
Search Trees and Branching Random Walks

Louigi Addario-Berry

March 8, 2010

Contents

1 Random Binary Search Trees 2

1.1 Binary search trees . 2

1.2 Introducing randomness: average-case analysis . 4

1.3 Two couplings . 5

1.4 A natural guess . 7

1.5 Upper tail bounds on Hn . 9

1.6 Lower tail bounds on Hn . 10

1.7 Devroye’s theorem and a word on independence . 14

2 The connection with branching random walks 15

2.1 Binary branching, Exponential(1) edge weights . 15

2.2 More general binary branching random walks . 17

1

Lecture 1

Random Binary Search Trees

1.1 Binary search trees

Binary search trees are a classic data structure, introduced in a primordial form by A.I. Dumey in
19521. In this model, we imagine that we are given n items of data, indexed by distinct, real-valued
keys u1, . . . , un. From this initial data, we then construct a rooted, labelled binary tree with n
nodes, in the following recursive fashion. In what follows, we interpret a list of length zero as the
empty set.

bst(u1, . . . , un)

1. If the input is empty then output a single external node.

2. Otherwise, let the root have label u1.

3. Let i1 < . . . < ik be the indices i with ui < u1, and let j1 < . . . < jn−1−k be the
indices j with uj > u1.

4. Let the root have as left child the root of bst(ui1 , . . . , uik) and as right child the root
of bst(uj1 , . . . , ujk).

The binary search tree bst(4, 1, 3, 7, 5, 9, 6, 2) is shown in Figure 1.1. (The dashed lines and
rectangles will be explained momentarily.)

1

4

3

2

7

5 9

6

Figure 1.1: Bst example

1Knuth III, page 453

2

We will often write u = (u1, . . . , un), and write bst(u) for bst(u1, . . . , un). As will be discussed
below, both practical and theoretical considerations motivate a sequential construction of binary
search trees, which we describe below. It is for this construction that the dashed lines and rectangles
of Figure 1.1 – which represent “edges to external nodes” and “external nodes”, respectively – come
in handy. An “external node” is a place where another node-key pair could appear in some binary
search tree. For example, bst(4, 1, 3, 7, 5, 9, 6, 2, 8) would have a node with key 8 in place of the
leftmost of the two external nodes below 9. By “nodes”, we usually mean “internal nodes,” i.e.,
nodes with keys, but will be explicit when there is potential ambiguity.

Suppose we are given a binary search tree T with n ≥ 0 internal nodes (we think of a binary
search tree with no internal nodes as consisting of a single, external node). Given a new key u –
which we assume is distinct from all keys already in T – we may use the following procedure to
insert u into T , yielding a new binary search tree with n+ 1 internal nodes.

insert(T, u)

1. If T is empty then output a tree a single node of label u.

2. Otherwise, write u∗ for the label of the root of T .

3. If u < u∗ then insert u into the left subtree of the root of T . In other words, replace
the subtree T` of T by the output of insert(T`, u), then output the resulting tree.

4. If u > u∗ then insert u into the right subtree of the root of T .

Using this insertion procedure, we can provide a sequential description of the construction of
bst(u1, . . . , un).

bst(u1, . . . , un)

1. Let T0 = ∅.

2. If the input is empty then output T0.

3. Otherwise, for i = 1, . . . , n, let Ti = insert(ui, Ti−1), and output Tn.

In the world of data structures, binary search trees are commonly built by using representing
edges of the resulting tree as pointers from parent node to child node. Each internal node holds a
key u and a pointer to the data with index u. The entire tree is then accessed via a single pointer
to its root. For this to be a useful data structure, we must be able to retrieve data from the tree
when told a key value. The following procedure achieves this.

retrieve(T, u)

1. If T is empty then the data is not in the tree; output ∅.

2. Otherwise, write u∗ for the label of the root of T .

3. If u = u∗ then output the data with index u.

4. If u < u∗ then output the result of retrieve(T`, u).

5. If u > u∗ then output the result of retrieve(Tr, u).

The the time taken when retrieving the data corresponding to key u is proportional to the
number of recursive calls to retrieve, which is precisely the depth of u in T , i.e., the number of
edges on the path from the root to the node with label u. Thus, for a given binary search tree T ,

3

the worst-case retrieval time for any data item is proportional to the height of the tree T , defined as
the greatest depth of any node in T . This observation is at the root of why researchers in analysis
of algorithms are interested in the behaviour of heights of binary (and other) trees.

The permutation model

The behaviour of the above construction procedures depends only on the order statistics of u1, . . . , un,
and not their precise values. In other words, let σ = σ(u) = (σ1, . . . , σn) be the vector where for
each i, j ∈ [n], σi = j precisely if ui has the j’th largest value among u1, . . . , un. Then σ is a
permutation of [n], and bst(u) and bst(σ) are identical. We may thus always view the input to
bst as a permutation of [n], and will do so when it is useful.

Aside: counting binary search trees. Let T be a binary search tree with n nodes labelled by
[n]. Then the value of the key at the root is precisely the size of the left subtree of T , plus one.
Applying this fact recursively, it follows that to determine the structure of T , it suffices to keep
track of the size of the left subtree at each node. Now write bstn for the number of distinct binary
search trees on [n]. Then the following recursive equation holds.

bstn =
n−1∑
i=1

(bsti + bstn−1−i).

Exercises

In all the below exercises, let T denote a binary tree with n vertices.

1.1.1 Let each node v of T be labelled with `v, the number of nodes in the subtree rooted at
its left child. Now let v be any vertex in T . Explain how to determine the size nv of
the subtree rooted at v.

