

The proof of this proposition relies on an application of the technical lemma, Lemma
3.4, which we prove in Appendix A.

Proof. We generate Tn using the bijective construction B(ΠDn) described in Section 2.2.
Sample the displacement vectors (YDn

i
)1≤i≤n with YDn

i
= (YDn

i ,1
, . . . , YDn

i ,D
n
i
), and let

B =
{
i ∈ [n] : ∥YDn

i
∥∞ > n1/4−δ

}
.

P
{
∃u, v ∈ Tn, u ≺ v, such that ∥Y (u)∥∞ ∧ ∥Y (v)∥∞ > n1/4−δ

}
≤ P

{
max
0≤i≤n

Hn(i) > t
√
n

}
+ P

{
|B| > sn1/12

}
+ P

{
max
1≤i≤n

Dn
i > Tn1/3

}
+ P

{{
max
1≤i≤n

Dn
i ≤ Tn1/3, |B| ≤ sn1/12

}
∩
{
∃i, j ∈ B : i ≺ j, dn(i, j) ≤ t

√
n
}}

(5.7)

where, for vertices i, j ∈ v(Tn), dn(i, j) denotes the length of the shortest path between i

and j in B(ΠDn)
d
= Tn. Take t and T large enough so that P {max0≤i≤nHn(i) > t

√
n} <

ε/4, and P
{

max1≤i≤nD
n
i > Tn1/3

}
< ε/4. (The latter inequality is possible by [17,
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Corollary 19.11] since E
[
ξ3
]
< ∞.) By Lemma 5.4, we may take n large enough so that

P
{
|B| > sn1/12

}
< ε

4 . Therefore, for t, T and n sufficiently large (5.7) is at most

3ε

4
+ P

{{
max
1≤i≤n

Dn
i ≤ Tn1/3, |B| ≤ sn1/12

}
∩
{
∃i, j ∈ B : i ≺ j, dn(i, j) ≤ t

√
n
}}

Then by Lemma 3.4 with d = Dn, K ≤ sn1/12, ∆ ≤ Tn1/3, and b = t
√
n, for n sufficiently

large, this is at most

3ε

4
+ sn1/12

1 −

(
1 − sTn−7/12

1 − n−1 − tTn−1/6

)t
√
n
 .

The result follows by taking s > 0 small enough and n large enough so that

sn1/12

1 −

(
1 − sTn−7/12

1 − n−1 − tTn−1/6

)t
√
n
 <

ε

4
,

which is possible since

sn1/12

1 −

(
1 − sTn−7/12

1 − n−1 − tTn−1/6

)t
√
n
 < s2Tt

1

1 − n−1 − tTn−1/6
,

for n large enough because (1 − x)r > 1 − rx for x < 1 and r > 1. □

Lemma 5.6. Let v∗(Tn) ⊆ v(Tn) \ ∂Tn be the set of vertices v ∈ v(Tn) \ ∂Tn such that

∥Y (v)∥∞ ≤ n1/4−δ and there exists an ancestor u ≺ v with ∥Y (u)∥∞ > n1/4−δ. For δ > 0
sufficiently small, v∗(Tn) = oP(n).

Proof. The result holds if and only if the probability that a uniformly random vertex in
v ∈ v(Tn) is ancestrally related to a vertex u ∈ v(Tn) \ ∂Tn with ∥Y (u)∥∞ > n1/4−δ

is oP(1). By exchangeability, this holds if and only if the probability that vertex 1 is

ancestrally related to a vertex u ∈ v(Tn) \ ∂Tn with ∥Y (u)∥∞ > n1/4−δ is oP(1). To prove
this we may adapt the proof of Proposition 5.5 by including vertex 1 in the set B. Then
by Lemma 5.4, |B| = oP(n1/12) still holds and so the proof carries over verbatim. □

As an immediate consequence of Lemma 5.6, with probability 1 − o(1) none of the
increments of the branching random walk Tγ

n,δ are ancestrally related with high probability,

and Proposition 5.3 follows.

5.2. Typical displacements. In this subsection we will prove the following proposition.

Proposition 5.7. For all γ > 0,

lim
k→∞

lim sup
n→∞

P

max
0≤i≤k

sup
s,t∈[Un,k

(i)
−1,Un,k

(i+1)
−1]

|Rn,δ(s) −Rn,δ(t)| > γn1/4

 = 0.

Notice that Rn,δ is equal in distribution to the function encoding the spatial locations of

the branching random walk with underlying tree Tn and displacements Y n,δ = (Y n,δ,(v), v ∈
v(Tn) \ ∂Tn) such that if v ∈ v(Tn) \ ∂Tn has k children, then Y n,δ,(v) has the same
distribution as

Y n,δ
k = (Y n,δ

k,1 , . . . Y
n,δ
k,k ) :=

{
(Yk,1, . . . , Yk,k) if max1≤j≤k |Yk,j | ≤ n1/4−δ

(0, . . . , 0) else.

This branching random walk is not globally centered, and in particular has “global” drift

E
[
Y n,δ

ξ̄,Uξ̄

]
.
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Thus for all t ∈ [0, n] we have that

Rn,δ(t)
d
= R̆n,δ(t) + E

[
Y n,δ

ξ̄,Uξ̄

]
·Hn(t).

where R̆n,δ : [0, n] → R is the function encoding the spatial locations of the globally cen-

tered branching random walk (Tn, Y̆
n,δ), where conditionally on Tn, Y̆ n,δ = (Y̆ n,δ,(v), v ∈

v(Tn) \ ∂Tn) is a vector of independent random variables, such that if v ∈ v(Tn) \ ∂Tn

has k children then Y̆ n,δ,(v) has the same distribution as

Y̆ n,δ
k := Y n,δ

k − E
[
Y n,δ

ξ̄,Uξ̄

]
= Y n,δ

k − E
[
Yξ̄,Uξ̄

1[∥Yξ̄∥∞≤n1/4−δ]

]
.

Moreover, by the triangle inequality, for all γ > 0,

lim
k→∞

lim sup
n→∞

P

max
0≤i≤k

sup
s,t∈[Un,k

(i)
−1,Un,k

(i+1)
−1]

|Rn,δ(s) −Rn,δ(t)| > γn1/4


≤ lim

k→∞
lim sup
n→∞

P

max
0≤i≤k

sup
s,t∈[Un,k

(i)
−1,Un,k

(i+1)
−1]

|R̆n,δ(s) − R̆n,δ(t)| >
γ

2
n1/4


+ lim sup

n→∞
P
{∣∣∣E [Y n,δ

ξ̄,Uξ̄

]∣∣∣ · ∥Hn∥∞ >
γ

4
n1/4

}
.

Lemma 5.8. It holds that ∣∣∣E [Y n,δ

ξ̄,Uξ̄

]∣∣∣ = O(n−5/12+5δ/3).

and furthermore, as n → ∞,

Var
{
Y n,δ

ξ̄,Uξ̄

}
→ β2.

This result is a special case of Lemma A.11, which is stated and proved in the appendix.
Since ∥Hn∥∞ = OP(

√
n), Lemma 5.8 implies that for δ sufficiently small,

lim sup
n→∞

P
{∣∣∣E [Y n,δ

ξ̄,Uξ̄

]∣∣∣ · ∥Hn∥∞ > γn1/4
}

= 0.

It follows that to prove Proposition 5.7, it suffices to prove that for all γ > 0,

lim
k→∞

lim sup
n→∞

P

max
0≤i≤k

sup
s,t∈[Un,k

(i)
−1,Un,k

(i+1)
−1]

|R̆n,δ(s) − R̆n,δ(t)| > γn1/4

 = 0.

As discussed above, we need to deal with the maximum modulus of the difference in
spatial location (for the branching random walk Tn,δ) between the parent of the root of a
pendant subtree and a vertex of that subtree. There are

c(Tk
n) :=

∑
v∈V (Tk

n)

(c(v, Tn) − 1) + 1

edges in Tn with one endpoint in Tk
n and another in Tn \ Tk

n. Conditionally on Tk
n, if we

remove all such edges we obtain a Bienaymé(µ) forest conditioned to have n − |V (T
(k)
n )|

vertices and c(Tk
n) trees. We denote this forest by Fk

n = (Tk
n,j)j≥1, where the trees are

listed in decreasing order of size, and |Tk
n,j | = 0 for j > c(Tk

n). Write ∥R̆n,δ(T
k
n,j)∥∞ for

maximum modulus of the difference in spatial location between the root and any other
vertex of Tk

n,j .

The trees (Tk
n,j)j≥1 are independent Bienaymé trees, conditioned on their sizes. There-

fore, conditionally on Fk
n, we have ∥R̆n,δ(T

k
n,j)∥∞

d
= ∥R̆|Tk

n,j |,δ
∥∞. Moreover, displacements

on the tree Tk
n,j (from the branching random walk Tn,δ) depend on those in other parts
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Z̆n,δ
j

Tk
n,j

k

2

5

∅

Figure 5. In black, the tree Tk
n. In blue, the forest Fk

n = (Tk
n,j)j≥1. The

root of tree Tk
n,j is displaced Z̆n,δ

j away from its parent in Tk
n.

of Tn only through the displacement Z̆n,δ
j of the root of Tk

n,j away from its parent in Tk
n;

see Figure 5.
It follows that

max
0≤i≤k

sup
s,t∈[Un,k

(i)
−1,Un,k

(i+1)
−1]

|R̆n,δ(s) − R̆n,δ(t)|

≤ max
0≤i≤k

Υn,k
i + 2 max

1≤j≤c(Fk
n)

(∥∥∥R̆n,δ(T
k
n,j)
∥∥∥
∞

+ |Z̆n,δ
j |
)

Consequently, using (5.3), in order to prove Proposition 5.7, it is sufficient to prove that
for γ > 0,

lim
k→∞

lim sup
n→∞

P

{
max

1≤j≤c(Fk
n)

(∥∥∥R̆n,δ(T
k
n,j)
∥∥∥
∞

+ |Z̆n,δ
j |
)
≥ γn1/4

}
= 0

The proof requires two key ingredients: (1) a scaling limit for the sizes of the trees in Fk
n;

(2) quantitative control on the tail of ∥R̆n,δ∥∞. We begin by establishing (1).

Proposition 5.9. As n → ∞,

c(Tk
n)

σ
√
n

d−→ Jk, (5.8)

where Jk is Gamma(k, 1/2) distributed. Jointly with this convergence, we have

σ

n− |V (Tk
n)|

(|Tk
n,j |, j ≥ 1)

d−→ (|γkj |, j ≥ 1), (5.9)

where, conditionally on Jk, (|γkj |, j ≥ 1) lists the sizes of the excursions above the past
minimum of a Brownian motion stopped on first hitting −Jk, listed in decreasing order.

Proof. By Skorokhod’s representation theorem we may work in a probability space where

the convergence in Proposition 4.7 holds almost surely so that in particular σn−1/2Jn
k

a.s.−→
Jk.

Let T > 0 and recall the event

Gn,k(T ) =
{{

V̂1(ΠDn), . . . , V̂⌊T
√
n⌋(ΠDn)

}
∩ {1, . . . , k} = ∅, Nn ≥ ⌊T

√
n⌋
}
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from Lemma 4.6. On Gn,k(T ) ∩ {Jn
k ≤ ⌊T

√
n⌋}, the tree Tk

n is precisely the subtree of Tn

spanned by the root and the vertices 1, . . . , k. Therefore, on Gn,k(T ) ∩ {Jn
k ≤ ⌊T

√
n⌋},

V (Tk
n)√
n

=
Jn
k√
n
.

Since T > 0 is arbitrary and σn−1/2Jn
k

a.s.−→ Jk we obtain that n − |V (Tk
n)| = n − oP(n).

Hence, we are essentially considering a forest of Bienaymé trees conditioned to have n
vertices. We now need to show that the number of trees in such a forest is ∼ σ

√
nJk.

We note that on the event Gn,k(T ) ∩ {Jn
k ≤ T

√
n}, there are

∑Jn
k −k

i=1 (D̂n
i − 1) +

∑k
i=1D

n
Jn
i

subtrees of Tn whose root has a parent in Tk
n, and (k− 1) branch points in Tk

n. Therefore
for s ≥ 0

P

{
c(Tk

n)

σ
√
n

≥ s, Gn,k(T ), Jn
k ≤ T

√
n

}

= P

 1

σ
√
n

Jn
k −k∑
i=1

(D̂n
i − 1) +

k∑
i=1

Dn
Jn
i
− (k − 1)

 ≥ s, Gn,k(T ), Jn
k ≤ T

√
n

 .

(5.10)

Since, σn−1/2Jn
k

a.s.−→ Jk, by Proposition 4.5

1

σ
√
n

Jn
k −k∑
i=1

(D̂i − 1)
d−→ Jk.

Combining this with Lemma 4.6 and Proposition 4.7 we obtain that (5.10) converges to

P {Jk > s, Jk ≤ σT} .

Then, (5.8) follows as T > 0 is arbitrary. The scaling limit in (5.9) now follows from [27,
Proposition 1.4] and [7, Lemma 11]. □

The control on ∥R̆n,δ∥∞ needed to prove Proposition 5.7 is given by the next proposition.

Proposition 5.10. There exists A > 0 such that for all γ > 0, δ ∈ (0, 1/4), and n ≥ 1,

P
{
∥R̆n,δ∥∞ > γn1/4

}
≤ A

γ8
.

The proof of this proposition is long and somewhat technical, so we postpone it until
Section 6.

Proof of Proposition 5.7 assuming Proposition 5.10. By Skorohod’s representation theo-
rem we may assume that we are working on a probability space where the convergence in

Proposition 4.7 is almost sure. In particular, σn−1/2Jn
k

a.s.−→ Jk as n → ∞.
As argued above, it remains to show that, for γ > 0,

lim
k→∞

lim sup
n→∞

P

{
max

1≤j≤c(Fk
n)

(∥∥∥R̆n,δ(T
k
n,j)
∥∥∥
∞

+ |Z̆n,δ
j |
)
≥ γn1/4

}
= 0.
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Since (Tk
n,j)1≤j≤c(Fk

n)
are independent Bienaymé(µ) trees conditionally on their sizes, we

obtain

P

{
max

1≤j≤c(Fk
n)

(∥∥∥R̆n,δ(T
k
n,j)
∥∥∥
∞

+ |Z̆n,δ
j |
)
≥ γn1/4

}
= E

[
P

{
max

1≤j≤c(Fk
n)

(∥∥∥R̆|Tk
n,j |,δ

∥∥∥
∞

+ |Z̆n,δ
j |
)
≥ γn1/4 | Fk

n, (Z̆
n,δ
j )j≥1

}]

≤ E

c(Fk
n)∑

j=1

P
{∥∥∥R̆|Tk

n,j |,δ

∥∥∥
∞

≥ n1/4(γ − |Z̆n,δ
j |/n1/4) | Fk

n, (Z̆
n,δ
j )j≥1

}
≤ E

 ∞∑
j=1

P

{
∥R̆|Tk

n,j |
∥∞ ≥ γn1/4

2

∣∣∣∣ Fk
n

} ,

for all n sufficiently large, since |Z̆n,δ
j | ≤ n1/4−δ for all 1 ≤ j ≤ c(Tn

k) and all n ≥ 1.
Applying Proposition 5.10 to each of the conditional probabilities in the above sum, we
obtain that the right-hand side is at most

28A

γ8
E

 ∞∑
j=1

(
|Tk

n,j |
n

)2
 =

28A

γ8
E

[(
n− |V (Tk

n)|
n

)2

· |̂Tk|
n− |V (Tk

n)|

]
, (5.11)

where |̂Tk| is a size-biased pick from (|Tk
n,j |)j≥1. Clearly,

n− |V (Tk
n)|

n
≤ 1.

By Proposition 5.9, as n → ∞, |̂Tk|/(n− |V (Tk
n)|) d−→ σ−1 |̂γk| where |̂γk| is a size-biased

pick from (|γkj |, j ≥ 1). By [36, Section 8.1], conditionally on Jk,

|̂γk| d
=

B2

J2
k + B2

,

where B is a N(0, 1) random variable independent of Jk. Combining this with (5.11), we
obtain that

lim sup
n→∞

P

{
max

1≤j≤c(Fk
n)

(∥∥∥R̆n,δ(T
k
n,j)
∥∥∥
∞

+ |Z̆n,δ
j |
)
≥ γn1/4

}
≤ 28A

σγ8
E

[
B2

J2
k + B2

]
.

