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Abstract

We introduce a generalization of Kingman’s coalescent on [n] that we call
the Kingman coalescent on a graph G = ([n], E). Specifically, we generalize
a forest valued representation of the coalescent introduced in [ABE18]. The
difference between the Kingman coalescent on G and the normal Kingman co-
alescent on [n] is that two trees T1, T2 with roots ρ1, ρ2 can merge if and only
if {ρ1, ρ2} ∈ E. When this process finishes (when there are no trees left that
can merge anymore), we are left with a random spanning forest that we call
a Kingman forest of G. In this article, we study the Kingman coalescent on
Erdős-Rényi random graphs, Gn,p. We derive a relationship between the King-
man coalescent on Gn,p and uniform random recursive trees, which provides
many answers concerning structural questions about the corresponding King-
man forests. We explore the heights of Kingman forests as well as the sizes of
their trees as illustrative examples of how to use the connection. Our main re-
sults concern the number of trees, Cn,p, in a Kingman forest of Gn,p. For fixed
p ∈ (0, 1), we prove that Cn,p converges in distribution to an almost surely
finite random variable as n → ∞. For p = p(n) such that p → 0 and np → ∞
as n → ∞, we prove that Cn,p converges in probability to 2(1−p)

p
.

1 INTRODUCTION

1.1 DEFINITIONS AND RESULTS

Let G be a finite graph with |V(G)| = n. A rooted spanning forest of G is a set
{Tj, j ∈ [k]} of vertex-disjoint, rooted subtrees of G with ∪k

i=1V(Ti) = V(G). For a
rooted tree T we write ρ(T) to denote the root of T . We always view the edges of a
rooted tree as directed towards the root.

The Kingman coalescent on G is defined as follows. Let f0 be the empty rooted
spanning forest of G, with n elements, each of which is a rooted tree of size 1. For
i ≥ 0, if {ρ(T) : T ∈ fi} is an independent set in G, then set fi+1 = fi. Other-
wise, there exists at least one edge connecting distinct roots of trees in fi; choose
one such edge {ρ(T), ρ(T ′)} uniformly at random, orient it uniformly at random as
(ρ(T), ρ(T ′)), and add it to fi to form fi+1. The unique tree in fi+1 \ fi has vertex
set v(T) ∪ v(T ′) and root ρ(T ′). Note that fm = fn−1 for all m ≥ n − 1. We write
F(G) = fn−1 for the final forest built by the process, which we call the Kingman
forest of G, and we write (fi, i ≥ 0)

d
= KINGMAN(G) for the process as a whole.
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Figure 1: A realization of the Kingman coalescent on the graph G. The oriented
edges are those in the forest Fk. After the third edge is added to Fk, there are no
edges between the roots 2 and 5, so Fk = F3 for all k ≥ 3.

Note that if G = Kn is the complete graph with n vertices, then to form fi+1

from fi, a uniformly random pair of trees of fi is chosen and merged. In this case,
writing Πi for the partition of V(G) formed by the vertex sets of the trees of fi,
then (Πi, 0 ≤ i ≤ n − 1) is distributed as the (discrete time) Kingman’s coalescent
on a set of size n. As such, the above process expands the traditional definition of
Kingman’s coalescent to a collection of processes in which some coalescent events
may be forbidden.

In this paper, we study the structure and number of trees of F(G) when the un-
derlying graph G is an Erdős-Rényi random graph Gn,p for p ∈ (0, 1) fixed. Through-
out the paper, we let Cn,p denote the number of trees in F(Gn,p). Our main result is
the following theorem.

Theorem 1.1. There exists a family of random variables (Cp : p ∈ (0, 1)) such that

(i) Cn,p
d
−→ Cp and E[Cn,p] → E[Cp] as n → ∞ for any fixed p ∈ (0, 1); and

(ii) p
2(1−p)Cp

P
−→ 1 and p

2(1−p)E[Cp] → 1 as p → 0.

The main tools that we use in this proof also provide information in the case
when p → 0 as n → ∞.

Theorem 1.2. Choose p = p(n) such that p → 0 and np → ∞ as n → ∞. Then
(1−p)
2p Cn,p

P
−→ 1 and (1−p)

2p E[Cn,p] → 1 as n → ∞.
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Our analysis of KINGMAN(Gn,p) uses a coupling with the Kingman coalescent on
the complete graph, KINGMAN(Kn), which is possible by the symmetry and indepen-
dence of the existence of edges in Gn,p. This coupling, along with Theorem 1.1,
allows us to deduce several structural properties of the resulting Kingman forests
for the case when p is fixed. We state the following theorem about the asymptotic
behavior of tree sizes and heights as an illustrative example, but one could use the
same connection to derive information about many other statistics.

In a rooted forest F, we define the height of a vertex v, height(v), to be its graph
distance from the root of its tree. We set height(F) = maxv∈V(F) height(v), and call
this quantity the height of the forest. For a fixed k ≥ 0 and α1, ..., αk ∈ N, we say
that a random vector X = (X1, ..., Xk) has a Dirichlet distribution with parameters

α1, ..., αk, and write X
d
= Dirichlet(α1, ..., αk) if it has a density function

fX(t1, ..., tk) =
Γ
(∑k

j=1 αj

)
∏k

j=1 Γ(αj)

k∏
j=1

xαj−1

with respect to the Lebesgue measure on the unit simplex (t1, ..., tk), where Γ de-
notes the standard gamma function.

Theorem 1.3. For fixed p ∈ (0, 1), the following results hold.

(i) Let Xn = (|T1|, ..., |TCn,p |) be the sizes of the trees in F(Gn,p), listed in random

order. Then, ( 1nXn, Cn,p)
d
−→ (X,Cp) as n → ∞, where Cp is the random variable

from Theorem 1.1 and, conditionally given Cp, X has Dirichlet distribution with
parameters α1 = 1, . . . , αCp = 1, i.e., X has the uniform density fX(t1, ..., tCp) =

Γ (Cp)
∏Cp

j=1 t
0
j = Γ (Cp) on the unit simplex.

(ii) There exists K > 0 such that |E[height(F(Gn,p))] − e log(n) + 3
2 log log(n)| ≤ K

for all n. Moreover, it holds that height(F(Gn,p))
e log(n)

P
−→ 1 as n → ∞.

1.2 OUTLINE OF THE SECTIONS

In Section 2 we motivate the work done in this paper and cover some background
information on coalescing graph processes. In Section 3 we introduce and study the
edge reveal process, a coupling between the Kingman coalescent and the underly-
ing random graph that is key to our study of the Kingman coalescent. Section 4
is dedicated to proving Theorem 1.1 and 1.2. In Section 5 we describe the afore-
mentioned coupling with KINGMAN(Kn), and prove Theorem 1.3. In Section 6 we
provide proof of some bounds which are used in the proof of Theorems 1.1 and
1.2. Section 7 concludes the paper with some open questions and ideas for future
research.
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1.3 NOTATION

Before moving forward we pause to collect some notation. For x, y ∈ R, we define
x ∨ y := max{x, y} and x ∧ y := min{x, y}. The set N denotes the natural numbers
with 0 excluded, and Z≥0 = N ∪ {0}. For a set S and k ∈ Z≥0, we let

(
S
k

)
denote the

collection of all subsets of S of size exactly k. For k ∈ N, we write [k] := {1, ..., k}. For
an undirected graph G = (V, E) and a vertex v ∈ V, we define degG(v) = |{e ∈ E :
u ∈ e}|. We write E(G) to refer to the edge set of a graph G and V(G) to refer to its
vertex set. If we say “G is a graph on V”, we mean that G is a graph with V(G) = V.
For a graph G = (V, E) and e ∈

(
V
2

)
, we write G+e for the graph (V, E∪ {e}); if e ∈ E

then G + e = G. A rooted tree t = (V(t), E(t)) is increasing if V(t) ⊂ N and vertex
labels increase along any root-to-leaf path (equivalently, if every non-root vertex’s
label is strictly larger than that of its parent. Finally, ρ(F) is the set of all the roots
of trees in the rooted forest F.

We use d
= to denote distributional equality, d

−→ to denote convergence in distribu-
tion, and P

−→ to denote convergence in probability. For two random variables X and
Y, we say that X stochastically dominates Y, writing Y ⪯ X, if P(X ≥ x) ≥ P(Y ≥ x)

for all x ∈ R. For a finite set S, we say that X d
= Unif(S) if for all s ∈ S, P(X = s) =

|S|−1. We say that X is a geometric random variable with parameter p, and write

X
d
= Geo(p), if P(X = k) = (1−p)kp for k ∈ Z≥0. We say that X has a negative bino-

mial distribution with parameters r ∈ N and p ∈ (0, 1], and write X
d
= N-Bin(r, p),

if P(X = k) =
(
k+r−1

k

)
(1 − p)kpr for k ∈ Z≥0. We say that X has a hypergeometric

distribution with parameters n ∈ Z≥0,m ∈ [n], k ∈ [n], and write X
d
= HG(k,m,n),

if

P(X = j) =

(
m
j

)(
n−m
k−j

)(
n
k

) .

Throughout the article, we let Fn,k be the set of rooted forests on [n] with k

edges that are each given a unique label in [k], such that edge labels decrease along
all root-to-leaf paths. We let Gn,k denote the set of graphs on [n] with k edges.
For S ⊆ [n], we define GS,k to be the set of all graphs on S with k edges. We let
G(r)
n,k = ∪S⊆[n]:|S|=rGS,k be all graphs with k edges and a vertex set of size r drawn

from the set [n].

2 BACKGROUND AND MOTIVATIONS

An n-coalescent is a stochastic process (Pk)
∞
k=0 consisting of partitions of [n] =

{1, ..., n}, where P0 = {{1}, ..., {n}} and Pk+1 is derived from Pk by merging two distinct
portions A and B with probability proportional to some function κ(|A|, |B|). Three
particularly well studied examples are κ(x, y) = 1, κ(x, y) = x+y, and κ(x, y) = xy.
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These choices are referred to as Kingman’s coalescent, the additive coalescent, and
the multiplicative coalescent respectively [Kin82b, Pit99a, Ald97].