1.1.2 Find an explicit formula for tn.

1.1.3 Show that T has height at least blog2 nc and at most n− 1, and that these bounds are
tight.

1.1.4 Suppose that n = 2k − 1. Show that the number N of permutations σ of [n] for which
T has height k − 1 is

(2k − 2)!∏k−1
i=1 (2i)!

k−1∏
i=1

(
1 +

1
2i − 1

)
.

1.1.5 Let T be a binary tree with n vertices. Find as simple a formula as you can for the
number of permutations σ of [n] satisfying bst(σ) = T .

1.2 Introducing randomness: average-case analysis

Another classic data structure is the linked list, in which elements are stored in a list of nodes, with
each node holding a key and a pointer to the “next” node in the list. A linked list is then provided
as a pointer to the first element of the list, and retrieving data requires traversing the list to find
the associated key. In this case, the worst-case retrieval time is proportional to the length of the
list, so to the number of data elements. As seen in Exercise 1.1.3, above, this worst-case time can
also be attained in the case of binary search trees (if the keys happen to come in strictly increasing
or strictly decreasing order). However, the tightness of the lower bound of Exercise 1.1.3 shows
that it is possible for information retrieval to be much more efficient when using binary search trees
than when using linked lists.

4

One way make the worst-case behaviour very unlikely is to assign random keys – say, for
example, that independently as each piece of data is inserted, it is assigned a Uniform[0, 1] random
variable as its key. After n insertions, then σ(u) is a uniformly random permutation of [n]. When
σ has this distribution, bst(σ) is called a random binary search tree, or RBST.

The probability that a random binary search tree on n nodes has height n − 1 (the worst
possible) is 2/n!. However, the probability that a tree of height dlog2 ne is attained is also very
low (by considering equation in Exercise 1.1.4, it can be seen to be less than 1/((n+ 1)/2)! when
n+ 1 is a power of two). So what behaviour should we expect in a random binary search tree? In
the rest of the mini-course we will provide a detailed answer to this question.

Exercises

In the below exercises, let Dn denote the depth of the n’th key inserted into an RBST,
and let Hn denote the height of an RBST.

1.2.1 Prove that for all n ≥ 2,
∑n−1
i=1 i

3 ≤ n3(n− 1)/4.

1.2.2 Show that for all n and 0 ≤ k ≤ n,

P {Dn ≥ k} ≤
n2

2k
.

Hint: Use the permutation representation. Condition on the value of σ(1), and split
the probability according to whether σ(n) > σ(1) or σ(n) < σ(1). Then use induction
and Exercise 1.2.1.

1.2.3 Prove using Exercise 1.2.2 that E [Dn] ≤ 2 log2(n)+O(1), and that E [Hn] ≤ 3 log2(n)+
O(1). (Remarkably, the latter bound is almost best possible; we will see that in fact
E [Hn] ∼ c log2 n with c a constant which is about 2.99.)

1.3 Two couplings

The above construction of RBSTs based on a sequence of n uniform random variables has the
pleasing consequence that (a slight extension of) it can be used to couple the constructions of
RBSTs on n vertices for different values of n. To see this, we simply let {Ui}i∈N be independent
Uniform[0, 1] random variables and let T gn = bst(U1, . . . , Un) for each n ∈ N. Then for each n, T gn
is an RBST and for n < n′, T gn is a subtree of T gn′ . (The superscript g stands for “growing”, as we
may view T gn+1 can be grown from T gn by running insert(T gn , Un).

There is a second, often more useful coupling of RBSTs for different values of n, which is less
elegant but more useful for the kind of analysis we will undertake. The basic observation underlying
the coupling is that if σ is a uniformly random permutation of [n], then the sizes of the left and
right subtrees of bst(σ), which are σ(1) − 1 and n − σ(1), respectively, are jointly distributed as
(bnUc, bn(1− U)c), where U ∼ Uniform[0, 1]. This fact motivates the following definition.

Let T∞ be the complete infinite binary tree. Label the root by ∅ and recursively define labels
for all nodes in the tree by letting the left and right children of a node of label L have labels L0
and L1, respectively. Thus, nodes at depth d are labelled by the elements of {0, 1}d, binary strings
of length d. Below we abuse notation and refer to nodes by their labels. Next, independently for
each L ∈

⋃∞
d=0{0, 1}n, let UL ∼ Uniform[0, 1] represent the “split at node L.” Let VL,L0 = UL and

VL,L1 = 1−UL. It will later be useful to think of the edges from L to L0 and to L1 as labelled by
VL,L0 and VL,L1, respectively.

Now for fixed n, we may recover a tree distributed as an RBST on n nodes as follows. Let the
root ∅ of T∞ have mass m(n)

∅ = n and recursively define the mass of other nodes as follows. For

a node L with mass m(n)
L , let the mass m(n)

L0 of L0 be bm(n)
L · ULc and let the mass m(n)

L1 of L1 be
bm(n)

L · (1− UL)c. Then let T sn be the subtree of T∞ consisting of all nodes L with m
(n)
L 6= 0.

5

We would like to use the second coupling, above, to prove upper and lower tail bounds on Hn.
(For the remainder of the chapter, we write Hn for the height of T sn, so that the random variables
{Hn}n∈N are coupled and we can discuss almost sure convergence and convergence in probability.)
The “floors” in the definition of T sn are a nuisance, and it is tempting to sacrifice correctness for
elegance by rewriting the definition as follows. Let m∅ have mass 1 and for a node L with mass
mL, let mL0 = mL · UL and let mL1 = mL · (1 − UL). Then let Tn consist of all nodes L with
mL > 1/n. This is a useful bit of temptation to indulge in, because it turns out that the trees Tn
and T sn are not too different. For k ∈ N, write T∞,k for the set of nodes of T∞ at depth k.