As k → ∞, Jk
p→ ∞. Therefore, by bounded convergence,

lim
k→∞

lim sup
n→∞

P

{
max

1≤j≤c(Fk
n)

(∥∥∥R̆n,δ(T
k
n,j)
∥∥∥
∞

+ |Z̆n,δ
j |
)
≥ γn1/4

}
= 0. □

Assuming Proposition 5.10, Proposition 5.1 now follows from (5.4) by taking δ ∈ (0, 1/4)
sufficiently small so that Proposition 5.3 holds and combining that with Propositions 5.2
and 5.7.

6. The maximum spatial location: proof of Proposition 5.10

We assume throughout this section that µ is critical and has finite variance σ2 ∈ (0,∞),
and that [A1] and [A2] hold.

For n ≥ 1, let Λ(n) := (Λ
(n)
1 ,Λ

(n)
2 , . . . ,Λ

(n)

D̂n
1

) be the sizes of the subtrees of the root

of Tn, so that Λ
(n)
i is the size of the subtree rooted at the i-th child of the root. We

will make extensive use of the fact that, conditionally on D̂n
1 , these are exchangeable

random variables (i.e. their distribution is invariant under permutations of the labels). To
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prove Proposition 5.10 we will make extensive use of the following consequence of Lemma
25 of Haas and Miermont [14] which, roughly speaking, tells us that typically only one
subtree of a child of the root is macroscopic and, moreover, the probability of a non-trivial
macroscopic split at the root is on the order of n−1/2.

Lemma 6.1 (Lemma 25 of Haas and Miermont [14]). It holds that

E

1 −
D̂n

1∑
i=1

(
Λ
(n)
i

n

)2
 = Θ(n−1/2). (6.1)

In the proof of Proposition 5.10, we encounter terms directly related to the global
centering and global finite variance conditions, respectively. The latter is more challenging
to control, and is the reason for the third moment condition on the offspring distribution.
These terms, and the control we will require on them are stated in the following technical

lemma. Recall the definition of D̂m, the size-biased ordering of Dm = (Dm
1 , . . . , Dm

m), iid
samples random distribution µ conditioned to sum to m− 1.

The proof of Proposition 5.10 is inductive, and requires that we control the maximum
of R̆k

n,δ when restricted to subtrees of Tk
n. We henceforth use m ≥ 1 to denote the number

of vertices in the underlying tree, Tm, and n ≥ 1 to denote the truncation threshold n1/4−δ

on the displacements. More specifically, in this section, we will consider branching random

walks on Tm with displacements Y̆ n,δ
k , k ≥ 1.

Lemma 6.2. Let n ≥ 1 and m ≤ n. There exists B > 0 such that

E

D̂m
1∑

i=1

(
Λ
(m)
i

m

)2

(Y̆ n,δ

D̂m
1 ,i

)2

 ≤ B. (6.2)

If in addition (µ, ν) satisfies [A1] and [A2] then there exists B′ > 0 such that∣∣∣∣∣∣E
D̂m

1∑
i=1

(
Λ
(m)
i

m

)2

Y̆ n,δ

D̂m
1 ,i

∣∣∣∣∣∣ ≤ B′n1/4−δ

√
m

+
B′

m1/4
(6.3)

Condition [A1] pertains to the mean and variance of the displacement of a uniform child
of a vertex with a size-biased number of offspring, Yξ̄,Uξ̄

. The displacement from the root

of Tm to a uniform child is distributed as Y
D̂m

1 ,U
D̂m
1

and we have D̂m
1

d−→ ξ̄ as m → ∞.

However, in order to use the global centering and global finite variance conditions in the
proof of Lemma 6.2, we need something stronger, namely an explicit rate of decay for

the total variation distance between the laws of ξ̄ and D̂m
1 . This is provided by the next

lemma.

Lemma 6.3. As m → ∞,

dTV(D̂m
1 , ξ̄) =

1

2

∞∑
k=1

∣∣∣P{D̂m
1 = k

}
− P

{
ξ̄ = k

}∣∣∣ = o(m−1/2).

Proof. Let k ≥ 1, and let (Sm)m≥1 be a random walk with iid µ-distributed increments.
Recall from (1.14) that

P
{
D̂m

1 = k
}

=

(
m

m− 1

)
P {Sm−1 = m− 1 − k}

P {Sm = m− 1}
P
{
ξ̄ = k

}
.
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Since E [ξ] = 1 and E
[
ξ3
]
< ∞, by Theorem A.2,√

2π(m− 1)σP {Sm−1 = m− 1 − k}

= e−k2/(2σ2(m−1))

(
1 +

1√
m− 1

γ3
6σ3

(
k3

σ3(m− 1)3/2
− 3k

σ
√
m− 1

))
+ o(m−1/2).

If k = O(m1/4), ∣∣∣∣ k3

σ3(m− 1)3/2
− 3k

σ
√
m− 1

∣∣∣∣ = O(m−1/4),

and

e−k2/(2σ2(m−1)) = 1 − k2

2σ2(m− 1)
+ O(m−1).

Hence for k = O(m1/4),√
2π(m− 1)σP {Sm−1 = m− 1 − k} = 1 − k2

2σ2(m− 1)
+ o(m−1/2).

It follows that for k = O(m1/4),(
m

m− 1

)
P {Sm−1 = m− 1 − k}

P {Sm = m− 1}
=

1 − k2

2σ2(m−1)
+ o(m−1/2)

1 + o(m−1/2)
= 1− k2

2σ2(m− 1)
+o(m−1/2),

and, consequently,

P
{
D̂m

1 = k
}

=

(
1 − k2

2σ2(m− 1)
+ o(m−1/2)

)
P
{
ξ̄ = k

}
.

Therefore,

∞∑
k=1

∣∣∣P{D̂m
1 = k

}
− P

{
ξ̄ = k

}∣∣∣
=

⌊m1/4⌋∑
k=1

∣∣∣P{D̂m
1 = k

}
− P

{
ξ̄ = k

}∣∣∣+

∞∑
k=⌊m1/4⌋+1

∣∣∣P{D̂m
1 = k

}
− P

{
ξ̄ = k

}∣∣∣
=

⌊m1/4⌋∑
k=1

(
k2

2σ2(m− 1)
+ o(m−1/2)

)
P
{
ξ̄ = k

}
+

∞∑
k=⌊m1/4⌋+1

∣∣∣P{D̂m
1 = k

}
− P

{
ξ̄ = k

}∣∣∣
≤

E
[
ξ3
]

2σ2(m− 1)
+ o(m−1/2) +

∞∑
k=⌊m1/4⌋+1

(
P
{
D̂m

1 = k
}

+ P
{
ξ̄ = k

})
≤ o(m−1/2) + (c + 1) · P

{
ξ̄ > m1/4

}
,

where the final inequality follows since P
{
D̂m

1 = k
}
≤ cP

{
ξ̄ = k

}
for all k ∈ [m]. Since

E
[
ξ3
]
< ∞, ξ̄ has a finite second moment. Therefore, P

{
ξ̄ > k

}
= o(k−2) as k → ∞ and

so P
{
ξ̄ > m1/4

}
= o(m−1/2). The result follows. □

The terms (6.2) and (6.3) relate to the variance and mean (respectively) of the dis-

placement of a uniform child of the root in branching random walk (Tm, Y̆ n,δ). Since this
branching random walk is globally centered, it is reasonable to expect that the mean will
be small and that the second moment will be bounded. A key technical lemma follows.
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Lemma 6.4. There exists a constant C > 0 such that for m ≤ n,∣∣∣∣∣∣E
 1

D̂m
1

D̂m
1∑

i=1

Y̆ n,δ

D̂m
1 ,i

∣∣∣∣∣∣ ≤ Cn1/4−δ

√
m

.

Proof. Let (D̂m
1 , ξ̄) be a coupling of the degree of the root of Tm and the size-biased

distribution of µ. We consider the events {ξ̄ = D̂m
1 } and {ξ̄ ̸= D̂m

1 } separately:∣∣∣∣∣∣E
 1

D̂m
1

D̂m
1∑

i=1

Y̆ n,δ

D̂m
1 ,i

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣E
1

ξ̄

ξ̄∑
i=1

Y̆ n,δ

ξ̄,i
1
[ξ̄=D̂m

1 ]

∣∣∣∣∣∣+ E

 1

D̂m
1

D̂m
1∑

i=1

|Y̆ n,δ

D̂m
1 ,i

|1
[ξ̄ ̸=D̂m

1 ]


=

∣∣∣∣∣∣E
1

ξ̄

ξ̄∑
i=1

Y̆ n,δ

ξ̄,i
1
[ξ̄ ̸=D̂m

1 ]

∣∣∣∣∣∣+ E

 1

D̂m
1

D̂m
1∑

i=1

|Y̆ n,δ

D̂m
1 ,i

|1
[ξ̄ ̸=D̂m

1 ]

 (6.4)

where the equality holds since

E

1

ξ̄

ξ̄∑
i=1

Y̆ n,δ

ξ̄,i

 = E
[
Y̆ n,δ

ξ̄,Uξ̄

]
= 0.

Since |Y̆ n,δ
k,j | ≤ 2n1/4−δ for all k ≥ 1 and j ∈ [k] it follows that (6.4) is at most

4n1/4−δP
{
ξ̄ ̸= D̂m

1

}
. The result follows from Lemma 6.3 by taking an optimal coupling

of (D̂m
1 , ξ̄). □

We now proceed to prove Lemma 6.2.

Proof of Lemma 6.2. We first prove (6.2). Note that by exchangeability of (∆
(m)
1 , . . . ,∆

(m)

D̂1
m

)

and linearity of conditional expectation

E

D̂m
1∑

i=1

(
Λ
(m)
i

m

)2

(Y̆ n,δ

D̂1
m,i

)2

 = E

 1

D̂m
1

D̂m
1∑

i=1

(Y̆ n,δ

D̂m
1 ,i

)2

D̂m
1∑

i=1

(
Λ
(m)
i

m

)2


≤ E

 1

D̂m
1

D̂m
1∑

i=1

(Y̆ n,δ

D̂m
1 ,i

)2


≤ cE

1

ξ̄

ξ̄∑
i=1

(Y̆ n,δ

ξ̄,i
)2


= cE

[
(Y̆ n,δ

ξ̄,Uξ̄
)2
]
, (6.5)

where the second inequality follows since P
{
D̂m

1 = k
}

≤ cP
{
ξ̄ = k

}
. By Lemma 5.8,

(6.5) tends to β2 as n → ∞ and hence (6.2) holds.
We now proceed to proving (6.3). By linearity and the triangle inequality we have∣∣∣∣∣∣E

D̂m
1∑

i=1

(
Λ
(m)
i

m

)2

Y̆ n,δ

D̂1
m,i

∣∣∣∣∣∣
≤

∣∣∣∣∣∣E
 1

D̂m
1

D̂m
1∑

i=1

Y̆ n,δ

D̂m
1 ,i

∣∣∣∣∣∣+

∣∣∣∣∣∣E
 1

D̂m
1

D̂m
1∑

i=1

Y̆ n,δ

D̂m
1 ,i

1 −
D̂m

1∑
i=1

(
Λ
(m)
i

m

)2
∣∣∣∣∣∣ . (6.6)
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By Lemma 6.4, (6.6) is at most

Cn1/4−δ

√
m

+

∣∣∣∣∣∣E
 1

D̂m
1

D̂m
1∑

i=1

Y̆ n,δ

D̂m
1 ,i

1 −
D̂m

1∑
i=1

(
Λ
(m)
i

m

)2
∣∣∣∣∣∣ .

Applying the Cauchy–Schwarz inequality to the second term yields an upper bound of

Cn1/4−δ

√
m

+ E


 1

D̂m
1

D̂m
1∑

i=1

|Y̆ n,δ

D̂m
1 ,i

|

2

1/2

E


1 −

D̂m
1∑

i=1

(
Λ
(m)
i

m

)2
2

1/2

≤ Cn1/4−δ

√
m

+ E

 1

D̂m
1

D̂m
1∑

i=1

(Y̆ n,δ

D̂m
1 ,i

)2

1/2

E


1 −

D̂m
1∑

i=1

(
Λ
(m)
i

m

)2
2

1/2

, (6.7)

where we have again used the Cauchy–Schwarz inequality on the sum inside the expectation

to get the second inequality. Since P
{
D̂m

1 = k
}
≤ cP

{
ξ̄ = k

}
, by the same methods used

in (6.2), there exists c′ > 0 such that (6.7) is at most

Cn1/4−δ

√
m

+ c′E


1 −

D̂m
1∑

i=1

(
Λ
(m)
i

m

)2
2

1/2

.

Lastly, since x2 ≤ x for all x ∈ [0, 1], we obtain the bound∣∣∣∣∣∣E
D̂m

1∑
i=1

(
Λ
(m)
i

m

)2

Y̆ n,δ

D̂m
1 ,i

∣∣∣∣∣∣ ≤ Cn1/4−δ

√
m

+ c′E

1 −
D̂m

1∑
i=1

(
Λ
(m)
i

m

)2
1/2

,

and the result follows by Lemma 6.1. □

We now present the proof of Proposition 5.10.

Proof of Proposition 5.10. For n ≥ 1 and m ≤ n, let R̆m,n,δ be the spatial process of a

branching random walk T̆m,n = (Tm, Y̆ n,δ) where the displacement vector of a vertex
v ∈ v(Tm) \ ∂Tm with k children is distributed as

Y̆ n,δ
k = Y n,δ

k − E
[
Y n,δ

ξ̄,Uξ̄

]
.

Furthermore, let

R̆+
m,n,δ := max

{
0, max

0≤i≤m
R̆m,n,δ

}
,

and

R̆−
m,n,δ := −min

{
0, min

0≤i≤m
R̆m,n,δ

}
.

It suffices to prove that there exists A > 0 such that for all m ≥ 0, all n ≥ m and all
γ > 0,

P
{
R̆+

m,n,δ > γn1/4
}
≤ A

γ8
and P

{
R̆−

m,n,δ > γn1/4
}
≤ A

γ8
,

since Proposition 5.10 then follows by taking n = m. We only prove the tail bound for
R̆+

m,n,δ as the bound for R̆−
m,n,δ then follows by symmetry.

Notice that R̆+
1,n,δ = 0 for all n ≥ 0, and so the claim holds trivially if m = 1. Moreover,

at the cost of taking A > 0 larger, it is sufficient to prove the result for γ > 0 sufficiently
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large. We will proceed by induction on m ≥ 2, and hence assume that for 1 ≤ k ≤ m− 1
and γ > 0,

P
{
R̆+

k,n,δ > γn1/4
}
≤ A

γ8
,

for all n ≥ k.
Observe that conditionally on D̂m

1 and Λ(m),

R̆+
m,n,δ

d
= max

{
0, max

1≤i≤D̂m
1

{
R̆+

Λ
(m)
i ,n,δ

+ Y̆ n,δ

D̂m
1 ,i

}}
.