The study of n-coalescent processes has motivations coming from across the sci-
ences [Ber09]. Some of the early mathematical work on coalescent models was
due to Kingman [Kin82a, Kin82b], with motivation coming from the area of pop-
ulation genetics. Since then, coalescent processes have become part of the stan-
dard toolkit of population genetics for studying ancestral recombination graphs
[CSD25, NVD25]. For a second source of inspiration one can look towards statisti-
cal physics, where coalescent processes have naturally emerged within the study of
spin glasses [BS98, Pit99b, GM05].

The three coalescents mentioned above are often viewed as a sequence of forests
(Fk)

∞
k=0 on the vertex set [n] [AB15] with F0 being ([n], ∅). For the Kingman coales-

cent, the sequence exactly corresponds to KINGMAN(Kn). For the additive coales-
cent, we sample a uniform pair (x, y) such that y ∈ [n] and x is the root of a tree
in Fk that does not contain y. Then, Fk+1 is formed by adding the edge (x, y) to Fk,
which results in x no longer being a root. The multiplicative coalescent is typically
seen as a sequence of unrooted forests where Fk+1 is derived from Fk by adding a
uniform edge to Fk from among edges whose addition would not create a cycle.

Coalescent graph processes have frequently appeared in the random graph the-
ory literature. Various versions of the Kingman coalescent [Kin82b] have been
used to study recursively growing random trees via direct distributional equiva-
lences [DR76, ABE18, BBRKK25]. The additive coalescent has appeared naturally
in the study of uniform trees, as the forest valued version of the process produces
a tree that is distributed uniformly over all labelled trees [Pit99a, AB15]. The mul-
tiplicative coalescent has appeared in both the study of component sizes in criti-
cal Erdös-Rényi random graphs as well as the study of minimum spanning trees
[Ald97, ABBR09, ABBGM17].

These three coalescents have all been studied in depth when there are no “ex-
ternal” constraints, in the sense that all mergers permitted by the coalescent rule
in question are permitted. However, only a small amount of work has been put
towards understanding the forests that emerge when we add the restriction that all
edges must come from a set of allowed edges E, i.e., when we run the coalescents
on an underlying graph G. For all three coalescents, the size and structure of the
forests may be greatly affected by structure of the underlying graph, and this is a pri-
mary motivation for our investigation of the structure of KINGMAN(Gn,p). There is
some work on the structure of the multiplicative coalescent in non-complete geome-
tries, due its connection with minimum spanning trees [ABBGM17, ABS21, GPS18].
Thus far, we are unaware of any research into the structure of additive coalescents
on non-complete graphs.
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3 THE EDGE REVEAL PROCESS

When G
d
= Gn,p, there is a useful Markov chain which couples the construction

of KINGMAN(G) to a construction of G itself. We call this coupling the edge reveal
process; we shall use it to analyse the number of trees in KINGMAN(G).

3.1 DEFINITION AND DISTRIBUTIONAL IDENTITIES

Let B =
{
Be : e ∈

([n]
2

)}
be a collection of independent Ber(p) random variables, so

if E =
{
e ∈

([n]
2

)
: Be = 1

}
, then the graph ([n], E) is distributed like Gn,p. Indepen-

dent of B, let (ek)∞k=1 be a sequence of independent Unif
([n]
2

)
random variables. We

call B the bits of the edge reveal process and the sequence (ek)
∞
k=0 the queried pairs

of the edge reveal process. We set R0 = [n], F0 = ([n], ∅), and G0 = ([n], ∅). Then,
for k ≥ 0 we inductively define (Rk+1, Fk+1, Gk+1), and Lk+1 : E(Fk+1) → N, as:

(i) If Bek+1
= 0: set (Rk+1, Fk+1, Gk+1) = (Rk, Fk, Gk).

(ii) If Bek+1
= 1 and ek+1 ̸⊆ Rk: Set (Rk+1, Fk+1, Gk+1) = (Rk, Fk, Gk + ek+1). (Note

that ek+1 may already be in Gk; the graph does not change in this case).

(iii) If Bek+1
= 1 and ek+1 ⊆ Rk: let Ok+1 = (uk+1, vk+1) be a uniformly random

orientation of ek+1. Define (Rk+1, Fk+1, Gk+1) = (Rk\uk+1, Fk+Ok+1, Gk+ek+1)
and let Lk+1 be such that Lk+1(ej) = |E(Fj)| + 1 for all 1 ≤ j ≤ k + 1. (Note
that with this labelling convention, the labelled forests (Fk, Lk) are elements
of Fn,|E(Fk)|).

We write (Rk, Fk, Gk)
∞
k=0

d
= ERP(n, p). This sequence is infinite, though once all

pairs in
([n]
2

)
have been queried, the sequence never changes. Let τ0 = 0, and

let τk = inf{j > τk−1 : Fj ̸= Fj−1} for all k ≥ 0 be the times when updates of
type (iii) happen (note that these times can be infinite). The snapshots of the se-
quence (Rk, Fk, Gk) at the times τ0, ..., τn−1 are the main points of interest. We call
τ0, ..., τn−1 the coalescing times of ERP(n, p).

Lemma 3.1. Let (Rk, Fk, Gk)
∞
k=0

d
= ERP(n, p) and set F∗k = Fτk∧τk∗ for all 0 ≤ k ≤ ∞.

Then, (F∗k)
∞
k=0

d
= KINGMAN(Gn,p).

Proof. The forest F∗τj+1∧τk∗
is obtained from F∗τj∧τk∗

by adding a single new edge that
is sampled uniformly from the set{

e ∈
(
[n]

2

)
: e ⊆ ρ(Fτj−1

), Be = 1

}
,

with uniformly random orientation. This is exactly the rule for how the edges are
added for the Kingman coalescent. Since each bit Be is Ber(p) distributed, we have(
[n], {e ∈

([n]
2

)
: Be = 1}

) d
= Gn,p. Thus, (F∗k)

∞
k=0

d
= KINGMAN(Gn,p).
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For the next lemma we introduce the complement process of ERP(n, p), which is
the sequence (G∗

k)
∞
k=0 given by G∗

k = (ρ(Fk), {e1, ..., ek} ∩
(
ρ(Fk)
2

)
\ E(Gk)). The vertex

set of G∗
k is the set of roots of Fk; its edges are exactly the pairs of roots that have

been queried by time k and are not in Gk. That is, all the edges in G∗
k that have been

“verified” to not be in the underlying graph by time k. We often refer to edges that
have Be = 0 (and thus, all edges in G∗

k for any k ≥ 0) as the non-edges of the edge
reveal process, and we see updates of type (i) as revealing a non-edge.

In Section 4, we use the sequence (G∗
k)

∞
k=0 to study the number of trees in a

Kingman forest of Gn,p. A very useful property for this purpose is that Fk and G∗
k

are each uniformly random conditional on their number of edges. In particular, this
implies that their structure is uniform at coalescing times.

Lemma 3.2. Let (Rk, Fk, Gk)
∞
k=0

d
= ERP(n, p). Let

S(m, ℓ) =
{
(f, g) : f ∈ Fn,m, g ∈ Gρ(f),ℓ

}
.

Then for any 0 ≤ m+ ℓ ≤ k and any (f, g) ∈ S(m, ℓ), we have

P
(
Fk = f, G∗

k = g
∣∣ |E(Fk)| = m, |E(G∗

k)| = ℓ
)
=

1

|S(m, ℓ)|
.

Thus,

(i) for any f ∈ Fn,m with m ≤ k, P(Fk = f | |E(Fk)| = m) = 1/|Fn,m|; and

(ii) for any g ∈ G(r)
n,m with m ≤ k, P(G∗

k = g | |E(G∗
k)| = m, |Rk| = r) = 1/|G(r)

n,m|.

Proof. We prove the first identity via induction on k. Instead of showing it directly,
we argue that P(Fk = f, G∗

k = g) = P(Fk = f̂, G∗
k = ĝ) for any (f, g), (f̂, ĝ) ∈ S(m, ℓ)

with m, ℓ ≥ 0 arbitrary. The base case is immediate as F0 and G∗
0 are deterministic.

Suppose that the identity holds for some k ≥ 0, and let f, g ∈ S(m, ℓ) for some
arbitrary m, ℓ ≥ 0. Let (u, v) be the edge in f of largest label. Consider the event
{Fk+1 = f,G∗

k+1 = g}. Exactly one of the three following (disjoint) events must occur
if {Fk+1 = f,G∗

k+1 = g} is to occur:

(i) (Fk, G
∗
k) = (f, g): In this case we have that (Fk+1, G

∗
k+1) = (f, g) if and only if

ek+1 ∈ E(f) ∪ E(g) ∪
([n]\ρ(f)

2

)
.

(ii) (Fk, G
∗
k) = (f \ (u, v), g ′), where g ′ is a graph on the vertex set ρ(f) ∪ {u} and

edge set E(g) ∪ S for S ⊆ {{u,w} : w ∈ ρ(f) \ {u, v}}: In this case we have that
(Fk+1, G

∗
k+1) = (f, g) if and only if ek+1 = {u, v}, B{u,v} = 1, and the orientation

chosen for the edge is Ok+1 = (u, v).

(iii) (Fk, G
∗
k) = (f, g\e) for some e ∈ E(g): In this case we have that (Fk+1, G

∗
k+1) =

(f, g) if and only if ek+1 = e and Be = 0.
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By the definition of the edge reveal process, one can see that there are no other
possibilities for (Fk, G

∗
k) which allow for (Fk+1, G

∗
k+1) = (f, g) to occur. Denote the

set of graphs g ′ in (ii) by S(g), and note that |V(g ′)| = |V(g) ∪ {u}| = m + 1 for all
g ′ ∈ S(g). Let

A(f, g) = {(Fk, G
∗
k) = (f, g)}

⋂{
ek+1 ∈ E(f) ∪ E(g) ∪

(
[n] \ ρ(f)

2

)}
,

B(f, g) =
⋃

g ′∈S(g)

{
(Fk, G

∗
k) = (f \ (u, v), g ′)

}
∩
{
ek+1 = {u, v}, B{u,v} = 1, Ok+1 = (u, v)

}
,

C(f, g) =
⋃

e∈E(g)

{
(Fk, G

∗
k) = (f, g \ e)

}
∩ {ek+1 = e, Be = 0}

be the events from (i), (ii), and (iii). Then,

P(Fk = f, G∗
k = g) = P(A(f, g)) + P(B(f, g)) + P(C(f, g)).