Lemma 1. For all k ∈ N and all nodes L ∈ T∞,k, nmL ≥ m(n)
L ≥ nmL − k.

Proof. The upper bounds are clear since for any positive real numbers r1, . . . , rk,

nr1 . . . rk ≥ b. . . bbnr1cr2c . . . rkc.

By symmetry, for each k ∈ N it suffices to prove the lower bound for the node with label Lk = 0k,
which we do by induction. For k = 0 we have nmL0 = n = m

(n)
L0

. Next suppose the claim holds
for all integers less than k. Then by induction

m
(n)
Lk

= bm(n)
Lk−1

ULk−1c

≥ bn(mLk−1 − (k − 1))ULk−1c
≥ bnmLk−1ULk−1c − (k − 1)
≥ nmLk

− k,

proving the lower bound in the lemma.

These two inequalities give us a strong enough link between Tn and T sn we will be able to
analyze Tn and thereby obtain matching (at least in the first-order term) upper and lower tail
bounds on Hn. Both tail bounds use the following, easy consequence of the lemma. Write m+

k for
maxL∈T∞,k

mL.

Corollary 2. For all n, k ∈ N,

P
{
nm+

k ≥ k + 1
}
≤ P {Hn ≥ k} ≤ P

{
nm+

k ≥ 1
}
.

Proof. Since T sn is an RBST on n vertices, the probability that Hn is at least k is precisely

P
{

max
L∈T∞,k

m
(n)
L ≥ 1

}
.

By the bounds in Lemma 1 we have

nm+
k − k ≤ max

L∈T∞,k

m
(n)
L ≤ nm+

k ,

and the corollary follows.

The lower bound in Lemma 1 also yields that, at least on a logarithmic scale, for lower bounds
on Hn it suffices to study the trees Tn.

Corollary 3. Fix any constant a < 1. Suppose that for all k sufficiently large, there is some node
L(k) ∈ T∞,k with mL ≥ ak. Then lim infn→∞Hn/ lnn ≥ loga−1(e).

Proof. By Lemma 1, it follows that for all k sufficiently large and for all n, we have m(n)

L(k) ≥ nak−k.
In this case the height of T sn is at least h as long as nah − h ≥ 1.

6

Taking h near loga(n−1) = loga−1 n yields nah − h near (− loga−1 n), just a bit too small. If
instead we take h = h(a, n) = bloga−1 n− (loga−1 loga−1(n))− 1c, we get

nah − h ≥ naloga−1 n−(loga−1 loga−1 (n)) − (loga−1 n− (loga−1 loga−1(n)) + 1

≥ a−(loga−1 loga−1 (n)) − loga−1 n+ 1
= 1,

the second inequality valid whenever (loga−1 loga−1(n)) ≥ 0, so in particular for all sufficiently
large n. It follows that

lim inf
n→∞

Hn

lnn
≥ lim inf

n→∞

h(a, n)
lnn

= lim inf
n→∞

loga−1 n

lnn
= loga−1(e).

1.4 A natural guess

Lemma 1 provide a strong connection between the heights of Tn and T sn (the latter being our true
object of interest). One natural guess is that the height of Tn should be near the greatest value k
such that

E
[
|{L ∈ T∞,k : mL ≥ n−1}|

]
> 1.

Since this is not a movie, we are not worried about giving away the ending: this guess ends up
being correct (at least on a logarithmic scale). Knowing this, it is worth the effort to compute this
value k. Fixing any node Lk ∈ T∞,k, by linearity of expectation and the symmetry of T∞, we have

E
[
|{L ∈ T∞,k : mL ≥ n−1}|

]
= 2kP

{
mLk

≥ n−1
}
.

The random variable mLk
is the product of k independent Uniform[0, 1] random variables, which

makes precise calculations straightforward. It is helpful to transform mLk
using the fact (whose

verification is an easy calculation) that if U ∼ Uniform[0, 1] then − lnU ∼ Exponential(1). Writing
SLk

= − lnmLk
, it follows that SLk

∼ Gamma(k), where Gamma(k) is the random variable with
density

gk(t) =
tk−1e−t

(k − 1)!
, t > 0.

We thus have
E
[
|{L ∈ T∞,k : mL ≥ n−1}|

]
= 2kP {SLk

≤ lnn} . (1.1)

The following lemma controls the latter probability for us, in the range of interest.

Lemma 4. Fix a ∈ (0, 1) and let (tk)k∈N be a sequence of numbers such that limk→∞ tk/k = a.
Then

P {Gamma(k) < tk} ∼
1

1− a
e−tk(tk)k

k!
.

Proof. By repeated integration by parts, starting with u = e−t, dv = dt · tk−1/(k − 1)!, we have

P {Gamma(k) < tk} =
∫ tk

0

tk−1e−t

(k − 1)!

= e−tk

(
tkk
k!

+
tk+1
k

(k + 1)!
+

tk+2
k

(k + 2)!
+ . . .

)
.

=
e−tktkk
k!

(
1 +

∞∑
i=1

(
tk

k + 1
· . . . · tk

k + i

))
(1.2)

∼ 1
1− a

e−tktkk
k!

.

7

Corollary 5. If tk = ak then

e−ak(ak)k

k!
≤ P {Gamma(k) < tk} ≤

1
1− a

e−ak(ak)k

k!
.

Also,

lim
k→∞

ln(P {Gamma(k) < tk})
k

= ln(ae1−a).

Proof. The lower bound follows by omitting the sum in (1.2). The upper bound also follows from
(1.2) since for all i ≥ 1, ak/(k + i) < a. The existence of the limit and the asymptotic statement
follows by applying Stirling’s formula k! ∼

√
2πk(k/e)k, then taking logarithms.