For the rest of the proof, we write Y̆ n,δ
i in place of Y̆ n,δ

D̂m
1 ,i

to ease the notation. Take

u0 ∈ (0, 1) such that for all 0 < u < u0, (1−u)−8 ≤ 1 + 8u+ 72u2. Then, taking γ > 2/u0
(recall this is possible at the cost of taking A > 0 larger), it follows that

P
{
R̆+

m,n,δ ≤ γn1/4
}

= E

[
P

{
max

1≤i≤D̂m
1

{
R̆+

Λ(m),n,δ
+ Y̆ n,δ

i

}
≤ γn1/4

∣∣∣∣D̂m
1 ,Λ(m)

}]

= E

D̂m
1∏

i=1

P

{
R̆+

Λ
(m)
i ,n,δ

≤ γn1/4 − Y̆ n,δ
i

∣∣∣∣D̂m
1 ,Λ(m), Y̆ n,δ

i

} ,

where in the second equality we have used the tower law and the branching property. We
will bound the right-hand side of the above equality by applying induction on each term in

the product. More specifically, taking n = k = Λ
(m)
i and for the i-th term of the product,

by the induction hypothesis we obtain

E

D̂m
1∏

i=1

P

{
R̆

Λ
(m)
i ,n,δ

≤ γn1/4 − Y̆ n,δ
i

∣∣∣∣D̂m
1 ,Λ(m), Y̆ n,δ

i

}
= E

D̂m
1∏

i=1

P

{
R̆

Λ
(m)
i ,n,δ

≤

(
γn1/4 − Y̆ n,δ

i

(Λ
(m)
i )1/4

)
(Λ

(m)
i )1/4

∣∣∣∣D̂m
1 ,Λ(m), Y̆ n,δ

i

}
≥ E

D̂m
1∏

i=1

(
1 −

A(Λ
(m)
i )2

(γn1/4 − Y̆ n,δ
i )8

)
+


Furthermore, since

∏k
i=1(1 − xi)+ ≥ 1 −

∑k
i=1 xi for any non-negative sequence (xi)i≥1,

we may lower bound the above as

E

D̂m
1∏

i=1

(
1 −

A(Λ
(m)
i )2

(γn1/4 − Y̆ n,δ
i )8

)
+

 ≥ 1 − A

γ8
E

D̂m
1∑

i=1

(
Λ
(m)
i

n

)2(
1 −

Y̆ n,δ
i

γn1/4

)−8


≥ 1 − A

γ8
E

D̂m
1∑

i=1

(
Λ
(m)
i

m

)2(
1 −

Y̆ n,δ
i

γn1/4

)−8
 ,

where the final inequality holds since m ≤ n. Moreover, since γ > 2/u0, we have

that |Y̆ n,δ
i |/(γn1/4) < u0 for any n and so (1 − Y̆ n,δ

i /(γn1/4))−8 ≤ 1 + 8Y̆ n,δ
i /(γn1/4) +
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72(Y̆ n,δ
i )2/(γ2

√
n). Hence,

P
{
R̆+

m,n,δ ≤ γn1/4
}
≥ 1 − A

γ8
+

A

γ8
E

1 −
D̂m

1∑
i=1

(
Λ
(m)
i

m

)2
 (6.8)

− 8A

γ9n1/4
E

D̂m
1∑

i=1

(
Λ
(m)
i

m

)2

Y̆ n,δ
i

 (6.9)

− 72A

γ10
√
m

E

D̂m
1∑

i=1

(
Λ
(m)
i

m

)2

(Y̆ n,δ
i )2

 , (6.10)

where we may take the denominator of the final term of the above expression to be γ10
√
m

rather than γ10
√
n as m ≤ n and the expectation in this term is non-negative. Applying

(6.1), (6.2), and (6.3) to bound the expectations in (6.8), (6.10), and (6.9), respectively,
we obtain that there exist constants B,B′, B′′ > 0 such that

P
{
R̆+

m,n,δ ≤ γn1/4
}
≥ 1 − A

γ8
+

AB′′

γ8
√
m

− 8A

γ9n1/4

(
B′n1/4−δ

√
m

+
B′

m1/4

)
− 72AB

γ10
√
m

≥ 1 − A

γ8
+

A

γ8
√
m

(
B′′ − 8B′

γnδ
− 8B′

γ
− 72B

γ2

)
.

For γ > 0 large enough, the final term in parentheses is positive so the whole expression
is at least 1 −A/γ8, and the result follows. □

7. The hairy tour

In this section we prove Theorems 1.3 and 1.4. In particular, we show that un-
der assumptions [A1] and [A3] for a given measure π with η ∈ [0, 2), we have that

(n−1/2Hn, n
−1/(4−η)Rn) converges in distribution to a generalisation of the hairy tour in-

troduced by Janson and Marckert [18] if η = 0, and to a process whose second coordinate is
a pure jump process if η ∈ (0, 2). Recall that by [A3], π is a Borel measure on R2 \{(0, 0)}
such that for for any ε > 0, both π(R+ × (ε,∞)) < ∞ and π((ε,∞)×R+) < ∞, and that
for all Borel sets A ⊂ R2

+ \ {(0, 0)} for which π(∂A) = 0,

r4−ηP

{
1

r

(
max
1≤i≤ξ

Y +
ξ,i, max

1≤i≤ξ
Y −
ξ,i

)
∈ A)

}
→ π(A)

as r → ∞, where Y +
k,j = Yk,j∨0 and Y −

k,j = (−Yk,j)∨0. The measure π will be the intensity

measure for a Poisson point process which drives the second coordinate of the limit.
Recall that Tn = (Tn, Y ) is such that given Tn, Y = (Y (v), v ∈ v(Tn) \ ∂Tn) is a

collection of independent random vectors, where if v ∈ v(Tn) \ ∂Tn has k children then

Y (v) has distribution νk. Observe that, for fixed η ∈ [0, 2), by assumption [A3], if the
measure π has non-zero mass then

max
v∈v(Tn)

∥Y (v)∥∞ = ΘP(n1/(4−η)).

Fix γ > 0, δ ∈ (0, 1/(4 − η)), and suppose that n ≥ 1 is sufficiently large so that

n1/(4−η)−δ ≤ γn1/(4−η). As in the proof of tightness for Theorem 1.1, and more specifically
as in Section 5, in order to prove Theorems 1.3 and 1.4, we will need to consider three
“restrictions” of the branching random walk Tn. These restrictions are a generalisation
of those used in Section 5 from the case η = 0 to that of general η ∈ [0, 2); the modified
definitions are given below.
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We denote the restrictions of Tn by Tn,δ = (Tn, Yn,δ), Tγ
n,δ = (Tn, Y

γ
n,δ), and Tγ

n =

(Tn, Y
γ
n ). Again, these branching random walks will respectively capture the “typical”,

“mid-range”, and “large” displacements in Tn, as follows:

(1) (typical displacements): For all v ∈ v(Tn) \ ∂Tn,

Y
(v)
n,δ = Y (v)1[∥Y (v)∥∞≤n1/(4−η)−δ];

(2) (mid-range displacements): For all v ∈ v(Tn) \ ∂Tn,

Y
γ,(v)
n,δ = Y (v)1[n1/(4−η)−δ<∥Y (v)∥∞≤γn1/(4−η)];

(3) (large displacements): For all v ∈ v(Tn) \ ∂Tn,

Y γ,(v)
n = Y (v)1[∥Y (v)∥∞>γn1/(4−η)].

We note that, informally, taking γ ↓ 0 in Tγ
n captures all displacements of the largest

order. We define Rn,δ, R
γ
n,δ, and Rγ

n to be the functions encoding the spatial locations of

the vertices of Tn,δ,T
γ
n,δ, and Tγ

n, respectively.

Before studying the convergence of the functions Rn,δ, Rγ
n,δ, and Rγ

n, we will prove

convergence upon rescaling of the values of the large displacements. For v ∈ v(Tn) \ ∂Tn,
let

Y (v,+) := 0 ∨ max
j∈[c(v,Tn)]

Y
(v)
j ,

Y (v,−) := 0 ∨ max
j∈[c(v,Tn)]

(−Y
(v)
j ),

be the largest positive and negative terms (respectively) in the displacement vector Y (v)

from v to its children and, for v ∈ ∂Tn, set Y (v,+) = Y (v,−) = 0. For a finite multiset
S ⊂ R2, by “the decreasing ordering of S” we mean the vector (s1, . . . , sm) which lists the
elements of S in decreasing order of their largest coordinate, breaking ties in decreasing
order of their smallest coordinate. Let Lη,γ

n be the decreasing ordering of the multiset{
(Y (v,+), Y (v,−))1[∥Y (v)∥∞>γn1/(4−η)], v ∈ v(Tn)

}
, (7.1)

concatenated with an infinite sequence with all entries (0, 0).

Lemma 7.1. Fix γ > 0 and suppose that [A1] holds and [A3] holds for a given measure
π with η ∈ [0, 2). Then as n → ∞,

Lη,γ
n

n1/(4−η)

d−→ Lη,γ

in ℓ∞, where Lη,γ is the decreasing ordering of the points of a Poisson process on R2
≥0 with

intensity π(dx, dy)1[(x∨y)>γ] concatenated with an infinite sequence with all entries (0, 0).

Proof. Let (ξi, i ≥ 1) be iid samples from the offspring distribution µ. Further, for i ≥ 1,
sample Yξi independently and let

Y +
ξi

:= 0 ∨ max
j∈[ξi]

Yξi,j ,

Y −
ξi

:= 0 ∨ max
j∈[ξi]

(−Yξi,j).

By definition, the multiset {(Y (v,+), Y (v,−)), v ∈ v(Tn)} is distributed as {(Y +
ξi
, Y −

ξi
), i ∈

[n]} conditioned on the event that
∑n

i=1 ξi = n− 1.

For n ≥ 1 let L̃η,γ
n be the decreasing ordering of{

(Y +
ξi
, Y −

ξi
)1[∥Yξi

∥∞>γn1/(4−η)], i ∈ [n]
}
,
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concatenated with an infinite sequence with all entries (0, 0). We will first show that as
n → ∞,

n−1/(4−η)L̃η,γ
n

d−→ Lη,γ (7.2)

in ℓ∞. To this end, note that by [A3], for any x, y ≥ 0 such that x ∨ y > γ and such that
π(({x} × [y,∞)) ∪ ([x,∞) × {y})) = 0,

nP
{
Y +
ξi

> xn1/(4−η), Y −
ξi

> yn1/(4−η)
}
→ π((x,∞) × (y,∞)),

as n → ∞ and moreover, π((x,∞) × (y,∞)) < ∞. Therefore,∣∣∣{i ∈ [n] : Y +
ξi

> xn1/(4−η), Y −
ξi

> yn1/(4−η)
}∣∣∣

d
= Binomial

(
nP
{
Y +
ξi

> xn1/(4−η), Y −
ξi

> yn1/(4−η)
})

d−→ Poisson(π((x,∞) × (y,∞))), (7.3)

and (7.2) follows from the fact that a Poisson process on R2 is determined by its distribution
on half-infinite rectangles and the continuity of the function x, y 7→ x ∨ y, x ∧ y that we
use to order the multisets.

We now show that the convergence in (7.2) still holds when we condition on
∑n

i=1 ξi =
n − 1. We note that the remainder of this proof is similar to the end of the proof of
Proposition 5.2.

Let M̃γ
n be the number of elements in L̃η,γ

n which are not equal to (0, 0). Note that by

(7.3), the sequence (M̃γ
n )n≥1 is tight. Further, let S̃γ

n :=
∑

i∈[n] ξi1[∥Yξi
∥∞>γn1/(4−η)]. Since

ξ1, . . . ξn are iid, the law of
∑n

i=1 ξi depends on L̃η,γ
n solely through M̃γ

n and S̃γ
n. To be

precise, let ξn1 , ξ
n
2 , . . . be independent random variables such that for each i ≥ 1, ξni is

distributed as ξi conditional on ∥Yξi∥∞ < γn1/(4−η). Then,

P

{
n∑

i=1

ξi = k

∣∣∣∣ L̃η,γ
n

}
= P

S̃γ
n +

n−M̃γ
n∑

i=1

ξni = k

∣∣∣∣ S̃γ
n, M̃γ

n

 . (7.4)

Let F : ℓ∞ → R be a bounded measurable function. Then, by analogous arguments to
those used to prove (5.6),

E [F (Lη,γ
n )] = E

[
F (L̃η,γ

n )1
[M̃γ

n<nε, S̃γ
n<n1/3+ε]

∣∣∣∣ n∑
i=1

ξi = n− 1

]
+ o(1)

=
E
[
F (L̃η,γ

n )1
[
∑n

i=1 ξi=n−1, M̃γ
n<nε, S̃γ

n<n1/3+ε]

]
P {
∑n

i=1 ξi = n− 1}
+ o(1)

=

E

[
E

[
F (L̃η,γ

n )1
[
∑n

i=1 ξi=n−1, M̃γ
n<nε, S̃γ

n<n1/3+ε]

∣∣∣∣ L̃η,γ
n

]]
P {
∑n

i=1 ξi = n− 1}
+ o(1)

= E
[
F (L̃η,γ

n )
] P

{∑n−M̃γ
n

i ξni = n− 1 − S̃γ
n | M̃γ

n < nε, S̃γ
n < n1/3+ε

}
P {
∑n

i=1 ξi = n− 1}
+ o(1),

where the last equality holds by (7.4). By a quantitative local limit theorem (see Lemma
A.3 in the appendix), we obtain that as n → ∞

P
{∑n−m

i ξni = n− 1 − s
}

P {
∑n

i=1 ξi = n− 1}
→ 1,
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uniformly over all m < nε and s < n1/3+ε. It follows that

E [F (Lη,γ
n )] = E

[
F (L̃η,γ

n )
]

+ o(1).

The result then follows by (7.2). □

In the remainder of the section, we continue to use Ln,γ to refer to a random vector
with the distribution given in Lemma 7.1.

To prove Theorems 1.3 and 1.4, we use similar methods to those used to prove Theorem
1.1. First, we will prove convergence of the branching random walk restricted to the
subtree spanned by k uniform vertices, by showing that the convergence from Proposition
4.1 holds jointly with that in Lemma 7.1, and that the limits are independent. This,
in particular, implies the convergence of the random finite-dimensional distributions in
Theorems 1.3 and 1.4. The independence is the key issue here, and in order to obtain it,
we require adaptations of Proposition 4.3 and Lemma 4.4 to the setting of n-dependent
offspring distributions. The required technical results may be found in the appendix.

Following this, using similar techniques to those used in Sections 5 and 6 to prove
tightness for the discrete snake in Theorem 1.1, and applying the aforementioned joint
convergence, we will show that a discrete snake comprised solely of the “typical” displace-
ments converges to the head of the BSBE on rescaling by n−1/4 if η = 0, and to 0 on
rescaling by n−1/(4−η) if η ∈ (0, 2). Furthermore, this discrete snake is asymptotically
independent of the large displacements. In Section 7.2 we show that for η ∈ [0, 2) the
mid-range displacements make only a vanishing contribution to the head of the discrete
snake on the scale of n1/(4−η). Next, by a small variant of Lemma 5.6, we deduce that
the large displacements appear near the leaves. We apply this result to prove Lemma
7.11, which states that the discrete snake associated with the branching random walk T′

n

obtained by pruning sub-branching random walks rooted at vertices with large displace-
ments in Tn converges upon rescaling by n−1/(4−η) to the same limit as that of the “typical
displacement” discrete snake (with the limit depending on whether η = 0 or η ∈ (0, 2)).
Theorems 1.3 and 1.4 then follow by showing that the branching random walk obtained
by regrafting these pruned sub-branching random walks to uniform leaves of T′

n has the
same law as Tn.

The following proposition establishes the convergence of the branching random walk
restricted to the subtree spanned by k uniform vertices, as well as the its asymptotic
independence from the large displacements.

Proposition 7.2. Fix γ > 0 and suppose that [A1] holds and [A3] holds for a given
measure π with η ∈ [0, 2). Fix k ≥ 1. Then

σ√
n

(Jn
1 , J

n
2 , . . . , J

n
k , A

n
1 , . . . , A

n
k)

d−→ (J1, J2, . . . , Jk, A1, . . . , Ak)

as n → ∞. Jointly with this convergence, we have that

(Fn
1 , F

n
2 , . . . , F

n
k )

d−→ (F1, F2, . . . , Fk),

where F1, F2, . . . , Fk are iid random variables, independent of everything else, such that
P {Fi = 1} = P {Fi = 2} = 1/2 and

n−1/4(Ln(⌊tn1/2⌋ ∧ (Jn
1 − 1)))t≥0

d−→ β(Bt∧(J1/σ))t≥0,

n−1/4(Ln((Jn
i + ⌊tn1/2⌋) ∧ (Jn

i+1 − 1)))t≥0
d−→ β(BAi/σ + B((Ji/σ)+t)∧(Ji+1/σ) −B(Ji/σ))t≥0

for 1 ≤ i ≤ k − 1, in each case for the uniform norm. Moreover, jointly with this conver-
gence,

Lη,γ
n

n1/(4−η)

d−→ Lη,γ ,
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in ℓ∞, where Lη,γ is independent of all the other limiting random variables.