Via explicit counting, we obtain the following identities:

P(A(f, g)) = P(Fk = f, G∗
k = g)P

(
ek+1 ∈ E(f) ∪ E(g) ∪

(
[n] \ ρ(f)

2

))
= P(Fk = f, G∗

k = g)
|E(f)|+ |E(g)|+

(
n−|ρ(f)|

2

)(
n
2

) ,

P(B(f, g)) =
∑

g ′∈S(g)

P(Fk = f, G∗
k = g ′)P(ek+1 = {u, v}, B{u,v} = 1, Ok+1 = (u, v))

=
∑

g ′∈S(g)

P(Fk = f, G∗
k = g ′) · p

2
(
n
2

) ,
P(C(f, g)) =

∑
e∈E(g)

P(Fk = f, G∗
k = g \ e)P(ek+1 = e, Be = 0)

= |E(g)| · P(Fk = f, G∗
k = g \ e) · 1− p(

n
2

) .

From here, induction yields that P(A(f, g)) = P(A(f̂, ĝ)) and P(C(f, g)) = P(C(f̂, ĝ))
for any other pair (f̂, ĝ) ∈ S(m, ℓ). For B(f, g), to see that P(B(f, g)) = P(B(f̂, ĝ)), we
remark that there are exactly

(
n−m

j

)
graphs g ′ ∈ S(g) such that |E(g ′)| = |E(g)| + j

for all 0 ≤ j ≤ k − 1. Since this does not depend on the structure of g, only on its
numbers of vertices and edges, we can apply the inductive hypothesis again to get
that P(B(f, g)) = P(B(f̂, ĝ)).

The first identity in the lemma follows from the fact that P(Fk = f, G∗
k = g) =

P(Fk = f ′, G∗
k = g ′) for all (f, g), (f ′, g ′) ∈ S(m, ℓ). The second and third identities

follow straightforwardly from the first and the fact that P((Fk, G∗
k) ∈ S(m, ℓ)) > 0 if

m+ ℓ ≤ k.
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3.2 EDGE COUNTS AND MONOTONICITY IN THE COMPLEMENT PROCESS

Tracking the number of edges in the complement process of ERP(n, p), which we
do in Section 4, is a key part of the analysis of the number of trees in F(Gn,p). Write
Nk = |E(G∗

k)|. Since Nk is the number of pairs in
(
Rk

2

)
that have been verified to be

non-edges by step k, if Nk =
(
Rk

2

)
then the edge reveal process has terminated in

the sense that Fk = Fj for all j ≥ k. Let K∗ = inf{k ≥ 0 : Nk ≥
(
Rk

2

)
}. We define

(Mk)
n−1
k=0 := (Nτk∧K∗)n−1

k=0 , which we call the edge count walk of the edge reveal
process. By Lemma 3.1 and the discussion above, if J∗ := inf{j ≥ 0 : Mj ≥

(
n−j
2

)
},

then n−J∗+1
d
= Cn,p. The plus one appears because in the step where we terminate,

a vertex does not get removed.
We now turn our attention to describing a single step, Mk+1 −Mk, of the edge-

count walk. First suppose that τk < ∞. For all 0 ≤ k ≤ n − 2, let Sk = {τk +
1, ..., K∗ ∧ (τk+1)} and let

Xk =

∣∣∣∣{j ∈ Sk : ej ∈
(
Rτk

2

)
, Bej = 0, ej /∈ {e1, ..., ej−1}

}∣∣∣∣ ,
The random variable Xk is precisely the number of pairs that are verified to be non-
edges between times τk and K∗ ∧ τk+1, so if |E(G∗

τk
)| <

(
n−k
2

)
then K∗ ∧ τk+1 > τk

and Xk = |E(GK∗∧τ∗k+1−1)| − |E(G∗
τk
)|. On the other hand, if |E(G∗

τk
)| =

(
n−k
2

)
then

either τk = ∞ or else K∗ = τk, and in either case Xk = 0. Moreover, provided
that |E(G∗

τk
)| <

(
n−k
2

)
, by the definition of the process, the number of pairs that are

verified to be non-edges between times τk and K∗ ∧ τk+1 is distributed as a Geo(p)
random variable truncated at

(
n−k
2

)
− |E(G∗

τk
)|.

Let Yk = degG∗
(τk+1−1)

(uk+1)1{τk+1<∞}, where uk+1 is the tail of the oriented edge

Ok+1. When τk+1 = ∞, Yk is defined to be zero, and so the fact that the orientation
Ok+1 doesn’t exist is not a problem for the definition. When τk = ∞ we set Xk =
Yk = 0. By the definition of the edge reveal process we have that Mk+1 = Mk+Xk−
Yk for all 0 ≤ k ≤ n− 2.

Lemma 3.3. For all 0 ≤ k ≤ n− 2 we have the following:

(i) Conditionally given Mk, Xk is a Geo(p) random variable truncated at
(
n−k
2

)
−

Mk.

(ii) Conditionally given Mk and Xk, Yk is distributed like

HG
(
n− k− 2,Mk + Xk,

(
n− k

2

)
− 1

)
1
{Mk+Xk≤(n−k

2 )−1}
. (1)

Proof. The first identity was verified prior to the proof, so we only need to prove the
second one. For this, note that that τk+1 = ∞ if and only if Xk ≥

(
n−k
2

)
− Mk and

that no vertex is removed from the complement process after time τk if τk+1 = ∞.
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Since Yk = degG∗
(τk+1−1)

(uk+1)1{τk+1<∞}, this fact explains the indicator in (1). When

Xk <
(
n−k
2

)
− Mk, it holds that τk+1 < ∞. Letting eτk+1

= {u, v}, by Lemma 3.2,
conditionally given Mk and Xk, G∗

(τk+1−1) is distributed uniformly over the set{
g ∈ G(n−k)

n,Mk+Xk
: {u, v} /∈ g

}
.

From here, recalling the well known fact that the degree of a typical vertex in a
graph drawn uniformly from G(r)

n,k has a HG(k, n−1,
(
n
2

)
) distribution justifies the first

factor in (1), as we are conditioning on the edge {uk+1, vk+1} to not be in G∗
(τk+1−1).

Using the relationship between Mk, Xk, and Yk that is derived in Lemma 3.3 we
can show that the edge count walk is monotone with respect to n.

Lemma 3.4. Let m ≤ n, and let (M(n)
k )n−1

k=0 and (M
(m)
k )m−1

k=0 be the edge count walks
for two edge reveal processes, ERP(n, p) and ERP(m,p) respectively. Then, M(m)

k ⪯
M

(n)
k+(n−m) for all 0 ≤ k ≤ m− 1.

In the proof of the above lemma, we use the following property about hyperge-
ometric random variables.

Lemma 3.5. X
d
= HG(k,m,n) and Y

d
= HG(k,m ′, n), where 0 ≤ m ≤ m ′ ≤ n. Then,

m− X ⪯ m ′ − Y.

Proof. Consider a population of n balls, with m coloured red, m ′−m coloured blue,
and the rest coloured black. Draw k balls from the population without replacement
and let X be the number of red balls drawn and Y the number of red or blue balls
drawn. Then, Y − X ≤ m ′ −m, and so m− X ≤ m ′ − Y.

Proof of Lemma 3.4. Let the coalescing times of the respective processes be (τ
(n)
k )n−1

k=0

and (τ
(m)
k )m−1

k=0 . The argument proceeds via induction, with the base case being
immediate from the fact that M

(m)
0 = 0 deterministically. Suppose that M

(m)
k ⪯

M
(n)
k+(n−m) for some 0 ≤ k ≤ m − 2. Let (X

(n)
k , Y

(n)
k )n−1

k=0 and (X
(m)
k , Y

(m)
k )m−1

k=0 be
defined as before Lemma 3.3 for ERP(n, p) and ERP(m,p) respectively.

First suppose that τ(n)
k+(n−m) = ∞. In this case, we have M

(n)
k+1+(n−m) = M

(n)
k+(n−m) ≥(

m−k
2

)
. If τ(m)

k = ∞, then we can, by induction, take a coupling such that M(m)
k+1 =

M
(m)
k ≤ M

(n)
k+(n−m) = M

(n)
k+1+(n−m). If τ(m)

k < ∞, then we necessarily have M
(m)
k+1 ≤(

m−k
2

)
≤ M

(n)
k+1+(n−m).

Now assume τ
(n)
k+(n−m) < ∞ (and hence, τ(m)

k < ∞ as well). Recall from Lemma

3.3 that, under this conditioning, X(m)
k is distributed like G ∧ (

(
m−k
2

)
− M

(m)
k ) and
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X
(n)
k+(n−m) like G ∧ (

(
m−k
2

)
− M

(n)
k+(n−m)) for G

d
= Geo(p) sampled independently

of M
(m)
k and M

(n)
k+(n−m). Take some coupling where M

(m)
k ≤ M

(n)
k+(n−m) and let

G
d
= Geo(p) be independent. Then we have

M
(n)
k+(n−m) + X

(n)
k+(n−m)

=M
(m)
k + (M

(n)
k+(n−m) −M

(m)
k ) +G∧

((
m− k

2

)
−M

(m)
k − (M

(n)
k+(n−m) −M

(m)
k )

)
≥M

(m)
k + (M

(n)
k+(n−m) −M

(m)
k ) +G∧

((
m− k

2

)
−M

(m)
k

)
− (M

(n)
k+(n−m) −M

(m)
k )

=M
(m)
k + X

(m)
k ,

proving that M(m)
k + X

(m)
k ⪯ M

(n)
k+(n−m) + X

(n)
k+(n−m).

If τ
(m)
k+1 = ∞, then τ

(n)
k+1+(n−m) = ∞ as well and so Y

(m)
k = Y

(n)
k+(n−m) = 0,

which would complete the proof. If τ
(n)
k+1+(n−m) = ∞ and τ

(m)
k+1 < ∞, then we

can similarly finish the proof immediately as Y
(m)
k ≥ Y

(n)
k+(n−m) = 0 in this case.