Remark. Taking logarithms and dividing by k in the last equality of Corollary 5 hides a
factor (2πk)−1/2 present in the first two inequalities, obtained from Stirling’s formula applied to
k!. This factor in fact appears in much greater generality, i.e., for sums of random variables with
distributions other than exponential. It is essentially due to the central limit theorem, and will
become very important later when we study lower order terms.

Due to (1.1) and the asymptotic in Corollary 5, we are interested in the value of c for which
ln(ce1−c) = − ln 2, or 2ce1−c = 1. Writing f(c) = 2ce1−c, we have f(1) = 2 > 1, f(0) = 0, and
f ′(c) = 2e1−c − 2ce1−c = 2e1−c(1− 2c), so f is increasing for c < 1/2 and decreasing for c > 1/2.
It follows that there is a unique c′ ∈ (0, 1) with f(c′) = 1, and c′ < 1/2. We now combine this fact
and Corolary 5 with (1.1). Let c∗ = 1/c′.

Lemma 6. Fix c > 0 and let k = k(c, n) = dc lnne. Then

lim
n→∞

ln E
[
|{L ∈ T∞,k : mL ≥ n−1}|

]
k

= ln(f(c−1)).

In particular, this limit exists and is positive, zero, or negative according as c < c∗, c = c∗, or
c > c∗.

Proof. We prove only the case c > c∗ as the others are similar. In this case we have lnn ≤ c−1k <
c′k, so by (1.1), we have

lim sup
n→∞

ln E
[
|{L ∈ T∞,k : mL ≥ n−1}|

]
k

= lim sup
n→∞

ln
(
2kP {SLk

≤ lnn}
)

k

≤ lim
k→∞

ln
(
2kP

{
SLk
≤ c−1k

})
k

= lim
k→∞

ln
(
2kP

{
Gamma(k) ≤ c−1k

})
k

.

Letting tk = c−1k in Corollary 5, we obtain

lim sup
k→∞

ln(2kP {Gamma(k) < tk})
k

= ln(2c−1e1−c−1
) = ln(f(c−1)).

The last term is negative as c−1 < c′, f(c′) = 1 and f is increasing below c′. Since lnn ≥ c−1(k−1),
we similarly have

lim inf
n→∞

ln E
[
|{L ∈ T∞,k : mL ≥ n−1}|

]
k

= lim inf
n→∞

ln
(
2kP {SLk

≤ lnn}
)

k

≥ lim
k→∞

ln
(
2kP

{
SLk
≤ c−1(k − 1)

})
k

= lim
k→∞

ln
(
2kP

{
Gamma(k) ≤ c−1k

})
k

,

the last equality holding since, by Lemma 4, P
{

Gamma(k) ≤ c−1(k − 1)
}

and P
{

Gamma(k) ≤ c−1k
}

are within a constant factor for k large. Thus the limit exists and equals ln(f(c−1)) < 0.

8

1.5 Upper tail bounds on Hn

We have in fact done all the hard work for our upper bounds in Section 1.4. Recall that m+
k =

max{mL : L ∈ T∞,k}. By Corollary 2 and Markov’s inequality, for any n and k we have

P {Hn ≥ k} = P
{
m+
k ≥ n

−1
}

= P
{
|{L ∈ T∞,k : mL ≥ n−1}| > 0

}
≤ E

[
|{L ∈ T∞,k : mL ≥ n−1}|

]
.

Now fix any c > c∗ and let k = k(c, n) = dc lnne. It then follows from Lemma 6 that there is
ε(c) < 0 such that for all n sufficiently large,

P {Hn ≥ k} ≤ e−kε(c).

As an immediate consequence we obtain the following theorem.

Proposition 7.

lim sup
n→∞

Hn

lnn
≤ c∗ in probability.

Proof. Apply the preceding bound for any fixed c > c∗ to see that lim supn→∞
Hn

lnn ≤ c in proba-
bility; then let c decrease to c∗.

The above proof exploited explicit formulae for Gamma-distributed random variables. It is
instructive to also prove upper tail bounds for Hn using Chernoff’s bounding technique, since this
approach the one we will eventually generalize. We first use a union bound over nodes at depth k,
which gives for any t > 0,

P
{
m+
k ≥ t

}
≤

∑
L∈T∞,k

P {mL ≥ t} = 2kP {mLk
≥ t} . (1.3)

the last equality holding due to the symmetry of T∞,k. We then use the following identity, which
may be checked using integration by parts and the fact that − lnmLk

is Gamma(k) distributed.

Proposition 8. For any λ > 0,
E
[
mλ
Lk

]
= (λ+ 1)−k.

Proof. Exercise.

The key idea of Chernoff’s bounding technique is to write P {mLk
≥ t} = P

{
mλ
Lk
≥ tλ

}
(true

for λ ≥ 0), then apply Markov’s inequality and optimize over λ > 0.2 The remarkable fact is that
very often, the resulting bound is best possible (up to sub-exponential terms).

Lemma 9. For any t < 1 and integer k ≥ ln t−1,

P
{
m+
k ≥ t

}
≤ t
(

2e ln(t−1)
k

)k
.

Proof. From (1.3), for any λ ≥ 0 we have

P
{
m+
k ≥ t

}
≤ 2kP {mLk

≥ t} = 2kP
{
mλ
Lk
≥ tλ

}
.

By Markov’s inequality and Proposition 8, we then have

P
{
m+
k ≥ t

}
≤ 2kt−λE

[
mλ
Lk

]
= 2kt−λ(λ+ 1)−k.