Proof. Fix k ≥ 1 and γ > 0 and write

Vn = (Jn
1 , J

n
2 , . . . , J

n
k , A

n
1 , . . . , A

n
k , F

n
1 , F

n
2 , . . . , F

n
k ,

(Ln(⌊tn1/2⌋ ∧ (Jn
1 − 1)))t≥0), (L

n((Jn
1 + ⌊tn1/2⌋) ∧ (Jn

2 − 1)))t≥0), . . . ,

(Ln((Jn
k−1 + ⌊tn1/2⌋) ∧ (Jn

k − 1)))t≥0)

for the vector containing all variables that, in Proposition 4.1, have already been shown
to converge jointly under rescaling when we equip the first 3k entries with the Euclidean
topology on R, the last k entries with the topology of uniform convergence, and the
whole vector with the product topology. Then, let g be an R-valued bounded continuous
function (for this topology), and h : ℓ∞ → R be another bounded continuous function. By
Proposition 4.1 and Lemma 7.1 it suffices to prove that∣∣∣E [g(Vn)h(Lη,γ

n )] − E [g(Vn)] E [h(Lη,γ
n )]

∣∣∣→ 0 (7.5)

as n → ∞.
Let (Mη,γ

n , Sη,γ
n ) have the joint distribution of the number of vertices with a large dis-

placement,
∑

v∈Tn
1[∥Y (v)∥>γn1/(4−η)], and the total number of children of such vertices,∑

v∈Tn
c(v,Tn)1[∥Y (v)∥>γn1/(4−η)]. Fix ε ∈ (0, 1/6) and define the good event

G1 = {Mη,γ
n ≤ nε, Sη,γ

n ≤ n1/3+ε}.

By analogous arguments to those used to prove (5.6), G1 occurs with high probability.

Now recall that σn−1/2Jn
k

d−→ Jk as n → ∞. Fix T > 0 and let G2 be the (good) event
that Jn

k ≤ T
√
n. (We observe that by choosing T large we may make P {G2} as close to 1

as we like, uniformly in n sufficiently large.) Then,

E [g(Vn)h(Lη,γ
n )] = E

[
g(Vn)h(Lη,γ

n )1[G1∩G2]

]
+ o(1),

where o(1) is to be understood as an error that tends to 0 as n → ∞ and then T → ∞.
Let Fη,γ

n denote the σ-algebra generated by the degrees and displacement vectors of the
vertices v with ∥Y (v)∥ > γn1/(4−η). We see that G1 and Lη,γ

n are measurable with respect
to Fη,γ

n , and so

E
[
g(Vn)h(Lη,γ

n )1[G1∩G2]

]
= E

[
E
[
g(Vn)1[G2] | F

η,γ
n

]
h(Lη,γ

n )1[G1]

]
.

Therefore, since g and h are bounded, to prove (7.5) it suffices to show that as n → ∞
and T → ∞, ∣∣∣E [g(Vn)1[G2] | F

η,γ
n

]
1[G1] − E [g(Vn)]

∣∣∣ p→ 0. (7.6)

To prove (7.6), we will use the measure change between a size-biased random array and
a vector of iid size-biased random variables which may be found in Proposition A.4 below.
To this end, let ξn denote a random variable with distribution µ, conditioned not to yield
a large displacement vector (i.e. conditioned on max1≤i≤ξn |Yξn,i| ≤ γn1/(4−η)), and let µn

denote the distribution of ξn. Using similar notation to that in Proposition A.4, write
rn for the value of Mη,γ

n , sn for the value of Sη,γ
n and d1, . . . , drn for the degrees of the

vertices v with ∥Y (v)∥ > γn1/(4−η). Then, let ξnrn+1, . . . , ξ
n
n be iid samples from µn and

write Z⃗ = (Z1, . . . , Zn) = (d1, . . . , drn , ξ
n
rn+1, . . . , ξ

n
n). Further, conditionally given Z⃗, let

Σ = ΣZ⃗ be the random permutation in (A.1), so that (ZΣ(1), . . . , ZΣ(n)) is a size-biased

random re-ordering of Z⃗. Also define τrn(Σ) = min{j ∈ [n] : Σ(j) ∈ [rn]}. Finally, write
N = Nn,rn = |{i ∈ {rn + 1, . . . , n} : ξni > 0}|.
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Note that conditionally on Fη,γ
n , the remaining vertex degrees are distributed as ξnrn+1, . . . ,

ξnn conditioned on ξnrn+1 + · · · + ξnn = n− 1 − sn. Therefore,

E
[
g(Vn)1[G2] | F

η,γ
n

]
= E

[
E

[
g(Vn)1[G2]

∣∣∣∣ ξnrn+1, . . . , ξ
n
n ,

n∑
i=rn+1

ξni = n− 1 − sn,Fη,γ
n

] ∣∣∣∣ Fη,γ
n

]
.

By (A.18), τrn(Σ) > T
√
n with high probability. Furthermore, by a Chernoff bound,

N ≥ T
√
n with high probability. It follows that

E

[
E

[
g(Vn)1[G2]

∣∣∣∣ ξnrn+1, . . . , ξ
n
n ,

n∑
i=rn+1

ξni = n− 1 − sn,Fη,γ
n

] ∣∣∣∣ Fη,γ
n

]

= E

[
E

[
g(Vn)1[G2]1[N≥T

√
n,τrn (Σ)>T

√
n]

∣∣∣∣ξnrn+1, . . . , ξ
n
n ,

n∑
i=rn+1

ξni = n− 1 − sn,Fη,γ
n

] ∣∣∣∣Fη,γ
n

]
+ oP(1).

Now, observe that on the event G2, Tk
n contains at most T

√
n vertices, and further on

the event τrn(Σ) > T
√
n, none of these vertices have a displacement exceeding γn1/(4−η).

This implies that g(Vn)1[G2]1[N≥T
√
n,τrn (Σ)>T

√
n] only depends on ξnrn+1, . . . , ξ

n
n and Fη,γ

n

through ZΣ(1), . . . , ZΣ(⌊T
√
n⌋) and Σ(1), . . . ,Σ(⌊T

√
n⌋). Therefore,

E

[
g(Vn)1[G2]

∣∣∣∣ Fη,γ
n

]
= E

[
E

[
g(Vn)1[G2]1[N≥T

√
n,τrn (Σ)>T

√
n]

∣∣∣∣ZΣ(1), . . . , ZΣ(⌊T
√
n⌋),Σ(1), . . . ,Σ(⌊T

√
n⌋)
] ∣∣∣∣Fη,γ

n

]
+ oP(1).

= E

[
E

[
g(Vn)1[G2]

∣∣∣∣ZΣ(1), . . . , ZΣ(⌊T
√
n⌋),Σ(1), . . . ,Σ(⌊T

√
n⌋)
]

1[N≥T
√
n,τrn (Σ)>T

√
n]

∣∣∣∣ Fη,γ
n

]
+ oP(1)

where the last equality is implied by the fact that the events N ≥ T
√
n and τrn(Σ) >

T
√
n are measurable with respect to ZΣ(1), . . . , ZΣ(⌊T

√
n⌋),Σ(1), . . . ,Σ(⌊T

√
n⌋). However,

observe that g(Vn)1[G2] is independent of Σ(1), . . . ,Σ(⌊T
√
n⌋) given ZΣ(1), . . . , ZΣ(⌊T

√
n⌋),

and so

E

[
E

[
g(Vn)1[G2]

∣∣∣∣ZΣ(1), . . . , ZΣ(⌊T
√
n⌋),Σ(1), . . . ,Σ(⌊T

√
n⌋)
]

1[N≥T
√
n,τrn (Σ)>T

√
n]

∣∣∣∣ Fη,γ
n

]
= E

[
E

[
g(Vn)1[G2]

∣∣∣∣ZΣ(1), . . . , ZΣ(⌊T
√
n⌋)

]
1[N≥T

√
n,τrn (Σ)>T

√
n]

∣∣∣∣ Fη,γ
n

]
. (7.7)

We now apply the measure change from Proposition A.4 to obtain that, for ξ̄n1 , ξ̄
n
2 , . . .

iid samples from the size-biased law of µn, (7.7) is equal to

E

[
E

[
g(Vn)1[G2]

∣∣∣∣ξ̄n1 , . . . , ξ̄n⌊T√
n⌋

]
Θn,rn,sn

µn (ξ̄n1 , . . . , ξ̄
n
⌊T

√
n⌋) | F

η,γ
n

]
, (7.8)

where the inner conditional expectation of g(Vn)1[G2] is now thought of as a measurable

functional of the iid random variables ξ̄n1 , . . . , ξ̄
n
⌊T

√
n⌋ in place of ZΣ(1), . . . , ZΣ(⌊T

√
n⌋). This
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implies that

E
[
g(Vn)1[G2] | F

η,γ
n

]
1[G1]

= E

[
E

[
g(Vn)1[G2]

∣∣∣∣ξ̄n1 , . . . , ξ̄n⌊T√
n⌋

]
Θn,rn,sn

µn (ξ̄n1 , . . . , ξ̄
n
⌊T

√
n⌋)

∣∣∣∣Fη,γ
n

]
1[G1] + oP(1).

By applying Lemma A.5 on G1 (which occurs with high probability),

Θn,rn,sn
µn (ξ̄n1 , . . . , ξ̄

n
⌊T

√
n⌋)

p→ 1

as n → ∞ and (Θn,rn,sn
µn (ξ̄n1 , . . . , ξ̄

n
⌊T

√
n⌋))n≥0 is uniformly integrable, so (7.8) is equal to

E

[
E

[
g(Vn)1[G2]

∣∣∣∣ξ̄n1 , . . . , ξ̄n⌊T√
n⌋

] ∣∣∣∣Fη,γ
n

]
+ oP(1).

Since E

[
g(Vn)1[G2]

∣∣∣∣ξ̄n1 , . . . , ξ̄n⌊T√
n⌋

]
does not depend on Fη,γ

n , it follows that

E

[
E

[
g(Vn)1[G2]

∣∣∣∣ξ̄n1 , . . . , ξ̄n⌊T√
n⌋

] ∣∣∣∣Fη,γ
n

]
= E

[
E

[
g(Vn)1[G2]

∣∣∣∣ξ̄n1 , . . . , ξ̄n⌊T√
n⌋

]]
.

By Corollary A.10, the total variation distance between (ξ̄n1 , . . . , ξ̄
n
⌊T

√
n⌋) and iid size-biased

samples from µ, henceforth denoted by (ξ̄1, . . . , ξ̄⌊T
√
n⌋), tends to 0 as n → ∞. Therefore,

since g is bounded,

E

[
E

[
g(Vn)1[G2]

∣∣∣∣ξ̄n1 , . . . , ξ̄n⌊T√
n⌋

]]
= E

[
E

[
g(Vn)1[G2]

∣∣∣∣ξ̄1, . . . , ξ̄⌊T√
n⌋

]]
+ o(1).

Finally, by Lemma 4.4 and Proposition 4.3, this is in turn equal to

E

[
E

[
g(Vn)1[G2]

∣∣∣∣D̂n
1 , . . . , D̂

n
⌊T

√
n⌋

]
1[Nn≥T

√
n⌋]

]
+ o(1).

where we recall that Nn = |{i ∈ [n] : Dn
i > 0}|. Again, since the probability of G2 and

Nn ≥ ⌊T
√
n⌋ occurring tends to 1 as n → ∞ and subsequently T → ∞, we see that

E

[
E

[
g(Vn)1[G2]

∣∣∣∣D̂n
1 , . . . , D̂

n
⌊T

√
n⌋

]
1[Nn≥T

√
n⌋]

]
= E [g(Vn)] + o(1),

which proves (7.6). The result follows. □

7.1. Typical displacements. Fix η ∈ [0, 2) and δ ∈ (0, 1/(10 − 4η)) ⊂ (0, 1/(4 − η)).
In this section we will study the function encoding the spatial locations of the branching
random walk Tn,δ = (Tn, Yn,δ), namely Rn,δ : [0, n] → R.

Proposition 7.3. Fix γ > 0 and suppose that [A1] holds and [A3] holds for a given
measure π with η ∈ [0, 2). Let δ ∈ (0, 1/(10 − 4η)). If η = 0, then((

Hn(nt)√
n

,
Rn,δ(nt)

n1/4

)
0≤t≤1

,
L0,γ
n

n1/4

)
d−→

( 2

σ
et, β

√
2

σ
rt

)
0≤t≤1

, L0,γ

 ,

as n → ∞, in C([0, 1],R2) × ℓ∞. Furthermore, L0,γ is independent of ((et, rt))0≤t≤1.
If η ∈ (0, 2), then((

Hn(nt)√
n

,
Rn,δ(nt)

n1/(4−η)

)
0≤t≤1

,
Lη,γ
n

n1/(4−η)

)
d−→

((
2

σ
et, 0

)
0≤t≤1

, Lη,γ

)
,

in C([0, 1],R2) × ℓ∞, where Lη,γ is independent of (et)0≤t≤1.
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Proof. The convergence of the random finite-dimensional distributions follows from Propo-
sition 7.2 exactly as Corollary 4.2 follows from Proposition 4.1, but now with the additional
independence from Lη,γ .

We will obtain tightness (now on the scale of n1/(4−η)) via arguments very similar to
those in Section 5, where we replace the truncations with those defined in Section 7. In
particular, the key point is that we must show the analogue of Proposition 5.7, which
states that

lim
k→∞

lim sup
n→∞

P

max
0≤i≤k

sup
s,t∈[Un,k

(i)
−1,Un,k

(i+1)
−1]

|Rn,δ(s) −Rn,δ(t)| > γn1/(4−η)

 = 0.

Fix δ ∈ (0, 1/(10 − 4η)). For all n ≥ 1 and k ≥ 1 let Y n,δ
k ∈ Rk be such that

Y n,δ
k = (Y n,δ

k,1 , . . . , Y
n,δ
k,k ) :=

{
(Yk,1, . . . , Yk,k) if max1≤j≤k |Yk,j | ≤ n1/(4−η)−δ,

(0, . . . , 0) else.

As discussed in Section 6, the displacements of the branching random walk Tn,δ are not
necessarily globally centered and so may not satisfy [A1]. Thus to prove the result, we
will need to instead consider the re-centered branching random walk (Tn, Y

∗
n,δ) where

conditionally on Tn, the entries of Y ∗
n,δ = (Y

∗,(v)
n,δ , v ∈ v(Tn) \ ∂Tn) are independent

random vectors, such that if v ∈ v(Tn) \ ∂Tn has k children then Y
∗,(v)
n,δ has the same

distribution as

Y n,δ
k − E

[
Y n,δ

ξ̄,Uξ̄

]
.

The function R∗
n,δ : [0, n] → R encoding the spatial locations of (Tn, Y

∗
n,δ) is such that for

all t ∈ [0, n],

R∗
n,δ(t)

d
= Rn,δ(t) − E

[
Y n,δ

ξ̄,Uξ̄

]
·Hn(t). (7.9)

By Lemma A.11, ∣∣∣E [Y n,δ

ξ̄,Uξ̄

]∣∣∣ = O
(

(n1/(4−η)−δ)1−2(4−η)/3
)
.

Since (n−1/2Hn(nt))0≤t≤1
d−→ 2

σ (et)0≤t≤1 as n → ∞ in C([0, 1],R), it then follows that

∥Hn∥∞
n1/(4−η)

E
[
Y n,δ

ξ̄,Uξ̄

]
p→ 0 (7.10)

as long as δ > 0 satisfies(
1

4 − η
− δ

)(
1 − 2(4 − η)

3

)
<

1

4 − η
− 1

2
.

Rearranging, this is equivalent to requiring that δ < (10− 4η)−1. For these values of δ, we
then have

sup
t∈[0,1]

|R∗
n,δ(t) −Rn,δ(t)|

d−→ 0,

and so there is no asymptotic cost in doing this re-centering. Arguing again exactly as
in Section 5, it is sufficient to prove the analogue of Lemma 5.10, which states that there
exists A > 0 such that for any γ > 0, δ ∈ (0, 1/(4 − η)) and n ≥ 1 we have

P
{
∥R∗

n,δ∥∞ > γn1/(4−η)
}
≤ A

γ8
.

It is straightforward to verify that the proof of Lemma 5.10 given in Section 6 generalises
immediately to this setting, on replacing n1/4 by n1/(4−η). □
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7.2. Mid-range and large displacements. We will adapt the proof of Proposition 5.3
to the case where [A3] holds instead of [A2]. The proof of Proposition 5.3 uses Lemma
A.12 to show that, with high probability, there are no vertices with a mid-range or large
displacement that are ancestrally related. To apply that lemma, it is sufficient to bound
both the maximum degree in the tree and the number of vertices with a mid-range or large
displacement, with high probability. The required bound on the maximal degree follows
from the assumption that E

[
ξ3
]
< ∞. Therefore, for the adaptation, we need to obtain

the same control on the number of mid-range displacements under [A3] as we obtained
under [A2] in Lemma 5.4.