Hence, we can suppose that τ
(m)
k+1, τ

(n)
k+1+(n−m) < ∞. In this case, conditionally

given M
(m)
k , M(n)

k+(n−m), X
(m)
k , and X

(n)
k+(n−m), we have that Y(n)

k+(n−m)

d
= HG(m − k −

2,M
(n)
k+(n−m)+X

(n)
k+(n−m),

(
m−k
2

)
) and Y

(n)
k

d
= HG(m−k−2,M

(m)
k +X

(m)
k ,

(
m−k
2

)
). Since

M
(n)
k+1+(n−m) = (M

(n)
k+(n−m)+X

(n)
k+(n−m))−Y

(n)
k+(n−m) and M

(m)
k+1 = (M

(m)
k +X

(m)
k )−Y

(m)
k ,

the result then follows from Lemma 3.5.

Recall the fact, stated in discussion at the start of this subsection, that Cn,p
d
=

n − J∗ + 1, where J∗ := inf{j ≥ 0 : Mj ≥
(
n−j
2

)
}. Combining these definitions with

the above lemma directly implies an important monotonicity result for the Kingman
coalescent on Gn,p.

Corollary 3.6. Let n ≥ m ≥ 0. Then, Cm,p ⪯ Cn,p.

4 THE NUMBER OF TREES IN F(Gn,p)

In this section, we prove Theorems 1.1 and 1.2. By definition, obtaining results
on the number of trees is essentially equivalent to obtaining results on J∗, which
requires some bounds on (Mk)

n−1
k=0 . We postpone the proofs until Section 6, though

we record the results now. For the rest of the paper, we introduce the notation
K−
p,ϵ = ⌊ 2(1−ϵ)(1−p)

p ⌋ and K+
p,ϵ = ⌈ 2(1+ϵ)(1−p)

p ⌉.

Lemma 4.1. For any η, ϵ, δ ∈ (0, 1), there exist C, L, c > 0 such that the following
hold:
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(i) Fix p ∈ (0, η) and integers n and ℓ such that n ≥ ℓ ≥ L∨ K+
p,ϵ. Then,

P

(
n−ℓ⋃
k=1

{
Mk ≥ (1+ ϵ)

(1− p)(n− k)

p

})
≤ Ce−cℓ.

(ii) For any n ≥ 0 and any p ∈ (0, η) such that K−
p,ϵ ≥ L, we have,

P
(
Mn−K−

p,ϵ
≤
(
K−
p,ϵ

2

))
≤ δ+

1

2ϵ

(
K+
p,ϵ − 1

n− 1

)
.

A brief computation shows that (1+ϵ)(1−p)(n−k)
p crosses above

(
n−k
2

)
around the

value k for which n − k = K+
p,ϵ. Thus, Lemma 4.1 tells us that J∗ is likely to be

between K−
p,ϵ and K+

p,ϵ for n large. Using Lemma 4.1 we can make this intuition into
a quantitative result.

Lemma 4.2. Let p = p(n) < 1 be such that np → ∞ as n → ∞ and lim supn→∞ p(n) <
1. For any δ, ϵ ∈ (0, 1), there exists L ≥ 0 such that, if lim infn→∞ K−

p,ϵ ≥ L, then

lim sup
n→∞

∣∣∣∣pE[Cn,p]

2(1− p)
− 1

∣∣∣∣ ≤ δ,

and

lim sup
n→∞ P

(∣∣∣∣Cn,p −
2(1− p)

p

∣∣∣∣ ≥ 2ϵ(1− p)

p

)
≤ δ.

Proof. Since Cn,p
d
= n− J∗ + 1, we have

E[Cn,p − 1] =

n−1∑
k=0

P(Cn,p ≥ k+ 1) =

n−1∑
k=0

P (J∗ ≤ n− k) . (2)

Using the definition of J∗, we obtain

E[Cn,p − 1] ≥
K−
p,ϵ∑

k=1

P

n−k⋃
j=0

{
Mj ≥

(
n− j

2

)} ≥ K−
p,ϵP

(
Mn−K−

p,ϵ
≥
(
K−
p,ϵ

2

))
. (3)

By Lemma 4.1 (ii), there exists L1 ≥ 0 such that for any n and p satisfying K−
p,ϵ ≥ L1

we have

P
(
Mn−K−

p,ϵ
≥
(
K−
p,ϵ

2

))
≥ 1− δ−

1

2ϵ

(
K+
p,ϵ − 1

n− 1

)
. (4)

Note that, by our assumptions on n and p, it holds that limn→∞ K−
p,ϵn

−1 = 0. Using
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this fact along with (3) gives

lim inf
n→∞ E[Cn,p − 1]

K−
p,ϵ

≥ lim inf
n→∞

(
1− δ−

1

2ϵ

(
K+
p,ϵ − 1

n− 1

))
= (1− δ),

whenever lim infn→∞ K−
p,ϵ ≥ L1. By increasing L1 if needed, using the definition of

K−
p,ϵ, we obtain the bound,

lim inf
n→∞ 2(1− p)E[Cn,p]

p
≥ (1− δ)2(1− ϵ). (5)

On the other hand, from (2) and the definition of Cn,p, we also have

E[Cn,p − 1] ≤ K+
p,ϵ +

n−1∑
k=K+

p,ϵ+1

P(Cn,p ≥ k+ 1) = K+
p,ϵ +

n−1∑
k=K+

p,ϵ+1

P
(
Mn−k ≥

(
k

2

))
.

Since, for k ≥ K+
p,ϵ + 1 we have(

k

2

)
≥ 1

2
kK+

p,ϵ =
(1+ ϵ)(1− p)k

p
, (6)

we can apply Lemma 4.1 (i) to obtain c, C, L2 ≥ 0 such that

E[Cn,p − 1] ≤ K+
p,ϵ + C

n∑
k=K+

p,ϵ+1

e−ck

for K+
p,ϵ ≥ L2. Evaluating the sum on the right side we obtain an L3 > 0 such that,

when K+
p,ϵ ≥ L3,

C

n∑
k=K+

p,ϵ+1

e−ck ≤ δK+
p,ϵ.

Hence, for K+
p,ϵ ≥ L2 ∨ L3 we have

lim sup
n→∞

E[Cn,p − 1]

K+
p,ϵ

≤ (1+ δ).

As before, we may increase L2 or L3 in order to obtain the bound,

lim sup
n→∞

2(1− p)E[Cn,p]

p
≤ (1+ δ)2(1+ ϵ). (7)

Given our freedom over the choice of δ and ϵ, the first result of Lemma 4.2 follows
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straightforwardly from combining (5) with (7).
The second result follows from a similar approach. Recalling (6), we have

lim sup
n→∞ P

(
Cn,p > K+

p,ϵ + 1
)
≤ lim sup

n→∞ P

 n⋃
k=K+

p,ϵ+1

{
Mn−k ≥ (1+ ϵ)(1− p)k

p

} .

Then, by Lemma 4.1 (i), we obtain c ′, C ′, L4 > 0 such that, for n ≥ ℓ ≥ L4,

lim sup
n→∞ P

 n⋃
k=K+

p,ϵ+1

{
Mn−k ≥ (1+ ϵ)(1− p)k

p

} ≤ C ′e−c ′K+
p,ϵ .

Since K+
p,ϵ ≥ K−

p,ϵ, there exists L5 > 0 such that when K−
p,ϵ ≥ L5 we have C ′e−c ′K+

p,ϵ ≤
δ, which establishes the claimed upper bound. For the lower bound we use (4)
along with the aforementioned fact that limn→∞ K−

p,ϵn
−1 = 0 to get the existence of

a constant L1 ≥ 0 such that, when lim infn→∞ K−
p,ϵ ≥ L1,

lim sup
n→∞ P(Cn,p ≤ K−

p,ϵ + 1) ≤ lim sup
n→∞ P

(
Mn−K−

p,ϵ
≤
(
K−
p,ϵ

2

))
≤ lim sup

n→∞
(
δ+

1

2ϵ

(
K+
p,ϵ − 1

n− 1

))
= δ.

Taking K−
p,ϵ ≥ L1 ∨ L4 ∨ L5 we obtain the desired result.

Equipped with Lemma 4.2, Theorems 1.1 and 1.2 follow without too much extra
effort. We restate Theorem 1.1 for reference:

Theorem. There exists a family of random variables (Cp : p ∈ (0, 1)) such that

(i) Cn,p
d
−→ Cp and E[Cn,p] → E[Cp] as n → ∞ for any fixed p ∈ (0, 1); and

(ii) p
2(1−p)Cp

P
−→ 1 and p

2(1−p)E[Cp] → 1 as p → 0.

Proof of Theorem 1.1. We only prove (i), as (ii) can be easily proven by simply com-
bining (i) with the previous lemma. By applying the second result in Lemma 4.2 we
see that, for fixed p, the sequence (Cn,p)

∞
n=0 is a tight family of random variables.

By Prokhorov’s Theorem, there is some subsequence (Cnk,p)
∞
k=0 and some random

variable Cp on N such that Cnk,p
d
−→ Cp as k → ∞ [Bil13]. The monotonicity from

Corollary 3.6 combined with the subsequential convergence implies that Cn,p
d
−→ Cp

as n → ∞.
Since the sequence (Cn,p)

∞
n=1 is such that Cm,p ⪯ Cn,p for all 0 ≤ m ≤ n by

Corollary 3.6, it follows from the monotone convergence theorem that E[Cn,p] →
E[Cp] as n → ∞. To see this, for each n ≥ 0 and k ≥ 1, let qn,k = P(Cn,p ≥ k) and
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set qk = P(Cp ≥ k). Let U d
= Unif[0, 1] and define random variables (Xn)

∞
n=0 and X

as follows:

Xn =

∞∑
k=1

k1{qn,k≤U<qn,k+1}, X =

∞∑
k=1

k1{qk≤U<qk+1}.

Note that, by definition, Xn
d
= Cn,p for all n ≥ 0 and that X

d
= Cp. By Corollary

3.6 it holds that Xm(ω) ≤ Xn(ω) for all 0 ≤ m ≤ n. By the fact that P(Cn,p ≥
k) → P(Cp ≥ k), we have that Xn(ω) ≤ X(ω) for all n ≥ 0. Moreover, Xn

a.s.
−−→ X as

n → ∞ since {
ω ∈ Ω : lim

n→∞Xn(ω) ̸= X(ω)
}
⊆ {q1, q2, ...}.