2Traditionally, one would actually write P
˘
mLk

≥ t
¯

= P
n
eλmLk ≥ eλt

o
then optimize over λ; however, the

idea is essentially the same.

9

This bound is minimized by taking λ + 1 = k/ ln(t−1) (exercise), which is valid since then λ =
k/ ln(t−1)− 1 ≥ 0, and we get

P
{
m+
k ≥ t

}
≤ 2kt1−k/ ln(t−1)

(
k

ln(t−1)

)−k
.

Since t1−k/ ln(t−1) = tek, we thus have

P
{
m+
k ≥ t

}
≤ t
(

2e ln(t−1)
k

)k
,

as claimed.

This lemma immediately gives upper tail bounds on the height.

Corollary 10. For c > 2, P {Hn ≥ c lnn} ≤ nc ln(2e/c)−1.

Proof. Let k = dc lnne. By Corollary 2 and Lemma 9 applied with t = 1/n,

P {Hn ≥ c lnn} = P {Hn ≥ k} ≤ P
{
m+
k ≥ 1/n

}
≤ 1
n

(
2e lnn
k

)k
.

But
d

dk

((
2e lnn
k

)k)
=
(

2e lnn
k

)k
ln
(

2 lnn
k

)
,

which is negative when k ≥ 2 lnn. Thus,

1
n

(
2e lnn
k

)k
≤ 1
n

(
2e lnn
c lnn

)c lnn

= nc ln(2e/c)−1.

The bound in Corollary 10 is negative whenever c ln(2e)/c < 1. It is easily checked that the
value c∗ from above is the unique solution of c ln(2e/c) = 1 with c > 2, and so this corollary provides
a second proof of Proposition 7. In the next section, we use the lower bound on P {Hn ≥ k} from
Corollary 2, together with the bounds of Section 1.4 to prove a lower bound on lim infn→∞ Hn

lnn
that matches the bound of Proposition 7.

Exercises

1.5.1 Check that c∗ is the unique solution of c ln(2e/c) = 1 with c > 2.

1.5.2 Show that if U ∼ Uniform[0, 1] then (− lnU) ∼ Exponential(1).

1.5.3 Prove Proposition 8. (Hint: use mλ
Lk

= e−λSk , then use that the density of Sk is
e−xxk−1/(k − 1)! and integration by parts.)

1.5.4 Prove the claim in the proof of Lemma 9, that 2kt−λ(λ + 1)−k is minimized when
λ+ 1 = k/ ln(t−1), assuming that k ≥ ln t−1.

1.5.5 Check that c∗ ln 2 ≈ 2.9882, so that lim supn→∞
Hn

ln2 n
≤ 2.989 and Proposition 7 is

indeed an improvement over Exercise 1.2.3.

1.6 Lower tail bounds on Hn

Before proving our lower tail bounds on Hn, we quickly introduce Galton-Watson trees and recall
a fundamental fact about them, which we call the fundamental theorem of branching processes.

10

Reminder about branching processes. Fix a non-negative integer-valued random variable
B. Then the following procedure generates a Galton-Watson tree with offspring distribution B.

231

∅

321

232221

233232

? Start from the root (call it θ), let Bθ ∼ B.
? Give φ children 1, . . . , Bφ.
? Independently for each i = 1, . . . , Bθ, let Bi ∼ B, and ?
give i children i1, i2, . . . , iBi.
? Repeat forever or until done; call the resulting random
tree TB .

Now let FB(z) = E
[
zB
]

=
∑∞
k=0 P {B = k} zk.

Theorem 11 (Fundamental theorem of branching processes). If P {B = 1} < 1 then

P {|TB | <∞} = min{x ≥ 0 : FB(x) = x}.

In particular, P {|TB | =∞} > 0 if and only if E [B] > 1 (assuming P {B = 1} < 1).

Figure 1.2: The two cases in the fundamental theorem of branching processes

The reason why the second part follows from the first is essentially captured by the pictures in
Figure 1.2. In symbols, note that

F ′B(z) = (
∞∑
n=0

P {B = n} zn)′ =
∞∑
n=1

nP {B = n} zn−1,

so F ′B(1) =
∑∞
n=1 nP {B = n} = E [B]. Also, FB(0) = P {B = 0} ≥ 0, and F ′′B(z) ≥ 0.

Embedded branching processes. We may view the tree T∞ as a (not particularly interesting)
branching process in which B is deterministically equal to 2. However, there are more interesting
branching processes contained within T∞.

As a first example, for an edge e and a node L of T∞, write e ≺ L if e is on the path from the
root to L. Now fix any constant c < 1/2 and let T∞(c) consist of all nodes L of T∞ for which,
for all edges e of T∞ with e ≺ L, we have Ve ≥ c. Then let B(c) be a random variable with
P
{
B(c) = 1

}
= 2c, P

{
B(c) = 2

}
= 1− 2c

Lemma 12. T∞(c) is distributed as TB(c) .

Proof. For each node L of T∞, let BL be the number of edges e leaving the root and with Ve ≥ c.
Then BL ∼ B(c), and the random variables {BL : L a node of T∞} are jointly independent.

11

Now let T∞,0(c) be the set containing only the root of T∞. For k ≥ 0, inductively define
T∞,k+1(c) to be the set of nodes L ∈ T∞,k+1 for which first, the parent L′ of L is in T∞,k(c),
and second, VL′,L ≥ c. Then for each k ≥ 0, conditional upon T∞,k(c), each node L′ ∈ T∞,k(c)
independently has BL′ children in T∞,k+1(c), and these are all the elements of T∞,k+1(c). This
shows that the tree with nodes

⋃∞
k=0 T∞,k(c) is distributed as TB . But this tree is precisely T∞(c),

so the proof is complete.