Lemma 7.4. Suppose that [A3] holds for a given measure π and η ∈ [0, 2). For δ > 0
sufficiently small,∣∣∣{v ∈ v(Tn) \ ∂Tn such that ∥Y (v)∥∞ > n1/(4−η)−δ

}∣∣∣ = oP(n1/12).

Proof. Let ξ1, . . . , ξn be iid with distribution µ. Let x ∈ (0, 1) be such that π({x}×R+) =
π(R+ × {x}) = 0. Then, by [A3],

n1−(4−η)δP
{
∥Yξ1∥∞ > n1/(4−η)−δ

}
≤ n1−(4−η)δP

{
∥Yξ1∥∞ > xn1/(4−η)−δ

}
→ π

(
((x,∞) × R+) ∪ (R+ × (x,∞))

)
< ∞.

This in particular implies that there exists C > 0 such that P
{
∥Yξ1∥∞ > n1/(4−η)−δ

}
≤

Cn−1+(4−η)δ for all n ≥ 1. It follows that

An :=
∣∣∣{i ∈ [n] : ∥Yξi∥∞ > n1/(4−η)−δ

}∣∣∣ ⪯st Bin
(
n,Cn−1+(4−η)δ

)
.

By a Chernoff bound, this implies that for δ ∈ (0, (12(4− η))−1), and n ≥ 1 sufficiently
large, for any ε > 0,

P
{
An > εn1/12

}
≤ P

{
Bin

(
n,Cn−1+(4−η)δ

)
> εn1/12

}
= P

{
Bin

(
n,Cn−1+(4−η)δ

)
> Cn(4−η)δ

(
1 +

( ε

C
n1/12−(4−η)δ − 1

))}
= O

(
exp(−n(4−η)δ)

)
,

so

P

{
An > εn1/12

∣∣∣∣ n∑
i=1

ξi = n− 1

}
= O

(
n1/2 exp(−n(4−η)δ)

)
= o(1). □

Thereafter, we obtain the following result on the mid-range displacements under [A3]
with a proof that is analogous to that of Proposition 5.3; we omit the details.

Proposition 7.5. Fix γ > 0 and suppose that [A3] holds for a given measure π and
η ∈ [0, 2). For δ > 0 sufficiently small, as n → ∞,

P
{
∥Rγ

n,δ∥∞ > γn1/(4−η)
}

= o(1).

In the remainder of this section we will study the function encoding the spatial locations
of the “large-displacement” branching random walk Tγ

n = (Tn, Y
γ
n ), namely Rγ

n : [0, n] →
R.

Let Ξ be a Poisson process on [0, 1] × R2
+ \ {(0, 0)} with intensity

dt ⊗ π(dx, dy), and let Ξγ be the restriction of Ξ to [0, 1] × (R2
+ \ ([0, γ] × [0, γ])). Also,

recall the definition of the function U from just before Theorem 1.3.
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Proposition 7.6. Fix γ > 0 and suppose that [A1] holds and that [A3] holds for a given

measure π and η ∈ [0, 2). Let δ ∈
(

0, 1
64 ∧ 1

10−4η

)
.

If η = 0 then as n → ∞,((
Hn(nt)√

n
,
Rn,δ(nt)

n1/4

)
0≤t≤1

, U

(
Rγ

n

n1/4
, ∅
))

d−→

( 2

σ
et, β

√
2

σ
rt

)
0≤t≤1

, U(0,Ξγ)


with convergence in the first coordinate in C([0, 1],R2), and convergence in the second coor-
dinate with respect to the Hausdorff topology on non-empty compact subsets. Furthermore,
U(0,Ξγ) is independent of (et, rt, 0 ≤ t ≤ 1).

If η ∈ (0, 2) then as n → ∞,((
Hn(nt)√

n
,
Rn,δ(nt)

n1/(4−η)

)
0≤t≤1

, U

(
Rγ

n

n1/(4−η)
, ∅
))

d−→

((
2

σ
et, 0

)
0≤t≤1

, U(0,Ξγ)

)
with convergence in the first coordinate in in C([0, 1],R2), and convergence in the second
coordinate with respect to the Hausdorff topology on non-empty compact subsets. Further-
more, U(0,Ξγ) is independent of (et, 0 ≤ t ≤ 1).

We first prove Theorems 1.3 and 1.4 assuming Proposition 7.6.

Proof of Theorems 1.3 and 1.4 assuming Proposition 7.6. For γ and δ as in Proposition 7.6,(
Rn(nt)

n1/(4−η)

)
0≤t≤1

=

(
Rn,δ(nt)

n1/(4−η)
+

Rγ
n(nt)

n1/(4−η)

)
0≤t≤1

+

(
Rγ

n,δ(nt)

n1/(4−η)

)
0≤t≤1

.

By Proposition 7.6, as n → ∞, U(n−1/(4−η)Rγ
n(n ·), ∅)

d−→ U(0,Ξγ) with respect to the
Hausdorff topology on non-empty compact subsets, jointly with convergence(

Rn,δ(nt)

n1/(4−η)

)
0≤t≤1

d−→

{
β
√

2
σr if η = 0

0 if η ∈ (0, 2)

in C([0, 1],R2) where, for η = 0, U(0,Ξγ) and (rt)0≤t≤1 are independent. Therefore,

U

(
Rn,δ(n·)
n1/(4−η)

+
Rγ

n(n·)
n1/(4−η)

, ∅
)

d−→

{
U
(
β
√

2
σr,Ξγ

)
if η = 0,

U(0,Ξγ) if η ∈ (0, 2).

Note that U(0,Ξ) is a compact set by our assumptions on π, and that U(0,Ξγ)
a.s.−→ U(0,Ξ)

in the Hausdorff sense as γ ↓ 0. We have

dH

(
U

(
Rn(n·)
n1/(4−η)

, ∅
)
, U

(
Rn,δ(n·)
n1/(4−η)

+
Rγ

n(n·)
n1/(4−η)

, ∅
))

≤ n−1/(4−η)∥Rγ
n,δ∥∞

and, by Proposition 7.5,

lim
γ→0

lim sup
n→∞

P
{
∥Rγ

n,δ∥∞ > γn1/(4−η)
}

= 0.

We may now apply the principle of accompanying laws [6, Theorem 3.2] in order to obtain
that

U

(
Rn(n·)
n1/(4−η)

, ∅
)

d−→

{
U
(
β
√

2
σr,Ξ

)
if η = 0,

U(0,Ξ) if η ∈ (0, 2),

which yields Theorems 1.3 and 1.4. □

The remainder of this section is devoted to the proof of Proposition 7.6. We will need
a notion of pruning and grafting of branching random walks. We refer to Figure 6 as a
visual aid in understanding the following three definitions.
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Definition 7.7 (Pruning branching random walks). Let T = (T, Y ) be a branching random

walk with displacements Y = (Y (v), v ∈ v(T )\∂T ). Let v ∈ v(T ) and T (v) be the subtree of
T rooted at v. The sub-branching random walk of T rooted at v is the branching random
walk T(v) = (T (v), Y ′) with displacements Y ′ = (Y ′(u), u ∈ v(T (v)) \ ∂T (v)). Also, T↑v

is the branching random walk obtained by removing all descendants of v from T . More
generally, for v = (v1, . . . , vk) a sequence of distinct vertices in v(T ) such that no two

vertices in v are ancestrally related, we set Tv = (T(v), v ∈ v), and define T↑v inductively

as T↑v = (T↑(v1,...,vk−1))↑vk .

Definition 7.8 (Grafting branching random walks). For branching random walks T =
(T, Y ) and T′ = (T ′, Y ′), and for a leaf l ∈ ∂T , let T ⊕l T′ = (T ⊕l T, Y ⊕l Y

′) be the
branching random walk defined by setting T⊕lT

′ = T∪lT ′ and, for v ∈ v(T⊕lT
′)\∂(T⊕lT

′)
setting

(Y ⊕l Y
′)(v) =

{
Y (v) if v ∈ v(T ) \ ∂T
Y ′(u) if v = lu for some u ∈ v(T ′) \ ∂T ′

More generally, for branching random walks T,T1, . . . ,Tk and distinct leaves l1, . . . , lk ∈
∂T , define T ⊕l1,...,lk (T1, . . . ,Tk) recursively over k as

T ⊕l1,...,lk (T1, . . . ,Tk) = (T ⊕l1,...,lk−1
(T1, . . . ,Tk−1)) ⊕lk Tk.

The previous definitions imply that for a branching random walk T = (T, Y ) and
v ∈ v(T ),

T↑v ⊕v T(v) = T,

and more generally, for a sequence of distinct vertices v = (v1, . . . , vk) of T such that no
two vertices in v are ancestrally related in T , that T↑v ⊕v Tv = T.

0

-5

5

7-13

-11

9

47

5

7

0

-5-1

T↑v7

1

0

8

36

T(v1)

4

6

0

10

124

T(v2)

8

0

-5

3

-21

-1

1

-1

9

1137

1

Figure 6. On top, a spatial tree. We denote the associated branching walk
by T. On the bottom left, we depict f7(T) = (T↑v7 , {T(v1),T(v2)}), which
is obtained from T by pruning the sub-branching walks of T that have a
displacement with absolute value exceeding 7 in their first generation. On
the bottom right is a spatial tree obtained by grafting the branching walks
(f7(T))2 to leaves of (f7(T))1. T(v1) and T(v2) to leaves of T↑v7 .



DISCRETE SNAKES WITH GLOBALLY CENTERED DISPLACEMENTS 59

We next use the above definitions to define a map that prunes the sub-branching random
walks of branching random walks that are rooted at ancestrally minimal vertices v with
∥Y (v)∥∞ ≥ τ . See Figure 6 for an illustration of the coming definition.

Definition 7.9. For a branching random walk T = (T, Y ) and for τ > 0, let vτ =

(v1, . . . , vm) be the set of vertices v ∈ v(T ) such that ∥Y (v)∥∞ > τ and for all ancestors

u ⪯ v, ∥Y (u)∥ ≤ τ , listed in depth-first order. Define a map fτ by

T
fτ7−→ (T↑vτ , {T(v1), . . . ,T(vm)}),

where the second coordinate is a multiset with elements T(v1), . . . ,T(vm) which are the
branching random walks rooted at the vertices v1, . . . , vm.

For τ ≥ 0, let

vτ (Tn) :=
{
v ∈ v(Tn) \ ∂Tn : ∥Y (v)∥∞ > τ, and ∥Y (u)∥∞ ≤ τ ∀u ≺ v

}
.

We will apply fτ to Tn, and then study the law of Tn conditional on fτ (Tn). Ob-
serve that given fτ (Tn), Tn is determined by vτ (Tn). We will show that conditional on
fτ (Tn), vτ (Tn) is distributed as a uniformly random subset of leaves in (fτ (Tn))1. We
make this formal in the next lemma.

Lemma 7.10. Let τ > 0 and write fτ (Tn) = (T′
n, {T1

n, . . . ,T
m
n }). Fix m ≥ 1 and let

Σ ∈U Sm, where Sm is the symmetric group of order m. Further, let (L1, . . . ,Lm) be a
uniformly random vector of leaves in T′

n listed in depth-first order. Then, given fτ (Tn),
Tn is equal in distribution to

T′
n ⊕L1,...,Lm (TΣ(1)

n , . . . ,TΣ(m)
n ).

Proof. Let (t′, {t1, . . . , tm}) be in the support of fτ (Tn). We will first show that

f−1
τ (t′, {t1, . . . , tm}) =

{
t′ ⊕l1,...,lm (tπ(1), . . . , tπ(m)) : (l1, . . . , lm) leaves in t′;π ∈ Sm

}
,

(7.11)
where in the right-hand side, (l1, . . . , lm) are listed in depth-first order. Following this, we
will show that the law of Tn conditional on its degrees and displacement vectors assigns
equal mass to all elements of the right-hand set in (7.11) and that each element of the right-
hand set corresponds to the same number of sets of leaves (l1, . . . , lm) listed in depth-first
order and permutations π.

For the inclusion of the left-hand set in the right-hand set, observe that if for some
spatial tree t it holds that fτ (t) = (t′, {t1, . . . , tm}) then, for (l1, . . . , lm) the minimal
vertices in t that have a displacement vector with sup-norm lower bounded by τ , listed in
depth-first order, are leaves in t′. Thus there is some π ∈ Sm such that for all i = 1, . . . ,m,
tπ(i) = t(li). This implies that t = t′ ⊕l1,...,lm (tπ(1), . . . , tπ(m)).

For the other inclusion, it is straightforward to see that for leaves (l1, . . . , lm) in t′,

listed in depth-first order, and π ∈ Sm it holds that fτ (t′ ⊕l1,...,lm (tπ(1), . . . , tπ(m)) =
(t′, {t1, . . . , tm}).

We now show that the law of Tn conditional on its degrees and displacement vectors
assigns equal mass to all elements of the right-hand set. This follows from the observation
that, conditional on its degrees and displacement vectors, Tn is uniform on all branching
random walks with those degrees and displacement vectors. Each element in{

t′ ⊕l1,...,lm (tπ(1), . . . , tπ(m)) : (l1, . . . , lm) leaves in t′;π ∈ Sm

}
(7.12)

with l1, . . . , lm listed in depth-first order has the same degrees and displacement vectors.
Finally, we show that each element of (7.12) corresponds to the same number of sets

of leaves (l1, . . . , lm) and permutations π ∈ Sm. To this end, note that every vertex in
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a spatial tree t with a displacement vector whose sup-norm is at least τ has a non-zero
number of children, so for each t in the set (7.12), we can recognise (l1, . . . , lm) as the
vertices v that are leaves in t′ and not leaves in t; thus, the choice of (l1, . . . , lm) is unique.
Moreover, if the multiset {t1, . . . , tm} contains j different spatial trees with multiplicities
m1, . . . ,mj respectively, then t corresponds to m!/(m1! . . .mj !) different permutations π.
This number does not depend on t, and the statement follows. □

For n ≥ 1, let τn = n1/(4−η)−δ. Further, let T′
n = (T′

n, Y
′) denote the first coordinate

of fτn(Tn), and Fpr
n = (T

(v)
n )v∈vτn (Tn) denote the second coordinate of fτn(Tn), where we

assume that the trees in Fpr
n are ordered according to the depth-first order of their roots

in Tn. We require one further lemma to prove Proposition 7.6.

Lemma 7.11. Fix γ > 0. Suppose that [A1] holds and that [A3] holds for a given
measure π and η ∈ [0, 2). For n ≥ 1, let H ′

n be the height function of T′
n and R′

n be the
function encoding the spatial locations of T′

n. Extend their domains to [0, n] by setting
H ′

n(t) = R′
n(t) = 0 for all t > |T′

n|. If η = 0, then as n → ∞,((
H ′

n(nt)√
n

,
R′

n(nt)

n1/4

)
0≤t≤1

,
L0,γ
n

n1/4
,

)
d−→

( 2

σ
et, β

√
2

σ
rt

)
0≤t≤1

, L0,γ

 , (7.13)

and if η ∈ (0, 2), then((
H ′

n(nt)√
n

,
R′

n(nt)

n1/(4−η)

)
0≤t≤1

,
Lη,γ
n

n1/(4−η)
,

)
d−→

((
2

σ
et, 0

)
0≤t≤1

, Lη,γ

)
, (7.14)

with convergence in the first coordinate in C([0, 1],R2) endowed with the topology of uni-
form convergence, and the convergence in the second coordinate in ℓ∞.

Proof. We prove (7.13). The proof of (7.14) then follows by identical arguments. By
Proposition 7.3 it suffices to prove that as n → ∞,

sup
1≤j≤n

{
n−1/2|Hn(j) −H ′

n(j)| ∨ n−1/4|Rn,δ(j) −R′
n(j)|

}
p→ 0. (7.15)

We also prove (7.15) using Proposition 7.3. Fix ε > 0. The sample paths of both e
and r are almost surely continuous so since [0, 1] is compact, they are in fact almost surely
uniformly continuous. This implies that there exists ρ > 0 so that

P

{
sup

0≤s<t≤1,|s−t|<ρ

∣∣∣∣ 2σes −
2

σ
et

∣∣∣∣ ∨
∣∣∣∣∣β
√

2

σ
rs − β

√
2

σ
rt

∣∣∣∣∣ > ε/2

}
< ε/2.