Now apply the monotone convergence theorem to conclude.

Since K−
p,ϵ → ∞ as n → ∞ whenever p → 0 as n → ∞, Theorem 1.2 follows

directly from Lemma 4.2.

5 STRUCTURAL PROPERTIES OF F(Gn,p)

Many statistics of the trees in a Kingman forest of a Gn,p can be determined by using
the useful connection between KINGMAN(Kn) and uniform random recursive trees,
which we briefly introduce now. The uniform random recursive tree process is an
infinite sequence of random rooted trees (Tn)∞n=1, where T1 consists of a root labelled
1, and Tn+1 is derived from Tn by attaching a vertex labelled n+1 to a uniform vertex
from Tn. The tree Tn is called a uniform random recursive tree of size n. Much is
known about the structural properties of Tn as n → ∞, including statistics like the
height, max degree, and profile [Dev87, Pit94, DL95, DF99, GS02, Jan05, FHN06,
Zha15]. It turns out [Dev87, ABE18, Esl22] that a Kingman forest of Kn, upon re-
labelling the vertices and edges in a way that we describe later, is distributed like
Tn. Since labellings do not affect the structure of the trees, this connection can
be leveraged to deduce information about label–independent properties of either
model by studying the other.

The uniform random recursive forest process with k trees is a sequence of forests
(Fn,k)

∞
n=k defined recursively. First, Fk,k is a graph with k roots labelled 1, ..., k and

no edges. Fn+1,k is derived from Fn,k by adding an directed edge from a new vertex
with the label n+1 to a uniformly chosen vertex in Fn,k. We write (Fn,k)

∞
n=k

d
= URRFk

and Fn,k
d
= URRFk(n).

Let f ∈ Fn,n−k. Suppose that its roots are x1 ≤ ... ≤ xk. For all i ∈ [n]\{x1, ..., xk},
let ℓf(i) be the label of the unique edge that has i as its tail. We define a new random
labelling of the vertices Lf : [n] → [n] as follows:

Lf(i) =

{
j, if i = xj

n− ℓf(i) + 1, if i /∈ {x1, ..., xk}
.
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Let Φ(f) be forest that is obtained from f by removing the edge labellings, and
relabelling the vertices by Lf.

1

2

3 4

5
3

21

3

1

5 4

2

Φ

Figure 2: A forest in F5,3 and its image under Φ.

Lemma 5.1. Let F d
= Unif(Fn,n−k). Then, Φ(F)

d
= URRFk(n).

Proof. Let Rn,k be the set of all forests on n vertices, with k trees, whose trees
are increasing. Simple inductive arguments on k show that |Rn,k| =

(n−1)!
(k−1)! , that

Fn,k
d
= Unif(Rn,k), and that |Fn,n−k| =

n!(n−1)!
k!(k−1)! . From these observations we conclude

that, to show the desired result, it suffices to show that Φ : Fn,n−k → Rn,k is an n!
k!

to 1 surjection.
Let f ∈ Rn,k. It is easy to see that |Φ−1(f)| > 0 by considering the forest obtained

by labelling each edge, (u, v), of f by n−u+ 1 and relabelling the non-root vertices
arbitrarily in the set [n] \ [k]. Then, observe that applying two distinct permutations
σ, τ to the vertex labels of any particular f ∈ Φ−1(f2) that satisfies σ(x1) ≤ ... ≤
σ(xk) and τ(x1) ≤ ... ≤ τ(xk) yields two distinct forests fσ and fτ that both are in
the set Φ−1(f2). From this observation, we get that |Φ−1(f2)| ≥ n!

k! (the number of
permutations that satisfy the described constraint).

Next, suppose that f2, f
′
2 ∈ Φ−1(f). Let x1, ..., xk and x ′

1, ..., x
′
k be the roots of

f2 and f ′2 respectively. We define a function σ : [n] → [n] as follows. First, we set
σ(xj) = x ′

j for all 1 ≤ j ≤ k. Then, for all i ∈ [n] \ {x1, ..., xk}, we set σ(i) to be the
unique vertex j in f ′2 such that ℓf2(i) = ℓf ′2(j). σ is clearly a bijection and is clearly
edge-label-preserving. If we can show that it is a graph isomorphism between f2
and f ′2, then it follows that |Φ−1(f)| ≤ n!

k! , and so |Φ−1(f)| = n!
k! .

By the symmetry of the two forests, to show that σ is an isomorphism, it suffices
to show that (σ(u), σ(v)) ∈ E(f ′2) for all (u, v) ∈ E(f2). By the definitions of σ and
Φ, we have that Lf2(u) = Lf ′2(σ(u)) and Lf2(v) = Lf ′2(σ(v)). Since Φ(f2) = f, it holds
that (Lf2(u), Lf2(v)) ∈ E(f), and so (Lf ′2(σ(u)), Lf

′
2
(σ(v))) ∈ E(f) as well. Since Lf ′2 is

just a relabelling of the vertices, we conclude that (σ(u), σ(v)) ∈ E(f ′2).

Now fix p ∈ (0, 1). From Lemma 3.2 (i), for n ∈ N we have that, conditional
upon Cn,p, F(Gn,p) is a uniform element of Fn,n−Cn,p . By Lemma 5.1, a uniform
element of Fn,n−Cn,p has the same graph structure as a uniform random recursive
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forest with Cn,p trees. We can use this fact to derive information about the structure
of F(Gn,p). First we cover the sizes of the trees in the forest.

Theorem 5.2. Fix p ∈ (0, 1) and let Xn = (|S1|, ..., |SCn,p |) be the sizes of the trees

in F(Gn,p). Then, ( 1nXn, Cn,p)
d
−→ (X,Cp) as n → ∞, where Cp is the random vari-

able from Theorem 1.1 and, conditional upon Cp, X has a Dirichlet distribution with
parameters α1 = ... = αCp = 1.

Proof. For all n ≥ k ≥ 0, let Y(k)
n = (Y

(k)
n,1, ..., Y

(k)
n,k) be distributed like the number of

balls of each colour 1, ..., k in a standard Pólya urn that is initialized with one ball of
each colour after (n−k) balls have been added to the system. Let Zk = (Zk,1, ..., Zk,k)
be a Dirichlet random variable with parameters α1 = · · · = αk = 1. By applying
Lemmas 3.2 and 5.1 it holds for any 0 ≤ x1, ..., xk ≤ n that

P (|S1| ≥ x1, ..., |Sk| ≥ xk | Cn,p = k) = P(Y(k)
n,1 ≥ x1, ..., Y

(k)
n,k ≥ xk). (8)

To see this simply note that, at any step of the uniform random recursive forest
process, the conditional probability that the process adds a vertex to a given tree is
exactly proportional to the size of the tree, so the vector of tree sizes in a sample
from URRFk(n) is distributed as Y

(k)
n . It is a well-known result from the theory of

Pólya urns (see e.g., [Pem07] Theorem 2.1 or [Mah08] Theorem 3.2) that, for any
0 ≤ x1, ..., xk ≤ 1,

P
(
1

n
Y
(k)
n,1 ≥ x1, ...,

1

n
Y
(k)
n,k ≥ xk

)→ P(Zk,1 ≥ x1, ..., Zk,k ≥ xk)

as n → ∞. By combining this convergence with Theorem 1.1 and (8) we get,

P
({

1

n
|S1| ≥ x1, ...,

1

n
|Sk| ≥ xk

}⋂
{Cn,p = k}

)→ P(Zk,1 ≥ x1, ..., Zk,k ≥ xk, Cp = k)

as n → ∞.

We finish this section by identifying the asymptotic height of F(Gn,p).

Theorem 5.3. The following two points hold:

(i) There exists a constant K > 0 such that

|E[height(F(Gn,p))] − e log(n) +
3

2
log log(n)| ≤ K

for all n ≥ 1.

(ii) We have, height(F(Gn,p))
e log(n)

P
−→ 1 as n → ∞.
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Proof. Let (Tm)
∞
m=1 be distributed as the uniform random recursive tree process.

Then, it is immediate from the respective definitions that ([m], E(Tm) \
([m]

2

)
)∞m=k

d
=

URRFk. This fact, in combination with Lemma 3.2 (i), implies that we can generate
F(Gn,p) by sampling Tn and Cn,p independently, then deleting the first Cn,p edges
from Tn. Since the deletion of all k−1 edges in

([k]
2

)
from a uniform random recursive

tree can at most reduce the height by k− 1, this coupling gives us, for all x > 0,

P(height(Tn) − Cn,p ≥ x) ≤ P (height(F(Gn,p)) ≥ x) ≤ P (height(Tn) ≥ x) . (9)

By Corollary 1.3 of [ABF13], it holds that

Λ := sup
n≥1

E
∣∣∣height(Tn) − e log(n) +

3

2
log log(n)

∣∣∣ < ∞.

Also, from Theorem 1.1, we have that E[Cn,p] → E[Cp] < ∞ as n → ∞. Combining
these two facts with (9) we get,

sup
n≥1

∣∣∣∣E[height
(
F(Gn,p)

)]
− e log(n) +

3

2
log log(n)

∣∣∣∣ ≤ sup
n≥1

E[Cn,p] +Λ < ∞,

proving the first result. For the second result, first note that, since Λ < ∞, Markov’s
inequality implies that height(Tn)

e log(n)
P
−→ 1 as n → ∞. Then, since E[Cp] < ∞, we have

that Cn,p

e log(n)
P
−→ 0 as n → ∞. Combining these two convergences with (9) completes

the proof of the second result.

COMPUTING OTHER STATISTICS IN F(Gn,p)

The usefulness of the coupling from the proof of Theorem 5.3, where we generate
F(Gn,p) from independently sampled Cn,p and Tn, is not limited in its usage to only
discussion of the height. For example, this fact almost implies that, for any i ∈ [n],
degF(Gn,p)(i) can be coupled with degTn(i) so that |degF(Gn,p)(i)−degTn(i)| ≤ 1. If we
take i = i(n) → ∞ as n → ∞, we even have that P(degF(Gn,p)(i) ̸= degTn(i)) → 0

as n → ∞. From this we could derive a variety of results concerning the degrees in
Kingman forests of Gn,p with almost no extra effort. More generally, one can com-
pute almost any statistic of interest that is understood for uniform random recursive
trees by leveraging the fact that ([m], E(Tm) \

([m]
2

)
)∞m=k

d
= URRFk.