This lemma allows us to prove an initial lower bound – far from tight – on lim infn→∞Hn/ lnn.

Corollary 13. For any c < 1/2, there is ε(c) > 0 such that with probability at least ε(c),

lim inf
n→∞

Hn

lnn
≥ logc−1(e).

Proof. For any c < 1/2, E
[
B(c)

]
> 1, and so by the lemma there is some ε(c) > 0 such that

P {|T∞(c)| =∞} > ε(c). If |T∞(c)| = ∞ then for all k, there is some node L(k) ∈ T∞,k with
mL ≥ ck. The corollary then follows by applying Corollary 3 with a = c.

The above corollary shows us that for any x > log2(e) ≈ 1.4427, there is a positive probability
that lim infn→∞Hn/ lnn ≥ x. For lower bounds in probability, of course, this is not good enough:
we need this probability to be one. However, it is possible to obtain a lower bound in probability
from the a priori weaker bound of Corolary 13, with the help of an extremely useful and important
lemma. The basic idea of the lemma is to consider the 2k subtrees of T∞ rooted at nodes of depth
k independently. For lim infn→∞Hn/ lnn to be small a corresponding quantity must independently
be small in each of these subtrees, which is very unlikely if k is large.

Lemma 14 (Weak amplification lemma, binary version). If P {lim infn→∞(Hn/ lnn) > c} > 0
then P {lim infn→∞(Hn/ lnn) > c} = 1.

Proof. Suppose that P {lim infn→∞(Hn/ lnn) > c} = δ > 0. For each node L ∈ T∞, let T∞,L be
the subtree of T∞ rooted at L, together with its weights. Then for all L, T∞,L is distributed as
a copy of T∞, and we define T sn,L as the copy of T sn, rooted at L via the same coupling as above.
Finally, write Hn,L for the height of T sn,L.

Now suppose L has depth k. Then by the second inequality in Lemma 1, for all n, m(n)
L ≥

nmL−k, so with probability 1 there is n0 ∈ N such that for all n ≥ n0, m(n)
L ≥ dnmL/2e. It follows

that for all n ≥ n0, T sdnmL/2e,L is a subtree of T sn, so Hs
n ≥ Hs

dnmL/2e,L. Thus, with probability
one,

lim inf
n→∞

Hn

lnn
≥ lim inf

n→∞

Hs
dnmL/2e,L

lnn
= lim inf

n→∞

Hs
dnmL/2e,L

lndnmL/2e
= lim inf

n→∞

Hs
n,L

lnn
,

the second inequality holding since dnmL/2e is with probability one a constant greater than zero,
and so with probability one Hs

dnmL/2e,L →∞ as n→∞ and ln(nmL/2) = lnn−O(1).

It follows that with probability one, for any integer k ≥ 1,

lim inf
n→∞

Hn

lnn
≥ max
L∈T∞,k

lim inf
n→∞

Hs
n,L

lnn
.

But if L,L′ ∈ T∞,k then T sn,L and T sn,L′ are independent, so Hs
n,L and Hs

n,L′ are also independent.

12

It follows that if P
{

lim infn→∞ Hn

lnn ≤ c
}

= δ < 1, then for any integer k ≥ 1,

P
{

lim inf
n→∞

Hn

lnn
≤ c
}
≤ P

{
max
L∈T∞,k

lim inf
n→∞

Hs
n,L

lnn
≤ c
}

=
∏

L∈T∞,k

P
{

lim inf
n→∞

Hs
n,L

lnn
≤ c
}

= δk,

P
{

lim infn→∞ Hn

lnn ≤ c
}

must in fact equal zero.

It follows from Corollary 13 and Lemma 14 that lim infn→∞Hn/ lnn ≥ log2(e) with probability
1, which is still a far cry from our upper bound. However, the argument we used in Corollary 13 is
nowhere near optimal. In particular, by restricting our attention to the tree T∞(c) we are requiring
that the uniform splits are between c and 1− c at every step, whereas for Hn to be large we only
need a long path along which the splits are large on average. One way to try to capture this fact
is to only look at the splitting behaviour at depths k which are a multiple of r for some integer
r > 1, and only require that T∞,k contain a node Lk with mLk

≥ ck for these depths. The first
thing to check is that a version of Corolary 3 still holds under this requirement.

Corollary 15. Fix any constant a < 1 and any integer r > 1. Suppose that for all integers
d ≥ 1, letting k = rd there is some node L(k) ∈ T∞,k with mL ≥ ak. Then lim infn→∞Hn/ lnn ≥
loga−1(e).

Proof. Fix any constant a′ < a. Then for all d sufficiently large, for all integers k′ with r(d− 1) <
k′ ≤ rd, we have (a′)k

′
< ard. Thus, the ancestor L(k′) at depth k′ of L(rd), has

mL(k′) ≥ mL(rd) ≥ ard > (a′)k
′
.

In other words, for all k′ sufficiently large, there is L(k′) ∈ T∞,k′ such that mL(k′) ≥ (a′)k
′
. It then

follows from Corollary 15 that lim infn→∞Hn/ lnn ≥ log(a′)−1(e). Since a′ < a was arbitrary the
result follows.

With this idea and corollary in hand, it is now fairly easy to prove lower bounds that match
our upper bounds. Fix any constant c < c∗.

Proposition 16. With probability one, lim infn→∞ Hn

n ≥ c
∗.

Proof. Fix any constant c < c∗. Then by Lemma 6, writing k = k(c, n) = dc lnne, we have

lim
n→∞

ln E
[
|{L ∈ T∞,k : mL ≥ n−1}|

]
k

= ln(f(c−1)) > 0.