Then, the convergence in Proposition 7.3 implies that for n sufficiently large, the proba-
bility that the event

Bn :=

{
sup

0≤k<ℓ≤n,|k−ℓ|<ρn

{
|Hn(k) −Hn(ℓ)|

n1/2
∨
|Rn,δ(k) −Rn,δ(ℓ)|

n1/4

}
≥ ε

}
occurs is less than ε.

Next, let

v∗(Tn) :=
{
v ∈ v(Tn) \ ∂Tn : ∥Y (v)∥∞ ≤ n1/4−δ, ∃ u ≺ v with ∥Y (u)∥∞ > n1/4−δ

}
.

By identical methods as those used to prove Lemma 5.6, it can be seen that v∗(Tn) = oP(n)
and so for n sufficiently large, P {|T′

n| ≤ n− ρn} ≤ ε.
Now suppose that neither of the (unlikely, bad) events {|T′

n| ≤ n − ρn} or Bn hold.
Observe that H ′

n and R′
n can respectively be obtained from Hn and Rn,δ by “skipping”
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all the vertices in v∗(Tn). To be precise, for 1 ≤ k ≤ |T′
n|, let Pn(k) be the position of the

k-th vertex that is not in v∗(Tn) in the depth-first order of Tn. Then,

(H ′
n(k), R′

n(k)) =

{
(Hn(Pn(k)), Rn,δ(Pn(k))) for k = 1, . . . , |T′

n|
(0, 0) for k > |T′

n|.
.

By our assumption that n − |T′
n| < ρn, we have |Pn(k) − k| < ρn for all k; by our

assumption that

sup
0≤k<ℓ≤n,|k−ℓ|<ρn

{
|Hn(k) −Hn(ℓ)|

n1/2
∨
|Rn,δ(k) −Rn,δ(ℓ)|

n1/4

}
< ε,

we then also have

sup
0≤k≤n

{
|Hn(k) −H ′

n(k)|√
n

∨
|Rn,δ(k) −R′

n(k)|
n1/4

}
< ε. (7.16)

Since ε > 0 was arbitrary, the result follows. □

With Lemma 7.11 in hand, we proceed to proving Proposition 7.6. In the proof, the
pair (T′

n,F
pr
n ) is as in Lemma 7.11. Observe that by Lemma 7.10, given fτn(Tn), we can

obtain an object with the same law as Tn by grafting the branching random walks in Fpr
n

at uniformly random leaves of the first coordinate of fτn(Tn).

Proof of Proposition 7.6. Let n ≥ 1 be large enough so that n1/(4−η)−δ < γn1/(4−η). Then
if v ∈ v(Tn) \ ∂Tn is such that ∥Y (v)∥∞ > γn1/(4−η), it also holds that ∥Y (v)∥∞ >

n1/(4−η)−δ. The proof of Proposition 5.5 can be adapted so that under [A3] for a given
measure π and η ∈ [0, 2), for δ > 0 sufficiently small, as n → ∞

P
{
∃u, v ∈ Tn, u ≺ v, such that ∥Y (u)∥∞ ∧ ∥Y (v)∥∞ > n1/(4−η)−δ

}
= o(1).

If follows that at the cost of throwing away an event of asymptotically vanishing probability,
we may work on the event that there are no ancestrally related vertices u, v ∈ v(Tn) such

that both ∥Y (v)∥∞ > n1/(4−η)−δ and ∥Y (u)∥∞ > n1/(4−η)−δ.
By Skorokhod’s representation theorem, we may work on a probability space where the

convergence in Lemma 7.11 holds almost surely.
We now use Lemma 7.10 to study the asymptotic law of Rγ

n conditional on (T′
n,F

pr
n ).

Lemma 7.10 implies that given (T′
n,F

pr), we can obtain an object with the law of Tn

by grafting each of the branching random walks in Fpr
n onto uniformly random leaves

in T′
n. In fact, in order to obtain the (conditional) law of Rγ

n we only need to sample

the positions of the vertices in v ∈ v(Tn) \ ∂Tn whose displacement vectors Y (v) satisfy

that ∥Y (v)∥∞ ≥ γn1/(4−η), since the trees of Fpr
n attach to these vertices in exchangeable

random order. We denote the branching random walks in Fpr
n by T(v1), . . . ,T(vMn ) (ordered

according to the depth-first order of their roots v1, . . . , vMn ∈ Tn). By symmetry we may

assume that for 1 ≤ j ≤ Mn, the largest and smallest displacement at the root of T(vj)

(i.e., Y (vj ,+), and Y (vj ,−)) are described by the j-th entry of Lη,γ
n .

We claim that as n → ∞, Mn
d−→ M for some finite, random variable M . Indeed, as

n → ∞, n−1/(4−η)Lη,γ
n

a.s.−→ Lη,γ . Furthermore, since γ > 0, almost surely Lη,γ has finitely
many non-zero terms and each non-zero entry of n−1/(4−η)Lη,γ

n is at ℓ∞ distance at least γ
from (0, 0), there are finite random variables M and N such that Lη,γ

n has M non-zero
terms for all n > N large enough; i.e., the number of vertices v ∈ v(Tn) \ ∂Tn such that

∥Y (v)∥∞ ≥ γn1/(4−η) is equal to M .
Now, for k ≥ 1, let L′

n(k) denote the number of leaves in T′
n which are among the

first k vertices in the depth-first order of the vertices of Tn. Then L′
n(k) is bounded from

above by the number of down-steps of the  Lukasiewicz path Wn(k) of Tn by time k. It is
bounded from below by this same number minus |Tn \ T ′

n| which is o(n) by (7.13).
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Therefore, by Lemma A.1, as n → ∞(
L′
n(⌊nt⌋)
n

)
0≤t≤1

p→ (µ0t)0≤t≤1 ,

so that the positions of Mn uniform leaves in T′
n in depth-first order converge upon rescal-

ing by n−1 to M independent uniform samples from [0, 1], which we denote by U1, . . . , UM

respectively. For all 1 ≤ j ≤ Mn, we graft T(vj) (which has size o(n) since T′
n has size

n− o(n) by (7.13)) onto the j-th such leaf of T′
n, using the operation in Definition 7.8.

The branching random walk T(vj) contains exactly one vertex (namely the root) with

displacement vector ∥Y (v)∥∞ > γn1/(4−η) (since we assumed that such vertices are not
ancestrally related) and the largest and smallest displacements of this vertex are given

by Lη,γ
n (j). Therefore, asymptotically, n−1/(4−η)Rγ

n will contain a line segment from
(Uj ,−Y −

j ) to (Uj ,−Y +
j ).

This implies that if η = 0((
H ′

n(nt)√
n

,
R′

n(nt)

n1/4

)
0≤t≤1

, U

(
Rγ

n

n1/4
, ∅
))

d−→

( 2

σ
et, β

√
2

σ
rt

)
0≤t≤1

, U(0,Ξγ)

 ,

and if η ∈ (0, 2)((
H ′

n(nt)√
n

,
R′

n(nt)

n1/(4−η)

)
0≤t≤1

, U

(
Rγ

n

n1/(4−η)
, ∅
))

d−→

((
2

σ
et, 0

)
0≤t≤1

, U(0,Ξγ)

)
.

The result then follows from (7.15). □

Appendix A. Standard results and remaining proofs

A.1. Standard results. In this section we provide standard results which we use through-
out this work without proof. We start by stating a functional strong law of large numbers
for sums of iid non-negative random variables that we use at multiple points in proofs of
convergence of finite-dimensional distributions.

Lemma A.1. Let X1, X2, . . . be iid random variables with X1 ≥ 0 almost surely and
E [X1] = µ < ∞. Then, for any an ↑ ∞, 1

an

⌊ant⌋∑
i=1

Xi, t ≥ 0

 a.s.−→ (µt, t ≥ 0)

uniformly on compact sets as n → ∞.

The next result is a generalised local central limit theorem, from Theorem 13, Chap-
ter VII of Petrov [35], which we use to prove tightness in Theorem 1.1.

Theorem A.2 (Theorem 13, Chapter VII of Petrov [35]). Let (Xn)n≥1 be a sequence
of iid integer-valued random variables. Suppose that E [X1] = 0, Var {X1} = σ2 > 0,
E
[
|X1|3

]
< ∞, and the maximal span of the distribution of X1 is equal to 1. Let Sn =∑n

i=1Xi. Then,

√
2πnσP {Sn = k} = e−k2/(2σ2n)

(
1 +

1√
n

γ3
6σ3

(
k3

σ3n3/2
− 3k

σ
√
n

))
+ o(n−1/2),

uniformly in k ∈ Z, where γ3 is the third central moment of X1.

The last result is a quantitative local central limit theorem proved in [3, Lemma 5.5]
for k = 1, which we use in the proof of Theorems 1.3 and 1.4. The generalisation to k ≥ 1
is standard.
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Lemma A.3. Fix η, β > 0, 0 < γ < 1/2 and k ∈ N. Then, there exist constants
C = C(η, β, γ, k) and M = M(η, β, γ, k) so that for all random variables X on Z≥0 that
satisfy the following conditions:

(1) the greatest common divisor of the support of X is 1;
(2) P {X = 0} > γ and P {X = k} > γ;
(3) E

[
X2
]
< η and

(4) E
[
X3
]
< β,

it holds that for all m > M

sup
ℓ∈Z

∣∣∣∣∣√mP

{
m∑
i=1

Xi = ℓ

}
− ϕ

(
ℓ−mE [X]√
Var {X}m

)∣∣∣∣∣ ≤ C√
m
.

where X1, X2, . . . , are iid copies of X, and ϕ(t) = e−t2/2 is the standard normal density.

A.2. Measure change. For n ≥ 1 let Sn denote the set of permutations of [n]. For
(k1, . . . , kn) ∈ Nn, let Σ = Σ(k1,...,kn) be the random permutation of [n] with law given by

P {Σ = σ} =

n∏
i=1

kσ(i)∑n
j=i kσ(j)

, for σ ∈ Sn.

We call (kΣ(1), . . . kΣ(n)) the size-biased random re-ordering of (k1, . . . , kn). It will be con-
venient to extend this definition to vectors (k1, . . . , kn) that contain 0-valued entries. We
start with a size-biased random re-ordering of the non-zero entries of (k1, . . . , kn) and then
append to this the correct number of zeroes. Formally, if (k1, . . . , kn) ∈ Zn

≥0 has N ≥ 0

non-zero entries, let Σ(k1,...,kn) be the random permutation of [n] with

P
{

Σ(k1,...,kn) = σ
}

=
1

(n−N)!

N∏
i=1

kσ(i)∑N
j=1 kσ(j)

, (A.1)

for σ ∈ Sn, and still refer to (kΣ(1), . . . kΣ(n)) as the size-biased random re-ordering of
(k1, . . . , kn).

For a permutation σ ∈ Sn and r ∈ {0, 1, . . . , n} define

τr(σ) =

{
min{j ∈ [n] : σ(j) ∈ [r]} if r ∈ [n],

n + 1 if r = 0 .

As discussed in Section 4, the proof of Theorem 1.1 relies on establishing a change of
measure, (4.5), which relates the size-biased random re-ordering of the positive entries of
the degree sequence of Tn, and iid samples from the offspring distribution. The proofs
of Theorems 1.3 and 1.4 rely on establishing a similar change of measure, which is a
generalisation of (4.5) to the situation where instead of an iid sequence, the first r elements
are non-zero and are fixed in advance; the whole sequence is conditioned to have sum n−1;
and we consider the first m elements of the size-biased random reordering of the sequence.
Specifically, let m,n, r, s ∈ Z≥0 with m, r, s < n, and µ be a distribution on Z≥0. For
k1, . . . , km ∈ N, we define

Θµ(k1, . . . , km) = Θn,r,s
µ (k1, . . . , km)

=
P {Xm+1 + · · · + Xn−r = n− 1 − s−

∑m
i=1 ki}

P {X1 + · · · + Xn−r = n− 1 − s}
· (E [X1])

m ·
m∏
i=1

n− r − i + 1

n− 1 −
∑i−1

j=1 kj
(A.2)

if k1 + · · · + km ≤ n− 1 − s, and otherwise Θµ(k1, . . . , km) = 0, where (Xi, i ≥ 1) are iid
random variables with distribution µ. We note that when r = s = 0, and µ is a critical
offspring distribution, we recover (4.5).
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Proposition A.4. Fix n, r, s ∈ Z≥0 with r, s < n, and d1, . . . , dr ∈ N with
∑r

i=1 di = s.
Let µ be a distribution on Z≥0 and (Xi, i ≥ 1) be iid random variables with distribution µ.
Further, let

N = Nn,r = |{i ∈ {r + 1, . . . , n} : Xi > 0}|.
Let Z⃗ = (Z1, . . . , Zn) = (d1, . . . , dr, Xr+1, . . . , Xn), and conditionally given Z⃗, let Σ =

ΣZ⃗ be given by (A.1). Finally, let (Xi, i ∈ [n]) be iid samples from the size-biased dis-
tribution of X1. Suppose that E [X1] < ∞. Then for any m ∈ [n − r] and any function
f : Nm → R, if P {Xr+1 + . . . + Xn = n− 1 − s)} > 0, then

E

[
f
(
ZΣ(1), . . . , ZΣ(m)

)
1[N≥m]1[τr(Σ)>m]

∣∣∣∣ Xr+1 + . . . + Xn = n− 1 − s

]
= E

[
f(X1, . . . , Xm)Θµ(X1, . . . , Xm)

]
,

(A.3)

where Θµ(X1, . . . Xm) = Θn,r,s
µ (X1, . . . Xm) is as in (A.2).

We observe that when r ̸= 0, τr(Σ) > m implies that N ≥ m because all positive
entries occur before zero-valued entries in the size-biased random reordering. However,
when r = 0, the former event is vacuously true for all m ∈ [n], but we still enforce that
N ≥ m in (A.3). It follows that Proposition 4.3 is the special case when r = 0, s = 0 and
X1, X2, . . . are iid samples from the offspring distribution µ.

Proof. In this proof, for n ≥ 1, and r ≥ 1, we let

[n]r = {(n1, . . . , nr) ∈ {1, . . . , n}r : ni ̸= nj for all i ̸= j}.
Furthermore, for a set A we write Ar for the set of ordered sequences (s1, . . . , sr) of r
distinct elements of A. We also let µi = P {X1 = i} for i ∈ Z≥0.

We first prove the proposition assuming that µ0 = 0; we will later generalise this by

conditioning on the number of non-zero entries of Z⃗ and sampling a size-biased re-ordering
of only these entries. When µ0 = 0, we have P {N = n} = 1, so the indicator 1[N≥m] in
(A.3) equals 1 and may be ignored.

For σ ∈ Sn we write Z⃗σ = (Zσ(1), . . . , Zσ(n)) and σ−1[r] = (σ−1(1), . . . , σ−1(r)). Observe
that for m ∈ [n− r], we have the equality of events

{τr(Σ) > m} =
{

Σ−1[r] ∈ ([n]\[m])r
}
.

It is thus useful to determine the law of (Z⃗Σ,Σ
−1[r]). Note that for any k⃗ = (k1, . . . , kn) ∈

Nn and j⃗ = (j1, . . . , jr) ∈ [n]r, if (k⃗, j⃗) is in the support of (Z⃗Σ,Σ
−1[r]) then kji = di for

each i ∈ [r]. For such (k⃗, j⃗),

P
{
Z⃗Σ = k⃗,Σ−1[r] = j⃗

}
=

∑
σ∈Sn:σ−1[r]=j⃗

P
{
Z⃗σ = k⃗,Σ = σ

}

=

n∏
i=1

ki∑n
j=i kj

·
∑

σ∈Sn:σ−1[r]=j⃗

P
{
Z⃗σ = k⃗

}
. (A.4)

Since we fixed σ−1[r], the sum (A.4) ranges over exactly (n− r)! elements of Sn and each
term of the sum is equal to ∏

j∈[n]\{j1,...,jr}

µkj .

Hence, for any k⃗ ∈ Nn and j⃗ ∈ [n]r,

P
{
Z⃗Σ = k⃗,Σ−1[r] = j⃗

}
= (n− r)!

(
r∏

i=1

1[kji=di]

) ∏
j∈[n]\{j1,...,jr}

µkj

( n∏
i=1

ki∑n
j=i kj

)
.