6 QUANTITATIVE RESULTS ON Mk

In this section we prove the results on Mk in Lemma 4.1 that we used in the proof of
our main results. We require the use of many fairly standard tail bounds for familiar
collections of random variables in our analysis of Mk.
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Lemma 6.1. Let 0 < δ < 1. Let (Xk)
n
k=1 be an independent collection of random

variables with Xk
d
= HG(dk,mk, nk) for some dk,mk ≤ nk and set X =

∑n
k=1 Xk and

µ = E[X] =
∑n

k=1
dkmk
nk

. Then,

P (|X− µ| ≥ δµ) ≤ 2 exp
(
−
δ2µ

3

)
.

Let X d
= N-Bin(r, p). Then,

P
(
X ≥ (1+ δ)r(1− p)

p

)
≤ exp

(
−
((1− p)δ)2r

6

)
,

and

P
(
X ≤ (1− δ)

r(1− p)

p

)
≤ exp

(
−

((1− p)δ)2r

3(1− δ(1− p))

)
.

Proof. The first bound follows from an extension of Hoeffding’s inequality to the
setting of sampling without replacement [Hoe94, Theorems 2 and 4].

The second and third inequalities follow from the close relationship between bi-
nomial and negative binomial random variables. For a N-Bin(r, p) random variable
to be at least k, we need to observe at most r successes from r + k independent
Ber(p) trials. Hence,

P
(
X ≥ (1+ δ)

r(1− p)

p

)
= P (Bin (r+ (1+ δ)µ, p) ≤ r) ,

where µ = r(1−p)
p . Using a Chernoff bound gives

P
(
X ≥ (1+ δ)

r(1− p)

p

)
≤ exp

(
−
1

3

(
1−

r

µ+

)2

µ+

)
,

where

µ+ := ((1+ δ)µ+ r)p = (1+ δ)r(1− p) + rp = (1+ δ(1− p))r.

From here one can simplify the expression in a straightforward way to derive the
final result:

exp

(
−
1

3

(
1−

r

µ+

)2

µ+

)
= exp

(
−
1

3

(
(1+ (1− p)δ)r− 2r+

r

(1+ (1− p)δ)

))
= exp

(
−
1

3

(
((1− p)δ)2r

1+ (1− p)δ

))
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≤ exp
(
−
((1− p)δ)2r

6

)
.

The corresponding lower bound is derived in an almost identical fashion, so we omit
the proof.

Using the bounds from Lemma 6.1 we can prove (i) in Lemma 4.1, which we
restate in the following lemma.

Lemma 6.2. For any η, ϵ ∈ (0, 1), there exist C, L, c > 0 such that the following holds.
Fix p ∈ (0, η) and integers n and ℓ such that n ≥ ℓ ≥ L∨ K+

p,ϵ. Then,

P

(
n−ℓ⋃
k=0

{
Mk ≥ (1+ ϵ)

(1− p)(n− k)

p

})
≤ Ce−cℓ.

Proof. Let

E =

n−ℓ⋃
k=0

{
Mk ≥ (1+ ϵ)

(1− p)(n− k)

p

}
.

For all 0 ≤ k ≤ n, set

Ik =

[(
1+

ϵ

2

) (1− p)(n− k)

p
, (1+ ϵ)

(1− p)(n− k)

p

]
.

For each 1 ≤ k ≤ n − ℓ and 1 ≤ j ≤ n − ℓ − k, let Ak,j denote the event that the
following three conditions (i)-(iii) hold:

(i) Mi ∈ Ii for k < i < k+ j,

(ii) Mk+j ≥ (1+ ϵ) (1−p)(n−k−j)
p = sup Ik+j, and

(iii) Mk ≤
(
1+ ϵ

2

) (1−p)(n−k)
p = inf Ik.

Since M0 = 0, if E occurs then there must be some 1 ≤ k ≤ n−ℓ and 1 ≤ j ≤ n−ℓ−k

such that Ak,j occurs. Set

∆k,j := sup Ik+j − inf Ik =
ϵ(1− p)(n− k)

2p
−

(1+ ϵ)(1− p)j

p
,

and Tk = ϵ(n−k)
4(1+ϵ) . We split the bounding of P(E) into two cases with the union bound,

P(E) ≤
n−ℓ∑
k=1

Tk∑
j=1

P(Ak,j)︸ ︷︷ ︸
:=(I)

+

n−ℓ∑
k=1

n−ℓ−k∑
j=Tk+1

P(Ak,j)︸ ︷︷ ︸
:=(II)

. (10)
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We shall bound (I) and (II) separately, beginning with (I). One can show by a brief
computation that ∆k,j ≥ (1+ϵ)(1−p)Tk

p for (k, j) ∈ {(i1, i2) : 1 ≤ i1 ≤ n−ℓ, 1 ≤ i2 ≤ Tk}.
Indeed, for 1 ≤ k ≤ n − ℓ and 1 ≤ j ≤ Tk, the map j 7→ ∆k,j is decreasing, so
∆k,j ≥ ∆k,Tk . Using the definitions of ∆k,j and Tk, we then compute

∆k,j ≥
ϵ(1− p)(n− k)

2p
−

(1+ ϵ)(1− p)Tk
p

=
1− p

p

(
ϵ(n− k)

2
− (1+ ϵ)Tk

)
=

1− p

p

(
ϵ(n− k)

2
− (1+ ϵ) · ϵ(n− k)

4(1+ ϵ)

)
=

1− p

p
· ϵ(n− k)

4
=

(1+ ϵ)(1− p)Tk
p

.

By using the characterization of (Mk)
n−2
k=0 given in Lemma 3.3, we have that

Mk+j−Mj is stochastically dominated by a sum of j independent Geo(p)–distributed
random variables, which is N-Bin(j, p)–distributed. Using this along with the nega-
tive binomial bound from Lemma 6.1 we get that, for 1 ≤ j ≤ Tk,

P(Ak,j) ≤ P
(

N-Bin(Tk, p) ≥
(1+ ϵ)(1− p)Tk

p

)
≤ 2 exp

(
−
(1− p)2ϵ2Tk

6

)
.

Since p ≤ η, we may compress all of the constants into some c1 = c1(ϵ, η) > 0 to
get

(I) ≤ ϵ

2(1+ ϵ)

n−ℓ∑
k=1

(n− k) exp (−c1(n− k))

≤ ϵ

2(1+ ϵ)

∞∑
k=ℓ

k exp (−c1k) .

Doing a routine comparison of the above sum with an integral we can obtain a
second constant c2 = c2(ϵ, η) > 0 such that

(I) ≤ c2ℓe
−c1ℓ. (11)

To bound (II), we need to consider the edges that are removed during the comple-
ment process as well. Essential to proceeding computations is the following claim
that bounds P(Ak,j) by the probability of an event concerning sums of i.i.d. random
variables.
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Claim. For (k, j) ∈ {(i1, i2) : 1 ≤ i1 ≤ n− ℓ, Tk + 1 ≤ i2 ≤ n− ℓ− k}, we have that

P(Ak,j) ≤ P

(
X∗
k+j−1 +

j−2∑
i=0

(X∗
k+i − Y∗

k+i) ≥ ∆k,j

)
, (12)

where all the random variables (X∗
k+i, Y

∗
k+i)0≤i≤j−1 are independent, with X∗

k+i
d
=

Geo(p) and

Y∗
k+i

d
= HG

(
n− k− i− 2,

⌊
(1+ ϵ/2)(1− p)(n− k− i)

p

⌋
,

(
n− k− i

2

))
.

Proof. Let F be the sigma algebra generated by the whole edge reveal process. First,
we note by the definition of Ak,j that

P(Ak,j) ≤ P

((
j−1⋂
i=1

{
Mi ∈ Ii

})⋂{
Xk+j−1 +

j−2∑
i=0

(Xk+i − Yk+i) ≥ ∆k,j

})
.

From here, we complete the proof with a direct coupling. We define, for all 0 ≤ i ≤
j− 1 conditionally given Xk+i and Mk+i,

X∗
k+i = Xk+i + Zk+i1{Mk+i+Xk+i=(n−k−i

2 )},

where (Zk+i : 0 ≤ i ≤ j− 1) is a collection of independent Geo(p) random variables

that is also independent of F . By the memoryless property, we have that X∗
k+i

d
=

Geo(p). Recall that, when τk+i < ∞, we have that Yk+i = degG∗
τk+i−1

(uk+i). For all

0 ≤ i ≤ j − 2, if τk+i < ∞ and G∗
G∗

τk+i−1
has more than ⌊ (1+ϵ/2)(1−p)(n−k−i)

p ⌋ edges,

let Y∗
k+i = degHk+i

(uk+i), where Hk+i is a uniformly chosen subgraph of G∗
G∗

τk+i−1

with ⌊ (1+ϵ/2)(1−p)(n−k−i)
p ⌋ edges. Otherwise, we just set Y∗

k+i to be a hypergeometric
random variable with our desired distribution, independent of F . By construction,
X∗
k+i and Y∗

k+i are independent, and have the correct distribution. Finally, since
Xk+i ≤ X∗

k+i for all 0 ≤ i ≤ j − 1, and since Yk+i ≥ Y∗
k+i on the event that Mk+i +

Xk+i ≤
(
n−k−i

2

)
(which is a subset of the event that Mk+i+1 ∈ Ik+i+1), we have that(
j−1⋂
i=1

{
Mi ∈ Ii

})⋂{
Xk+j−1 +

j−2∑
i=0

(Xk+i − Yk+i) ≥ ∆k,j

}

is a subset of {
X∗
k+j−1 +

j−2∑
i=0

(X∗
k+i − Y∗

k+i) ≥ ∆k,j

}
,
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which is enough to complete the proof.