Thus, in particular, there is some fixed n0 > 3 such that letting k0 = k(c, n0), we have

E
[
|{L ∈ T∞,k0 : mL ≥ n−1

0 }|
]
> 1.

Now let T ∗ be the Galton-Watson tree obtained by joining the root of T∞ to all nodes of the set
{L ∈ T∞,k0 : mL ≥ n−1

0 }, and recursively repeating in subtrees. Then T ∗ is supercritical and so
with some probability ε > 0 is infinite.

Now note that since k0 ≥ c lnn0, letting a = e−
1
c we have ak0 ≤ n−1

0 . If T ∗ is infinite then by
applying Corollary 15 with this choice of a and with r = k0, we obtain that

lim inf
n→∞

Hn

lnn
≥ loga−1(e) = loge1/c e = c.

Thus, the probability that lim infn→∞ Hn

lnn ≥ c is at least ε > 0, so is one by Lemma 14. Since
c < c∗ was arbitrary the lemma follows.

13

1.7 Devroye’s theorem and a word on independence

With the preceding sections under our belt, we now have the following result.

Theorem 17 (Devroye’s theorem, 1986).

Hn

n
→ c∗ in probability, as n→∞.

Proof. By Proposition 7 states that lim supn→∞
Hn

lnn ≤ c
∗ in probability. By Proposition 16 states

that lim infn→∞ Hn

lnn ≥ c
∗ almost surely. The result follows.

A few remarks on the proof are in order. The theorem was proved in Devroye [4], from whence
the name. First, both proofs of the upper bound boiled down to bounding the probability that a
single node Lk at depth k had mLk

large. Such bounds are derived by considering exclusively the
uniform random variables on the path from the root to Lk. In particular, the dependence between
the uniforms on the edges from a node to its children played no role.

Similarly, the lower bound boiled down to an expected value calculation for the number of
nodes L at a given level k with mL not too small. This value is just 2k times the probability that
a given node Lk at level k has mLk

not too small, and so again only the uniforms on the path from
the root to Lk play a rôle.

It is possible to strengthen Devroye’s theorem, replacing the convergence in probability with
almost sure convergence. Indeed, when Devroye proved his theorem, Pittel [7] had already shown
the existence of some constant c such that Hn

n → c almost surely. This knowledge immediately
allows the aforementioned strengthening. Pittel’s arguments were based on a strong law for sub-
additive processes, due to Kesten. In the next chapter, we will see a different argument for almost
sure convergence.

Finally, write H∗n for the greatest depth k at which there is some node L with mL ≥ 1/n. Then
by combining Lemma 1 with Devroye’s theorem, it is straightforward to see that H∗n/n → c∗ in
probability also. (Later, we will see that for both Hn and H∗n, the convergence is in fact almost
sure.) The latter random variable, H∗n is the one most naturally connected with branching random
walks, and it is to this connection that we now turn.

Exercises

1.7.1 Prove that H∗n/n→ c∗ in probability.

14

Lecture 2

The connection with branching
random walks

2.1 Binary branching, Exponential(1) edge weights

Our calculations in Chapter 1 were simplified by the observation that writing DLk
= − lnmLk

,
we have that DLk

d= Gamma(k). This transformation is also at the heart of the link between
search trees and branching random walks. For each edge e of T∞, let Ee = − lnVe. Then Ee

d=
Exponential(1), and Dv =

∑
e≺v Ee, and H∗n = max{k : ∃L ∈ T∞,k with DL ≤ lnn}. The tree

T∞ together with the edge weights E = {Ee : e ∈ E(T∞)} is (one example of one way to represent)
a branching random walk. To justify the terminology, fix a node Lk ∈ T∞,k and let its ancestors,
starting from the root, be L0, L1, . . . , Lk−1. Then, setting DL0 = 0, the sequence (DLi

)ki=0 forms
the first k steps of a random walk with step size E d= Exponential(1). Using further terminology
from random walks, we will refer to DL as the displacement of L.

In the branching random walk setting, there is no particular reason to consider cutoffs only of
the form DL ≤ lnn for integer n: we may just as well replace lnn by any positive real. So, let
Fs == Fs(T∞, E) max{k : ∃L ∈ T∞,k with DL ≤ s}. (The F stands for “final” – Ft is the final
generation containing a node with displacement at most s.) So, for all n ∈ N, we have Flnn = H∗n.
In particular, since Fs increases in s and H∗n increases in n, we always have

H∗besc ≤ Fs ≤ H
∗
dese ≤ +H∗besc + 1.

Asymptotics for Fs then follow immediately from Devroye’s theorem.

Lemma 18.
Fs
s
→ c∗ in probability, as s→∞.

Proof. Fix c1 < c∗. For s > 0 write b = b(s) = besc, and t = t(s) = dese. Then we have

P {Fs ≤ c1s} ≤ P
{
H∗b(s) ≤ c1s

}
.

Since c1s ≤ c1 ln b(s) + 1, it follows that

P {Fs ≤ c1s} ≤ P
{
H∗b(s) ≤ c1 ln b(s) + 1

}
,

which tends to zero as s → ∞. Thus lim infn→∞ Fs/s ≥ c1 in probability. Similarly, if c2 > c∗

then
P {Fs ≥ c2s} ≤ P

{
H∗t(s)≥c2s.

}
≤ P

{
H∗b(s) ≥ c2 ln t(s)− 1

}
,

15

which tends to zero ast s → ∞. Thus lim supn→∞ Fs/s ≥ c2 in probability. Since c1 < c∗ < c2
were arbitrary, the lemma follows.

There is a natural “dual” random variable to Ft: it is the minimum position at depth k,

Mk = Mk(T∞, E) = min{DL : L ∈ T∞,k}.