(A.5)
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Now, fix m ∈ [n − r] and k1, . . . , km ∈ N. Note that it suffices to prove (A.3) when
f : Nm → R has the form

f(z1, . . . , zm) =

m∏
i=1

1[zi=ki], (A.6)

so we now restrict our attention to this case. Since∑
i∈[n]

ZΣ(i) =
r∑

i=1

di +
n∑

i=r+1

Xi = s +
n∑

i=r+1

Xi ,

for any k1, . . . , km ∈ N, by summing over the possible values of ZΣ(m+1), . . . , ZΣ(n) we can
use (A.5) to find that

P

{
(ZΣ(1), . . . , ZΣ(m)) = (k1, . . . , km), τr(Σ) > m,

n∑
i=r+1

Xi = n− 1 − s

}
(A.7)

=
∑

(km+1,...,kn)∈Nn−m

∑
j⃗∈([n]\[m])r

1[
∑n

i=1 ki=n−1]P
{
Z⃗Σ = (k1, . . . , kn),Σ−1[r] = j⃗

}

= (n− r)!

(
m∏
i=1

µki

)(
m∏
i=1

ki

n− 1 −
∑i−1

j=1 ki

)

·
∑

(km+1,...,kn)∈Nn−m

j⃗∈([n]\[m])r

1[
∑n

i=1 ki=n−1]

(
r∏

i=1

1[kji=di]

) ∏
i∈([n]\[m])\{j1,...,jr}

µki

( n∏
i=m+1

ki∑n
j=i kj

)

Using that kµk = P
{
X1 = k

}
E [X1] for all k ∈ N, writing n′ = n −m, and re-indexing

the above sum, this yields that (A.7) is equal to

P
{

(X1, . . . , Xm) = (k1, . . . , km)
}

E [X1]
m

(
m∏
i=1

n− r − i + 1

n− 1 −
∑i−1

j=1 kj

)
(n′ − r)!

·
∑

(k′1,...,k
′
n′ )∈Nn′

j⃗∈[n′]r

1
[
∑n′

i=1 k
′
i=n−1−

∑m
i=1 ki]

(
r∏

i=1

1[k′ji
=di]

) ∏
i∈[n′]\{j1,...,jr}

µk′i

 ·
∏
i∈[n′]

k′i∑n′

j=i k
′
j

.

Now, define Z⃗ ′ = (d1, . . . , dr, Xr+1, . . . , Xn−m), and conditionally given Z⃗ ′, let Σ′ = ΣZ⃗′

be given by (A.1). Applying (A.5) to Z⃗ ′ and Σ′, we thus find that (A.7) equals

P
{

(X1, . . . , Xm) = (k1, . . . , km)
} m∏

i=1

(
n− 1 − i + 1

n− 1 −
∑i−1

j=1 kj
E [X1]

)
·

∑
(k′1,...,k

′
n′ )∈Nn′

j⃗∈[n′]r

1
[
∑n′

i=1 k
′
i=n−1−

∑m
i=1 ki]

P
{
Z⃗ ′
Σ′ = k⃗, (Σ′)−1[r] = j⃗

}

= P
{

(X1, . . . , Xm) = (k1, . . . , km)
} m∏

i=1

(
n− 1 − i + 1

n− 1 −
∑i−1

j=1 kj
E [X1]

)

· P

{
n′∑
i=1

Z ′
Σ′(i) = n− 1 −

m∑
i=1

ki

}
.
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Finally, since the sum of the entries of Z⃗ ′
Σ′ is unaffected by the random reordering and is

the same as s +
∑n′−r+m

i=1 Xi = s +
∑n−(r+m)

i=1 Xi, we deduce that (A.7) equals

P
{

(X1, . . . , Xm) = (k1, . . . , km)
} m∏

i=1

(
n− 1 − i + 1

n− 1 −
∑i−1

j=1 kj
E [X1]

)

· P


n−(r+m)∑

i=1

Xi = n− 1 − s−
m∑
i=1

ki

 .

Dividing the above expression by P
{∑n−r

i=1 Xi = n− 1 − s
}

yields the statement when
µ0 = 0, in the special case that f has the form given in (A.6), and thus for general f .

For the general case with µ0 > 0, we let p = 1 − µ0. Further, we let X1,X2, . . . be
iid copies of X1 conditioned to be positive. Notice that E [X1] = p−1E [X1] and that

the size-biased distributions of X1 and of X1 are identical. We let X̂1, X̂2, . . . denote iid
samples from the size-biased distribution of X1. Finally, fix m′ ≥ 0 and define

Z⃗′ = (Z′
1, . . . ,Z

′
m′+r) = (d1, . . . , dr,Xr+1, . . . ,Xr+m′) ,

and conditionally given Z⃗′, let Σ′ = Σ
Z⃗′ be given by (A.1).

Now fix m ∈ [n− r] with m ≤ m′. For k1, . . . , km ∈ N, we have that

P

{
(ZΣ(1), . . . , ZΣ(m)) = (k1, . . . , km), τr(Σ) > m,

n∑
i=r+1

Xi = n− 1 − s

∣∣∣∣ N = m′

}

= P

{
(Z′

Σ′(1), . . . ,Z
′
Σ′(m)) = (k1, . . . , km), τr(Σ

′) > m,

m′∑
i=r+1

Xi = n− 1 − s

}
. (A.8)

By the proof of the case where µ0 = 0, if k1 + · · · + km ≤ n− 1 − s this is equal to

P
{

(X1, . . . ,Xm) = (k1, . . . , km)
}

· P

{
m′∑

i=m+1

Xi = n− 1 − s−
m∑
i=1

ki

}
m∏
i=1

(
m′ − i + 1

n− 1 −
∑i−1

j=1 kj
E [X1]

)
,

and otherwise is equal to 0. For the remainder of the proof we may thus assume that

k1 + · · · + km ≤ n− 1 − s. Since X1
d
= X1 and E [X1] = p−1E [X1] this is in turn equal to

P
{

(X1, . . . , Xm) = (k1, . . . , km)
}

· 1

pm
P

{
m′∑

i=m+1

Xi = n− 1 − s−
m∑
i=1

ki

}
m∏
i=1

(
m′ − i + 1

n− 1 −
∑i−1

j=1 kj
E [X1]

)
. (A.9)

It then follows from (A.8) and (A.9) that

P

{
(ZΣ(1), . . . , ZΣ(m)) = (k1, . . . , km), N ≥ m, τr(Σ) > m,

n∑
i=r+1

Xi = n− 1 − s

}
= P

{
(X1, . . . , Xm) = (k1, . . . , km)

}
·

n−r∑
m′=m

P {N = m′}
pm

P

{
m′∑

i=m+1

Xi = n− 1 − s−
m∑
i=1

ki

}
m∏
i=1

(
m′ − i + 1

n− 1 −
∑i−1

j=1 kj
E [X1]

)
.

(A.10)
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Notice now that N
d
= Binomial(n− r, p). So using the change of variable ℓ = m′ −m and

letting M be a Binomial(n− (r + m), p), by routine algebra we obtain that (A.10) equals

n−(r+m)∑
ℓ=0

P {M = ℓ}P

{
m+ℓ∑

i=m′−ℓ+1

Xi = n− 1 − s−
m∑
i=1

ki

}
·

m∏
i=1

(
n− r − i + 1

n− 1 −
∑i−1

j=1 ki
E [X1]

)

=

n−(r+m)∑
ℓ=0

P {M = ℓ}P

{
ℓ∑

i=1

Xi = n− 1 − s−
m∑
i=1

ki

}
·

m∏
i=1

(
n− r − i + 1

n− 1 −
∑i−1

j=1 ki
E [X1]

)

= P

{
M∑
i=1

Xi = n− 1 − s−
m∑
i=1

ki

}
m∏
i=1

(
n− r − i + 1

n− 1 −
∑i−1

j=1 ki
E [X1]

)
.

Since
∑M

i=1 Xi
d
=
∑n−(r+m)

i=1 Xi, dividing the above expression (which is equal to (A.10))

by P
{∑n−r

i=1 Xi = n− 1 − s
}

yields the result for the special case that f has the form
given in (A.6), and thus for general f . □

The next proposition gives conditions under which the change of measure Θn,r,s
µ ap-

pearing in (A.2) is asymptotically unimportant in the specific case when m = Θ(
√
n)

and (Xi, i ≥ 1) are iid samples from the offspring distribution µ conditioned to yield a

displacement vector such that max1≤j≤Xi |YXi,j | ≤ γn1/(4−η). This then allows us to use
the measure change in the proofs of Theorems 1.3 and 1.4.

Lemma A.5. Let µ be a critical offspring distribution with variance σ2 ∈ (0,∞), and let
ν = (νk)k≥1 be such that [A1] holds and [A3] holds for a given measure π with η ∈ [0, 2).
Fix γ > 0. Let ξ denote a random variable with distribution µ, and for n ≥ 1 let ξn be
distributed as ξ, conditioned to not yield a displacement vector with max1≤i≤ξn |Yξn,i| >
γn1/(4−η). Further, let µn denote the distribution of ξn, and let ξ̄n1 , ξ̄

n
2 , . . . be iid samples

from the size-biased law of ξn.
Finally, fix ε ∈ (0, 1/6) and let (rn)n≥1 and (sn)n≥1 be sequences such that for all n ≥ 1,

rn < nε, sn < n1/3+ε and n− 1 − sn is in the support of
∑n

i=rn+1 ξ
n
i .

Suppose that m = Θ(
√
n). Then as n → ∞,

Θn,rn,sn
µn (ξ̄n1 , . . . , ξ̄

n
m)

p→ 1, (A.11)

and (Θn,rn,sn
µn (ξ̄n1 , . . . , ξ̄

n
m))n≥1 is a uniformly integrable sequence of random variables.

The proof of Lemma A.5 is very similar to that of Lemma 4.4. However, in this case
instead of the standard local central limit theorem, we will require a quantitative local
central limit theorem in order to get uniform estimates on local probabilities for the family
of random variables {ξn, n ≥ 1}.

Lemma A.6. Let µ be a critical offspring distribution with variance σ2 ∈ (0,∞), and let
ν = (νk)k≥1 be such that [A1] holds and [A3] holds for a given measure π with η ∈ [0, 2).
Let γ > 0. Further, let ξ denote a random variable with distribution µ and for n ≥ 1
let ξn = (ξni , i ≥ 1) be iid copies of ξ each conditioned to satisfy {max1≤i≤ξnj

|Yξnj ,i| ≤
γn1/(4−η)}. Then there exist C,N > 0 and M such that for all m,n > N ,

sup
k∈Z

∣∣∣∣∣√mP

{
m∑
i=1

ξni = k

}
− ϕ

(
k −mE [ξn1 ]√
Var {ξn1 }m

)∣∣∣∣∣ ≤ C√
m
,

where ϕ(t) = e−t2/2 is the standard normal density.

This lemma is immediate from Lemma A.3 as soon as we show that the family {ξn, n ≥
1} satisfies the conditions of that lemma. This is verified in Lemmas A.7 and A.8.
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Lemma A.7. For all n sufficiently large, the support of ξn has greatest common divisor 1.

Proof. By assumption, the support of ξ has greatest common divisor 1, so we can find an
M such that the greatest common divisor of the support of ξ restricted to {0, . . . ,M} is 1.

Since γn1/(4−η) > M for n sufficiently large, the result follows. □

Lemma A.8. As n → ∞,

E
[
(ξn)j

]
→ E

[
ξj
]

for j = 1, 2, 3 (A.12)

and

|E [ξn] − 1| = O(n−2/3). (A.13)

Proof. For j ∈ {1, 2, 3} we have

E
[
(ξn)j

]
=

∞∑
k=1

kjP {ξn = k}

≤
∞∑
k=1

kj
P {ξ = k}

P
{

max1≤i≤ξ |Yξ,i| ≤ γn1/(4−η)
} =

(
1 + O

(
1

n

))
E
[
ξj
]
,

where the final equality follows by assumption [A3]. By the bounded convergence theorem,
as n → ∞,

E
[
(ξn)j

]
≥ E

[
ξj
]
− E

[
ξj1[max1≤i≤ξ |Yξ,i|>γn1/(4−η)]

]
→ E

[
ξj
]
,

where we have used assumption [A3] again. (A.12) follows.
To get the more precise lower bound for j = 1 in (A.13), observe that

E
[
ξ1[max1≤i≤ξ |Yξ,i|>γn1/(4−η)]

]
≤ n1/3P

{
max
1≤i≤ξ

|Yξ,i| > γn1/(4−η)

}
+ E

[
ξ1[ξ>n1/3]

]
.

The first term on the right-hand side of this inequality is O(n−2/3) by [A3]. Also, E
[
ξ3
]
<

∞ and so the second term is also O(n−2/3), thus establishing (A.13). □

The last tool that we need to prove Lemma A.5 is an upper bound on the total variation
distance between ξ̄n1 and ξ̄ where ξ̄, a sample from the size-biased law of ξ.

Lemma A.9. Let X be a random variable taking values in N such that E [X] ≥ 0 and
E
[
X3
]
< ∞. Let (En)n≥1 be a sequence of events with P {En} = 1 − O(1/n). Let Xn be

distributed as X conditional on En. Let Xn have the size-biased law of Xn and let X have
the size-biased law of X. Then,

dTV(Xn, X) =
1

2

∞∑
k=1

∣∣P{Xn = k
}
− P

{
X = k

}∣∣ = O(n−2/3).

Proof. By definition,

P
{
Xn = k

}
=

kP {X = k, En}
E
[
X1[En]

] , and P
{
X = k

}
=

kP {X = k}
E [X]

. (A.14)

Since E
[
X3
]
< ∞ we have that P

{
X > n1/3

}
= o(n−1) as n → ∞ and so Hölder’s

inequality yields that

E
[
X1[X>n1/3]

]
≤ E

[
X3
]1/3

P
{
X > n1/3

}2/3
= o(n−2/3).

Next,

E
[
X1[Ec

n]

]
≤ n1/3P {Ec

n} + E
[
X1[X>n1/3]

]
= O(n−2/3),
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so that E [X1En ] = E [X]+O(n−2/3) and the difference between the denominators in (A.14)

is O(n−2/3). It follows that

∞∑
k=1

∣∣P{Xn = k
}
− P

{
X = k

}∣∣
=

∞∑
k=1

∣∣∣∣∣kP {X = k, En}
E
[
X1[Ec

n]

] − kP {X = k}
E [X]

∣∣∣∣∣
≤ 1

E
[
X1[En]

] ( ∞∑
k=1

kP {X = k, Ec
n}

)
+ O(n−2/3)

≤ 1

E
[
X1[En]

]
n1/3∑

k=1

kP {X = k, Ec
n} + E

[
X1[X>n1/3]

]+ O(n−2/3)

≤ n1/3P {Ec
n}

E
[
X1[En]

] +
E
[
X1[X>n1/3]

]
E
[
X1[En]

] + O(n−2/3)

= O(n−2/3).

The first term on the right hand side of the above inequality is O(n−2/3) since P {Ec
n} =

O(1/n). □

This lemma has the following corollary.

Corollary A.10. Let µ be a critical offspring distribution with variance σ2 ∈ (0,∞), and
let ν = (νk)k≥1 be such that [A1] holds and [A3] holds for a given measure π with η ∈ [0, 2).
Fix γ > 0. Let ξ denote a random variable with distribution µ and let ξ̄1, ξ̄2, . . . be iid
samples from the size-biased law of ξ. For n ≥ 1 let ξn be distributed as ξ, conditioned to
not yield a displacement vector with max1≤i≤ξn |Yξn,i| > γn1/(4−η). Further, let µn denote
the distribution of ξn, and let ξ̄n1 , ξ̄

n
2 , . . . be iid samples from the size-biased law of ξn.

Then for m = Θ(
√
n),

dTV ((ξ̄n1 , . . . , ξ̄
n
m), (ξ̄1, . . . , ξ̄m)) = O(n−1/6).

Proof. By [A3], ξ̄n1 is obtained from ξ̄1 by conditioning on an event which occurs with
probability 1 − O(1/n). Therefore, by Lemma A.9, the total variation distance between

ξ̄n1 and ξ̄1 is O(n−2/3). Since m = Θ(
√
n), the conclusion follows. □

We now prove Lemma A.5. Since the proof of this lemma is very similar to that of
Lemma 4.4 we will be brief.

Proof of Lemma A.5. As in the proof of Lemma 4.4, we may assume that there exists
t > 0 such that m/

√
n → t as n → ∞.