With the claim proven, we can begin to work on bounding (II), by bounding the
expression in the right side of (12). Set, for all 1 ≤ k ≤ n−ℓ and Tk+1 ≤ j ≤ n−ℓ−k,

µk,j = E

[
X∗
k+j−1 +

j−2∑
i=0

X∗
k+i

]
=

j(1− p)

p
,

νk,j = E

[
j−2∑
i=0

Y∗
k+i

]
=

j−2∑
i=0

(
1+

ϵ

2

) 2(1− p)(n− k− i− 2)

p(n− k− i− 1)
.

From (n− k− i− 2)/(n− k− i− 1) = 1− 1
n−k−i−1 we obtain

µk,j − νk,j =
j(1− p)

p
−
(
1+

ϵ

2

) 2(1− p)

p

j−2∑
i=0

(
1−

1

n− k− i− 1

)

≤ 1− p

p

(
−
(
(1+ ϵ)j− (2+ ϵ)

)
+ 4

n−k∑
r=n−k−j+1

1

r

)
≤ 1− p

p

(
−
(
(1+ ϵ)j− (2+ ϵ)

)
+ 4 log(n− k)

)
,

where in the last step we used the crude bound
∑n−k

r=n−k−j+1r
−1 ≤ log(n− k).

Fix δ = ϵ/20 ∈ (0, 1). Since ϵ < 1 we have µk,j + νk,j ≤ 5j(1− p)/p, so

(1+ δ)µk,j − (1− δ)νk,j ≤
1− p

p

(
−
(
(1+ ϵ− 5δ)j− (2+ ϵ)

)
+ log(n− k)

)
.

Using that j ≤ n− k− ℓ and 5δ = ϵ/4, as well as the definition of ∆k,j, we obtain

(1+ δ)µk,j − (1− δ)νk,j − ∆k,j ≤
1− p

p

(
5δj+ 2+ ϵ−

ϵ

2
(n− k) + log(n− k)

)
≤ 1− p

p

(
3− 5δ ℓ−

ϵ

4
(n− k) + log(n− k)

)
.

Since the linear term dominates the logarithm, there exists L = L(ϵ, η) > 0 such that
for all s ≥ L, −ϵ

4s+log s+3 ≤ −ϵ
8s. Hence, for all n−k ≥ L and all Tk ≤ j ≤ n−k−ℓ,

(1+ δ)µk,j − (1− δ)νk,j ≤ ∆k,j −
ϵ

8

1− p

p
(n− k) −

5δ(1− p)

p
ℓ.

(Since n − k ≥ ℓ, for the above bound to hold it suffices that ℓ ≥ L and Tk ≤ j ≤
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n− k− ℓ.) Consequently,

{ j−1∑
i=0

X∗
k+i ≤ (1+ δ)µk,j

}⋂{ j−2∑
i=0

Y∗
k+i ≥ (1− δ)νk,j

}

⊆
{
X∗
k+j−1 +

j−2∑
i=0

(X∗
k+i − Y∗

k+i) < ∆k,j

}
.

Thus, by (12) and a union bound, if ℓ ≥ L and Tk ≤ j ≤ n− k− ℓ then

P(Ak,j) ≤ P

(
j−1∑
i=0

X∗
k+i ≥ (1+ δ)µk,j

)
+ P

(
j−2∑
i=0

Y∗
k+i ≤ (1− δ)νk,j

)
.

Lemma 6.1 yields a constant c3 = c3(ϵ, η) > 0 such that

P

(
j−1∑
i=0

X∗
k+i ≥ (1+ δ)µk,j

)
≤ exp

(
−
((1− p)δ)2

6
j

)
≤ exp(−c3 (n− k)) , (13)

since j ≥ Tk = ϵ
4(1+ϵ)(n − k) in case (II). Also, applying the first inequality in

Lemma 6.1 to the family (Y∗
k+i)

j−2
i=0, and using the crude bound

νk,j =

j−2∑
i=0

(
1+

ϵ

2

) 2(1− p)(n− k− i− 2)

p(n− k− i− 1)
≥
(
1+

ϵ

2

) 1− p

p
(j− 1),

since n− k ≥ ℓ, we obtain c4 = c4(ϵ, η) > 0 such that, for all Tk ≤ j ≤ n− k− ℓ,

P

(
j−2∑
i=0

Y∗
k+i ≤ (1− δ)νk,j

)
≤ 2 exp

(
−
δ2

3
νk,j

)
≤ 2 exp(−c4 (n− k)) . (14)

Putting the pieces together. Combining (13) and (14) gives

P(Ak,j) ≤ exp(−c3(n− k)) + 2 exp(−c4(n− k)) , (15)

for all ℓ ≥ L ∨ K+
p,ϵ and Tk ≤ j ≤ n − k − ℓ. Hence, summing over j and k in the

contribution (II) from (10), we obtain

(II) ≤
n−ℓ∑
k=1

n−ℓ−k∑
j=Tk

P(Ak,j) ≤
∞∑
k=ℓ

k e−c3k + 2

∞∑
k=ℓ

k e−c4k.

Using this together with (11) in (10), the result follows.
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Since M0 = 0, proving a lower bound matching the one provided in Lemma 6.2
requires a different approach. Specifically, we are faced with the new problem of
verifying that Mk ever gets within ϵ(1−p)(n−k)

p of the desired value of (1−p)(n−k)
p . The

next two lemmas combine to show this.

Lemma 6.3. For all ϵ, η ∈ (0, 1) there exists L > 0 such that, for all p ∈ (0, η) and
integers ℓ, n with n ≥ ℓ ≥ L∨ K+

p,ϵ,

E[Mn−ℓ] ≥ (1− ϵ)(1− p)

p
ℓ
(
1−

ℓ− 1

n− 1

)
.

Proof. Let Fk = σ
(
(Xj, Yj)j<k

)
and recall that Mk+1 = Mk + Xk − Yk. As in the

exposure process,

E[Yk |Fk, Xk] ≤ 2

n− k
(Mk + Xk),

and Xk is a Geo(p) truncated at Bk :=
(
n−k
2

)
−Mk, so

E[Xk | Fk] =
1− p

p

(
1− pBk

)
.

Therefore, for 0 ≤ k ≤ n− 2,

E[Mk+1 | Fk] = Mk + E[Xk − E[Yk |Fk, Xk]|Fk]

≥
(
1−

2

n− k

)
Mk +

1− p

p

(
1−

2

n− k
− pBk

)
. (16)

Choose L1 so that 2
n−k ≤ ϵ/2 whenever n− k ≥ L1. Next, with

tk :=
(
1+

ϵ

2

)(1− p)(n− k)

p
,

we have

E[pBk ] = E[pBk1{Mk≥tk}] + E[pBk1{Mk<tk}] ≤ P(Mk ≥ tk) + p(
n−k
2 )−tk .

By Lemma 6.2, there exist C, c, L2 > 0 such that P(Mk ≥ tk) ≤ Ce−c(n−k) for
n− k ≥ L2 ∨ K+

p,ϵ. Moreover,(
n− k

2

)
− tk =

(
n− k

2

)
−
(
1+

ϵ

2

)(1− p)(n− k)

p
≥ ϵ(1− p)

2p
(n− k)

whenever n− k ≥ 2(1+ϵ)(1−p)
p + 1, hence pBk−tk ≤ e−c ′(n−k) (since p ≤ η < 1). Thus
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there exists L3 such that

E[pBk ] ≤ ϵ/2 whenever n− k ≥ L3 ∨
2(1+ ϵ)(1− p)

p
.

Taking expectations in (16) and using the two bounds above, we obtain for all such
k,

E[Mk+1] ≥
(
1−

2

n− k

)
E[Mk] +

(1− ϵ)(1− p)

p
. (17)

Set c := (1−ϵ)(1−p)
p and bk := 1 − 2

n−k . A particular solution of the recurrence
ak+1 = bkak+c is a∗

k := c(n−k). Writing dk := E[Mk]−a∗
k, (17) gives dk+1 ≥ bkdk.

With M0 = 0 we have d0 = −cn, and therefore

E[Mk] ≥ c(n− k) − cn

k−1∏
i=0

(
1−

2

n− i

)
.

For k = n− ℓ this product telescopes to yield

n−ℓ−1∏
i=0

(
1−

2

n− i

)
=

n∏
j=ℓ+1

j− 2

j
=

ℓ(ℓ− 1)

n(n− 1)
.

Hence, for all n ≥ ℓ ≥ L∨ K+
p,ϵ with L := L1 ∨ L3,

E[Mn−ℓ] ≥ c
(
ℓ−

ℓ(ℓ− 1)

n− 1

)
=

(1− ϵ)(1− p)

p
ℓ
(
1−

ℓ− 1

n− 1

)
,

which is the stated bound.

Combining the previous lemma with the exponential tail bound from Lemma 6.2
we can prove that Mk will cross above (1−ϵ)(1−p)(n−k)

p before the edge reveal process
terminates.

Lemma 6.4. Let η, ϵ, δ ∈ (0, 1). There exists L ≥ 0 such that, for any n ≥ 0 and any
p ∈ (0, η) such that K+

p,ϵ ≥ L, we have,

P
(
Mn−K+

p,ϵ
≤

(1− ϵ)(1− p)K+
p,ϵ

p

)
≤ δ+

1

2ϵ

(
K+
p,ϵ − 1

n− 1

)
.

In the proof, we use the following basic probability fact.

Lemma 6.5. Let X be a random variable with E[X] ∈ R, and let a, b ∈ R. Then,

P(X ≤ a) ≤ 1

b− a

(
b+ E[X : X ≥ b] − E[X]

)
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Proof. By the definition of the expectation we have,

E[X] ≤ aP(X ≤ a) + bP(a < X < b) + E[X : X ≥ b].

Upper bounding P(a < X < b) with 1− P(X ≤ a) and then re-arranging terms gives
the desired result.

Proof of Lemma 6.4. Let

a =
(1− ϵ)(1− p)K+

p,ϵ

p
, b =

(1+ ϵδ)(1− p)K+
p,ϵ

p
.

Our goal is to apply Lemma 6.5 to obtain our desired result, and towards that we
need to bound E[Mn−K+

p,ϵ
] and E[Mn−K+

p,ϵ
: Mn−K+

p,ϵ
≥ b]. By Lemma 6.3 we have

an L1 > 0 such that, when p is such that K+
p,ϵ ≥ L1,

E[Mn−K+
p,ϵ

] ≥
(
1− ϵδ

2

)
(1− p)

p
K+
p,ϵ

(
1−

K+
p,ϵ − 1

n− 1

)
(18)

By Lemma 6.2 there exists c, C, L1 such that

P
(
Mn−ℓ ≥

(
1+

ϵδ

2

)
(1− p)ℓ

p

)
≤ Ce−cℓ. (19)

whenever ℓ ≥ L2 ∨ K+
p,ϵδ/2

. Using the fact that Mn−K+
p,ϵ

can only take values in

{
(
k
2

)
: k ≥ K+

p,ϵ} on the event that Mn−K+
p,ϵ

≥
(K+

p,ϵ

2

)
, we have,

E

[
Mn−K+

p,ϵ
1{

M
n−K+

p,ϵ
≥b

}
]

≤
(K

+
p,ϵ
2
)∑

j=b

jP
(
Mn−K+

p,ϵ
= j
)
+

n∑
j=K+

p,ϵ+1

(
j

2

)
P
(
Mn−K+

p,ϵ
=

(
j

2

))
. (20)

The event {Mn−K+
p,ϵ

=
(
j
2

)
} is exactly the event that the edge reveal process ter-

minates between the n − j coalescing time and n − j − 1 coalescing time. Then,
since (

j

2

)
≥
(
1+

ϵδ

2

)
(1− p)j

p

for all j ≥ K+
p,ϵδ/2

+ 1, we can bound each of the terms in the second sum in (20) to
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obtain,

E

[
Mn−K+

p,ϵ
1{

M
n−K+

p,ϵ
≥b

}
]

≤
(
K+
p,ϵ

2

)
P
(
Mn−K+

p,ϵ
≥ b

)
+

n∑
j=K+

p,ϵ+1

(
j

2

)
P
(
Mn−j ≥

(
1+

ϵδ

2

)
(1− p)j

p

)

≤
n∑

j=K+
p,ϵ

(
j

2

)
P
(
Mn−j ≥

(
1+

ϵδ

2

)
(1− p)j

p

)
.

Then, using (19) we get,

E

[
Mn−K+

p,ϵ
1{

M
n−K+

p,ϵ
≥b

}
]
≤ C

∞∑
j=K+

p,ϵ

j2e−cj.

Since the upper bound above tends to zero as K+
p,ϵ → ∞, by potentially increasing

L2 if needed we obtain that, when K+
p,ϵ ≥ L2,

E

[
Mn−K+

p,ϵ
1{

M
n−K+

p,ϵ
≥b

}
]
≤ ϵδ

2

(1− p)K+
p,ϵ

p
. (21)

Applying Lemma 6.5 with the bounds (18) and (21) we get, whenever K+
p,ϵ ≥ L1∨L2,

P(Mn−K+
p,ϵ

≤ a) ≤ 1

ϵ(1+ δ)

(
(1+ ϵδ) −

(
1−

ϵδ

2

)(
1−

K+
p,ϵ − 1

n− 1

)
+

ϵδ

2

)
.

Since δ, ϵ ∈ (0, 1), we can bound the expression on the right to get

P(Mn−K+
p,ϵ

≤ a) ≤ δ+
1

2ϵ

(
K+
p,ϵ − 1

n− 1

)
.

Lemma 6.6. Let ϵ, η, δ ∈ (0, 1). There exists an L ≥ 0 such that, for any n ≥ 0 and
any p ∈ (0, η) such that K−

p,ϵ ≥ L, we have,

P
(
Mn−K−

p,ϵ
≤
(
K−
p,ϵ

2

))
≤ δ+

1

2ϵ

(
K+
p,ϵ − 1

n− 1

)
.

Proof. By the previous lemma, we have some L ≥ 0 such that, whenever satisfies
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K+
p,ϵ ≥ L,

P
(
Mn−K+

p,ϵ
≤

(1− ϵ)(1− p)K+
p,ϵ

p

)
≤ δ/2+

1

2ϵ

(
K+
p,ϵ − 1

n− 1

)
.

Now, consider the event

E =

{
Mn−K−

p,ϵ
≤
(
K−
p,ϵ

2

)}⋂{
Mn−K+

p,ϵ
≥

(1− ϵ)(1− p)K+
p,ϵ

p

}
.

To finish the proof it suffices to show that there is some L∗ ≥ 0 such that, when
K−
p,ϵ ≥ L∗, we have P(E) ≤ δ/2.

If Mn−k + Xn−k first exceeds
(
k
2

)
at some step k with K−

p,ϵ ≤ k ≤ K+
p,ϵ, then the

process freezes at this value, and so

Mn−K−
p,ϵ

≥
(
K−
p,ϵ

2

)
,

implying that E cannot occur. One consequence of this is that we may replace
(Xn−k : K−

p,ϵ ≤ k ≤ K+
p,ϵ) with a collection of independent (untruncated) geometric

random variables (X∗
n−k : K−

p,ϵ ≤ k ≤ K+
p,ϵ) without decreasing the probability of E

occurring E. Note also that Yk ≤ n − k − 2 deterministically for all 0 ≤ k ≤ n − 2.
Thus, defining E∗ to be the event,Mn−K+

p,ϵ
+

K+
p,ϵ∑

K−
p,ϵ+1

(X∗
n−k − k) ≤

(
K−
p,ϵ

2

)⋂
{
Mn−K+

p,ϵ
≥

(1− ϵ)(1− p)K+
p,ϵ

p

}
,

we have that P(E) ≤ P(E∗). Next observe that(
K−
p,ϵ

2

)
≤

(1− ϵ)(1− p)K−
p,ϵ

p
,

and so

E∗ ⊆


K+
p,ϵ∑

k=K−
p,ϵ+1

(X∗
k − k) ≤

(1− ϵ)
(
K−
p,ϵ − K+

p,ϵ

)
(1− p)

p

 . (22)

A quick computation gives that

K+
p,ϵ∑

k=K−
p,ϵ+1

k =

(
K+
p,ϵ

2

)
−

(
K−
p,ϵ

2

)
.
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Moreover, for any β ∈ (0, 1), there exists L(β) ≥ 0 such that∣∣∣∣∣(1− ϵ)K+
p,ϵ(1− p)

p
(K+

p,ϵ

2

) − 1

∣∣∣∣∣ ≤ β and

∣∣∣∣∣(1− ϵ)K−
p,ϵ(1− p)

p
(K−

p,ϵ

2

) − 1

∣∣∣∣∣ ≤ β, (23)

when K−
p,ϵ ≥ L2(β). Hence, for K−

p,ϵ ≥ L(1/2), we have

K+
p,ϵ∑

k=K−
p,ϵ+1

k+

(
(1− ϵ)K−

p,ϵ − (1− ϵ)K+
p,ϵ

)
(1− p)

p
≤ 1

2

((
K+
p,ϵ

2

)
−

(
K−
p,ϵ

2

))
. (24)

Moreover, (23) also gives, for K−
p,ϵ ≥ L(3/4),

E

 K+
p,ϵ∑

k=K−
p,ϵ+1

X∗
k

 ≥ 3

4

(
1

1− ϵ

(
K+
p,ϵ

2

)
−

1

1− ϵ

(
K−
p,ϵ

2

))
≥ 3

4

((
K+
p,ϵ

2

)
−

(
K−
p,ϵ

2

))
.

(25)
Using (22) and (24) we have

P(E) ≤ P

 K+
p,ϵ∑

k=K−
p,ϵ+1

X∗
k ≤ 1

2

((
K+
p,ϵ

2

)
−

(
K−
p,ϵ

2

)) .

Finally, applying the negative binomial bounds in Lemma 6.1 along with (25) to
the right side of the above inequality we obtain a constant C(η) > 0 such that, for
K−
p,ϵ ≥ L(1/2)∨ L(3/4),

P (E) ≤ exp
(
−C(η)

((
K+
p,ϵ

2

)
−

(
K−
p,ϵ

2

)))
. (26)

By making K−
p,ϵ large, the upper bound in (26) can be made arbitrarily small, and

so less than δ/2, which completes the proof.

7 QUESTIONS AND FUTURE RESEARCH

The work here answers some of the basic questions one may have about the King-
man coalescent on Gn,p, however, there are still many questions worthy of study.
One direction for future work could be to focus on the Kingman process on general
graphs. We have two quite concrete questions concerning this topic.

(i) Does there exist a sequence of graphs (Gn)
∞
n=1, with Gn a graph on n vertices,

and a function f : N → N with f(n)/ log(n) → ∞ as n → ∞ such that, with
probability tending to 1 as n → ∞, height(F(Gn))) ≥ f(n)?
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(ii) Let G = ([n], E) be a graph, and let H = ([n], E ′) be such that E ′ ⊆ E.
Does the number of components in F(H) stochastically dominate F(G)? Does
height(F(G)) stochastically dominate height(F(H))?

We note that answering (ii) in the affirmative would also answer (i) in the neg-
ative, as it would imply that height(F(Kn)) is the largest possible height that can be
attained from the Kingman process on any graph on the vertex set [n].

A second direction could be to study the Kingman coalescent on other random
graphs. A crucial part of our analysis here was the fact that vertex degrees in Gn,p

are all identically distributed and exchangeable. What if our underlying graph did
not have this property? There are many examples of inhomogeneous random graphs
one could choose, but for a concrete example, consider a random graph Gn with
some fixed degree sequence (d1, ..., dn). What can be said about the structure of
KINGMAN(Gn)? When the degree sequence is not regular (i.e., we do not have
d1 = . . . = dn), how do the statistics of the height of a given vertex in F(Gn) depend
on its degree. We expect that high degree vertices are typically found at larger
heights than low degree vertices.

It would also be interesting to study other coalescent rules on random graphs.
As was mentioned in Section 2, Kingman’s coalescent is not the only commonly
studied coalescent process. Deriving results similar to those of this article when we
consider a generalization of the additive coalescent rather than Kingman’s would
be interesting. Moreover, the inhomogeneous random graph case should be just as
interesting for the additive coalescent as it is for Kingman’s coalescent. Some results
concerning the multiplicative coalescent on Gn,p are already known, but there is
much yet to be done [ABBGM17, ABS21].
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