Suppose that k1, . . . , km ∈ Z≥0. Then by almost identical techniques to those used to
prove (4.6) (replacing the local central limit theorem by Lemma A.6), we obtain that

P
{∑n

i=(rn+m)+1 ξ
n
i = n− 1 − sn −

∑m
i=1 ki

}
P
{∑n

i=rn+1 ξ
n
i = n− 1 − sn

}
= exp

−

(1 + sn − rn + mσ2 +
∑m

i=1(ki − (1 + σ2))√
2σ2(n− (rn + m))

)2

+ o(1)

+ o(1). (A.15)

Recall that, for i ∈ [m], ξ̄i is sample from the size-biased distribution of ξ. We claim that
instead of substituting ξ̄n1 , . . . , ξ̄

n
m in the place of k1, . . . , km we can substitute ξ̄1, . . . , ξ̄m.
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Indeed, by Corollary A.10, the total variation distance between ξ̄n1 , . . . , ξ̄
n
m and ξ̄1, . . . , ξ̄m

tends to 0 as n → ∞. Therefore, by (4.8), we obtain that (A.15) tends to exp(−(t2σ2)/2)
in probability as n → ∞. This convergence is analogous to (4.8) in the proof of Lemma
4.4.

It remains to establish an analogue of (4.9), i.e.,

m∏
i=1

(
n− rn − i + 1

n− 1 −
∑i−1

j=1 ξ̄
n
j

E [ξn]

)
= E [ξn]m

m∏
i=1

(
n− rn − i + 1

n− 1 −
∑i−1

j=1 ξ̄j

)
p→ exp

(
t2σ2

2

)
, (A.16)

as n → ∞.
By Lemma A.8,

E [ξn] = E [ξ] + O(n−2/3) = 1 + O(n−2/3),

and so, since m = (1 + o(1))t
√
n, we obtain that E [ξn]m = 1 + o(1). Therefore (A.16)

follows from (4.9).
We now prove uniform integrability of the family (Θn,rn,sn

µn (ξ̄n, . . . , ξ̄nm))n≥1. Again, by

the generalised Scheffé lemma [19, Theorem 5.12], since Θn,rn,sn
µn (ξ̄n1 , . . . , ξ̄

n
m)

p→ 1 it suffices

to show that E
[
Θn,rn,sn

µn (ξ̄n1 , . . . , ξ̄
n
m)
]
→ 1 as n → ∞. By Proposition A.4 with f ≡ 1,

E
[
Θn,rn,sn

µn (ξ̄n1 , . . . , ξ̄
n
m)
]

= P

{
N ≥ m τrn(Σ) > m

∣∣∣∣ n∑
i=rn+1

ξni = n− 1 − sn

}
, (A.17)

where Σ = ΣZ⃗ with

Z⃗ = (Z1, . . . , Zn) = (d1, . . . , drn , ξ
n
rn+1, . . . , ξ

n
n)

such that d1 = sn, and d2, . . . drn = 0. (Indeed, any fixed choice of d1, . . . , drn with∑rn
i=1 di = sn would suffice.) To see that the probability on the right-hand side of (A.17)

tends to 1 as n → ∞, first note that N
d
= Binomial(n− rn, 1−µ0) where rn < nε. So even

after conditioning on the event {
∑n

i=rn+1 ξ
n
i = n− 1 − sn}, which occurs with probability

O(n−1/2), there are (1+oP(1))(n−rn)(1−µ0) non-zero entries of (ξnrn+1, . . . , ξ
n
n). Therefore,

to prove uniform integrability it remains to show that τrn(Σ) = ωP(
√
n).

To see this, observe that for any k ∈ [n],

P
{
τrn(Σ) = k + 1 | (ZΣ(1), . . . , ZΣ(k)), τrn(Σ) ≥ k

}
=

sn∑n
i=k+1 ZΣ(i)

.

Since Z⃗ contains (1 + oP(1))(n − rn)(1 − µ0) + 1 positive entries, this denominator is
(1 +oP(1))(n− rn)(1−µ0) + 1 uniformly over all k ≤ m = O(

√
n), and all labeled random

reorderings of Z⃗. Moreover, since sn = o(
√
n) by assumption,

P {τrn(Σ) = k + 1 | τrn(Σ) ≥ k} = o(n−1/2),

uniformly across all k ≤ m. The claim follows by summing these probabilities over k ≤ m,
since by the above P {τrn(Σ) > k} = (1 − o(n−1/2))k, and in particular for T > 0,

P
{
τrn(Σ) > T

√
n
}

= (1 − o(n−1/2))T
√
n, (A.18)

which tends to 1 as n → ∞. □

A.3. Remaining results. To control the restrictions of the discrete snake introduced in
the proofs of Theorems 1.1, 1.3 and 1.4 we require a couple of technical lemmas. The
first of these results shows that if we truncate the displacements of the discrete snake by
n1/(4−η)−δ, then the global moments agree with assumption [A1] in the limit.
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Fix η ∈ (0, 2], and δ ∈ (0, 1/(4 − η)). For n ≥ 1, and k ≥ 1 let

Y n,δ
k = (Y n,δ

k,1 , . . . , Y
n,δ
k,k ) =

{
(Yk,1, . . . , Yk,k) if max1≤j≤k |Yk,j | ≤ n1/(4−η)−δ

0 else.

Lemma A.11. It holds that∣∣∣E [Y n,δ

ξ̄,Uξ̄

]∣∣∣ = O
(

(n1/(4−η)−δ)1−2(4−η)/3
)
.

and furthermore as n → ∞,

Var
(
Y n,δ

ξ̄,Uξ̄

)
→ β2.

Proof. First, observe that by Hölder’s inequality, there exists a constant c > 0 such that

P

{
max
1≤i≤ξ̄

|Yξ̄,i| > y

}
≤ E

[
ξ3
]1/3

P

{
max
1≤i≤ξ

|Yξ,i| > y

}2/3

≤ cy−2(4−η)/3.

Then, by global centering∣∣∣E [Y n,δ

ξ̄,Uξ̄

]∣∣∣ =
∣∣∣E [Yξ̄,Uξ̄

1[max1≤i≤ξ̄ |Yξ̄,i|>n1/(4−η)−δ]

]∣∣∣
≤
∫ ∞

0
P
{∣∣∣Yξ̄,Uξ̄

1[max1≤i≤ξ̄ |Yξ̄,i|>n1/(4−η)−δ]

∣∣∣ > y
}
dy

≤ n1/(4−η)−δP

{
max
1≤i≤ξ̄

|Yξ̄,i| > n1/(4−η)−δ

}
+

∫ ∞

n1/(4−η)−δ

P

{
max
1≤i≤ξ̄

|Yξ̄,i| > y

}
dy

≤ cn1/(4−η)−δ(n1/(4−η)−δ)−2(4−η)/3 − c

2(4 − η)/3 − 1

[
y−2(4−η)/3+1

]∞
n1/(4−η)−δ

= O
(

(n1/(4−η)−δ)1−2(4−η)/3
)
,

as claimed.
As for the variance,

Var
(
Y n,δ

ξ̄,Uξ̄

)
= E

[(
Y n,δ

ξ̄,Uξ̄

)2]
−
(
E
[
Y n,δ

ξ̄,Uξ̄

])2
= E

[
Y 2
ξ̄,Uξ̄

1[max1≤i≤ξ̄ |Yξ̄,i|≤n1/(4−η)−δ]

]
− E

[
Yξ̄,Uξ̄

1[max1≤i≤ξ̄ |Yξ̄,i|≤n1/(4−η)−δ]

]2
→ E

[
Y 2
ξ̄,Uξ̄

]
= β2,

as n → ∞, by dominated convergence and the result for the mean. □

The above lemma pertains to snakes where the displacements which are above n1/(4−η)−δ

are all set to 0. The next lemma in this section will help us to understand the asymptotics
of the head of the discrete snake where displacements which are below n1/(4−η)−δ are set
to 0. More specifically, we present a tail bound for the size of a set of marked vertices
in random trees, which we apply in Proposition 5.5 where the marked vertices pertain to
vertices v ∈ v(Tn) \ ∂Tn for which ∥Y (v)∥∞ > n1/(4−η)−δ.

Lemma A.12. Let d = (d1, . . . , dn) be a degree sequence, fix B ⊂ [n] and write K = |B|,
and ∆ = max1≤i≤n di. Let Bd be the smallest distance between two vertices in B that
are ancestrally related in Td = B(Πd) (with Bd = ∞ if no vertices in B are ancestrally
related). Then, for any b ≥ 0

P {Bd ≤ b} ≤ K

(
1 −

(
1 − K∆

n− 1 − b∆

)b
)
.



72 L. ADDARIO-BERRY, S. DONDERWINKEL, C. GOLDSCHMIDT, AND R. MITCHELL

Proof. It suffices to show the statement for integer b since for general b, P {Bd ≤ b} =
P {Bd ≤ ⌊b⌋} and the upper bound is increasing in b.

Fix a degree sequence and a set B. Without loss of generality, assume that B = {n −
K + 1, . . . , n}.

For v ∈ [n], let p(v) be the parent of v in Td (with p(v) = v if v is the root of Td). Also
set p0(v) = v and recursively for k ≥ 1 define the k-th ancestor of v as pk(v) = p(pk−1(v)).

We will show that

P
{
{p1(n), . . . , pb(n)} ∩ {n−K + 1, . . . , n− 1} = ∅

}
≥
(

1 − K∆

n− 1 − b∆

)b

, (A.19)

after which the statement follows by symmetry and the union bound.
We will prove (A.19) by induction. To ease notation, write pk = pk(n) for k ≥ 0. For

(i, c) such that i ∈ [n], c ∈ [di] write Π−1
d (i, c) for the position of (i, c) in Πd.

We will define a sequence of σ-algebras (Fk)k≥0 such that for each k ≥ 1, Fk is the
σ-algebra generated by the first k ancestors of n and the positions of their corresponding
entries in Πd. Let, F0 = σ(Π−1

d (n, c) : c ∈ [dn]) contain the information on the position of
vertex n in Πd.

If dn = 0 and {Π−1
d (n, c) : c ∈ [dn]} = ∅ then n is the final vertex in the final path of the

line-breaking construction, and the last entry of Πd gives its parent. Thus, in this case,
we reveal Πd(n− 1) and we have Πd(n− 1) = (p1, c′) for some c′ ∈ [dp1 ]. Then, we reveal

all other entries of the form (p1, c), c ∈ [dp1 ] in Πd and this yields F1.

If dn > 0, then set m0 = min{Π−1
d (n, c) : c ∈ [dn]}. If m0 = 1 then n is the root of Td

so pℓ = n for all ℓ ≥ 1, and so we let Fℓ = F0 for all ℓ ≥ 1. Otherwise, the entry before
the first occurrence of an entry of the form (n, c), c ∈ [dn] in Πd gives the parent of n so
then we obtain F1 as follows. We reveal Πd(m0 − 1). In that case Πd(m0 − 1) = (p1, c′)
for some c′ ∈ [dp1 ]. Secondly, we reveal all other entries of the form (p1, c), c ∈ [dp1 ] in Πd

and this yields F1.
For k ≥ 1, given Fk, let

mk = min{Π−1
d (pk, c) : c ∈ [dpk ]}.

If mk = 1 then pk is the root of Td so pℓ = pk and we take Fℓ = Fk for all ℓ ≥ k. If mk > 1,
we obtain Fk+1 as follows. First, we reveal Πd(mk−1). In that case Πd(mk−1) = (pk+1, c′)
for some c′ ∈ [dpk+1 ]. Secondly, we reveal all other entries of the form (pk+1, c), c ∈ [dpk+1 ]
in Πd and this yields Fk+1.

Now, observe that, for k ≥ 0, given Fk, the unrevealed entries of Πd occur in an order
given by a uniformly random permutation. So given Fk if mk > 1 the k-th ancestor of n
is the first coordinate of a uniformly random sample from

{(i, c) : i ∈ [n]\{p0, . . . , pk}, c ∈ [di]}
and

P
{
pk+1 ∈ {n−K + 1, . . . , n− 1}

∣∣∣ Fk, {p1, . . . , pk} ∩ {n−K + 1, . . . , n− 1} = ∅
}

=
dn−K+1 + · · · + dn−1

n− 1 −
∑k

i=0 dpi
≤ K∆

n− 1 − (k + 1)∆
.

If mk = 1 then the conditional probability above is 0 so the inequality also holds.
Therefore, we see inductively that

P
{
{p1, . . . , pb} ∩ {n−K + 1, . . . , n− 1} = ∅

}
≥

b∏
k=1

(
1 − K∆

n− 1 − k∆

)

≥
(

1 − K∆

n− 1 − b∆

)b

. □



DISCRETE SNAKES WITH GLOBALLY CENTERED DISPLACEMENTS 73

We finally prove the “only if” statements in Corollaries 1.7 and 1.8.

Lemma A.13. Suppose that µ = (µk)k≥1 is a critical offspring distribution with variance
σ2 ∈ (0,∞), and y4P {ξ > y} ̸→ 0 as y → ∞. Then the convergence statements in
Corollaries 1.7 and 1.8 do not hold.

Proof. It suffices to show that there exists ϵ > 0 such that P
{

max1≤i≤nD
n
i > ϵn1/4

}
̸→ 0

as n → ∞, since then (at least down a subsequence (nk)) with positive probability some

vertex has a displacement which shows up on the scale of n1/4. Our proof of this is requires
a case analysis depending on whether or not E

[
ξ3
]

is finite.

First suppose E
[
ξ3
]

= ∞. Fix ϵ ∈ (0, 1/24); then P
{
ξ > n1/3−ϵ

}
≥ n−(1−ϵ) for infin-

itely many n. Since n1/3−ϵ > n1/4, for such n we have

P

{
max
1≤i≤n

ξi ≤ n1/4

}
≤
(

1 − 1

n1−ϵ

)n

≤ e−nϵ
,

and since P {
∑n

i=1 ξi = n− 1} = Θ(n−1/2), it follows that

P

{
max
1≤i≤n

Dn
i ≤ n1/4

}
= P

{
max
1≤i≤n

ξi ≤ n1/4

∣∣∣∣∣
n∑

i=1

ξi = n− 1

}
= o(1) ,

as required.
Next suppose E

[
ξ3
]
< ∞. For any ϵ > 0, by assumption we have

nP
{
ξ > ϵn1/4

}
̸→ 0

as n → ∞. So there exist δ > 0 and a subsequence (nk) such that

nkP
{
ξ > ϵn

1/4
k

}
> δ

for all k ≥ 1. Now

P

{
max
1≤i≤n

Dn
i ≤ ϵn1/4

}
=

P
{

max1≤i≤n ξi ≤ ϵn1/4
}

P
{∑n

i=1 ξi = n− 1|max1≤i≤n ξi ≤ ϵn1/4
}

P {
∑n

i=1 ξi = n− 1}

=
(

1 − P
{
ξ > ϵn1/4

})n P
{∑n

i=1 ξi = n− 1|max1≤i≤n ξi ≤ ϵn1/4
}

P {
∑n

i=1 ξi = n− 1}
.

We now use that if X is a non-negative random variable with finite third moment, then
E
[
X1[X≥t]

]
→ 0 as t → ∞. Since E

[
X31[X≥t]

]
≥ tE

[
X21[X≥t]

]
and E

[
X31[X≥t]

]
≥

t2E
[
X1[X≥t]

]
, this implies that E

[
X21[X≥t]

]
= o(t−1) and E

[
X1[X≥t]

]
= o(t−2) as

t → ∞. Letting ξn be a random variable distributed as ξ conditional on ξ ≤ ϵn1/4, it follows
that |E [ξn]−1| = o(n−1/2) and |Var {ξn}−σ2| = o(n−1/4) and |E

[
(ξn)3

]
−E

[
ξ3
]
| = o(1)

as n → ∞. An application of the local limit theorem from Lemma A.3 then yields that

P
{∑n

i=1 ξi = n− 1|max1≤i≤n ξi ≤ ϵn1/4
}

P {
∑n

i=1 ξi = n− 1}
=

P {
∑n

i=1 ξ
n
i = n− 1}

P {
∑n

i=1 ξi = n− 1}
→ 1

as n → ∞. Along the subsequence (nk) we have(
1 − P

{
ξ > ϵn

1/4
k

})nk

≤ exp
(
−nkP

{
ξ > ϵn

1/4
k

})
≤ e−δ < 1

and the result follows. □
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