We then have the easy equivalence
Mk ≤ s⇔ Fs ≥ k. (2.1)

Thus, knowledge of Mk for all k ∈ N determines Fs for all s ∈ [0,∞), and vice-versa. As a result,
Lemma 18 easily yields asymptotics for Mk. Recall that c′ is the constant 1/c∗, defined in Chapter
1 to be the unique constant 0 < c < 1/2 satisfying 2ce1−c = 1.

Proposition 19.
Mk

k
→ c′ in probability, as k →∞.

Proof. Fix a constant a > 0 and let c = 1/a. By (2.1),

Mk ≤ ak ⇔ Fak ≥ k by (2.1)

First suppose that a < c′, so that c = a−1 > c∗. Then k = c(ak) > c∗(ak), so by Lemma 18,
P {Fak ≥ k} = P {Fak ≥ c(ak)} tends to zero as k → ∞ and by the above equivalence, so must
P {Mk ≤ ak}.

An identical argument shows that if a > c′ then P {Mk ≥ ak} → 0 as n→∞.

Proposition 19 is a kind of weak law of large numbers for Mk, and it is natural to ask if
a strong law holds. The advantage of studying Mk over studying Hn or Fs is that due to the
exponential growth of the levels, the probability that Mk deviates significantly from its mean
decreases exponentially quickly in k, which makes easy to show almost sure convergence in place
of convergence in probability. This result can then be funnelled through to yield almost sure
convergence in Devroye’s theorem.

In fact, we already proved one half of almost sure convergence: our lower bound on lim inf Hn/ lnn
was almost sure due to the weak amplification lemma (Lemma 14). Under the above duality, upper
bounds become lower bounds and vice-versa, so to prove the other half of almost sure convergence
we need to prove lower bounds on Mk.

Lemma 20. With probability one,

lim inf
k→∞

Mk

k
≥ c′.

Proof. Fix c with 0 < c < c′. Then by Corollary 5,

P {DLk
≤ ck} = (ce1−c)(1+o(1))k,

and by a union bound,

P {Mk ≤ ck} ≤ 2kP {DLk
≤ ck}

= (2cec−1)(1+o(1)k

= f(c)(1+o(1))k,

where f(c) = 2cec−1 as in Chapter 1. When c < c′, f(c) < 1, so there is k0 such that for k ≥ k0,

P {Mk ≤ ck} ≤ f(c)k/2,

say. It follows by Borel-Cantelli that with probability one, Mk > ck for all but finitely many k.
Since c < c′ was arbitrary the result follows.

16

Corollary 21. With probability one,

lim sup
n→∞

Hn

n
≤ c∗.

The proof of the corollary is essentially a reprise in reverse of the argument for Proposition 19
from Devroye’s theorem, and we leave it as an exercise. Of course, together with Proposition 16,
this yields almost sure convergence in Devroye’s theorem. In the next section, we will see how the
same ideas apply to bound the minimum of very general branching random walks.

Exercises

2.1.1 Prove Corollary 21.

2.2 More general binary branching random walks

For now, we continue to restrict our attention to the complete binary tree T∞. Instead of weighting
the edges of T∞ with exponentials, we may equally well consider weighting them with independent
copies of some real random variable X, which we call the step size, and which may take both positive
and negative values. 1 Let X = {Xe : e ∈ E(T∞)} and for v ∈ V (T∞), let Sv = Sv(T∞,X) =∑
e≺vXe as before. Then for positive integers k let Mk = Mk(T∞,S) = min{Sv : v ∈ T∞,k}. We

seek to understand the behaviour of Mk for k large – in particular, we wish to understand when a
law of large numbers holds for Mk.

Since T∞,k has 2k elements, our earlier heuristic suggests looking for Mk near the value c where
P {Sk ≤ ck} is roughly 2−k, at least at a logarithmic scale. In order for such c to exist, the step
size must itself have exponential lower tails. In other words (see Exercise 2.2.1), there must be
λ > 0 such that E

[
e−λX

]
< ∞. In principle, it seems that the knowledge that such a λ exists,

should be enough to prove a law of large numbers for Mk. Embarrassingly, no one has yet been
able to do so under only this assumption, for technical reasons we shall meet shortly.

We now recall the workings of Chernoff’s bound in more detail. We define the logarithmic
moment generating function Λ : R→ R ∪ {∞} by

Λ(t) = ΛX(t) := ln E
[
etX
]
,

We usually suppress the X in the subscript since it will be clear from context. Since SLk
=∑k

i=1XLi−1,Li
is a sum of n independent copies of X, for any c < E [X] and t < 0, by using

Markov’s inequality and independence, we have

P {Sk ≤ ck} = P
{
etSk > etck

}
≤

E
[
etSk

]
etck

=
(
E
[
et(X−c)

])k
= e−k(tc−Λ(t)),

by definition of Λ(t). We choose the value of c that minimizes this upper bound:

P {Sk ≤ ck} ≤ exp
(
−k sup

t<0
{tc− Λ(t)}

)
. (2.2)

The optimal choice for t in (2.2) is then that for which Λ′(t) = c —if such a t exists— as may be
informally seen by differentiating t 7→ tc − Λ(t) with respect to t. Choosing t in this fashion and
writing Λ′(t) in place of c yields

P {Sk ≤ Λ′(t)k} ≤ e−k(tΛ′(t)−Λ(t)). (2.3)

In many situations, this bound is only off by a factor of order k−1/2. (This is the factor mentioned
just after Corollary 5.) We can recover this factor, and see that it is tight, by an exponential

1As mentioned earlier, independence between sibling edges is not really important – but its presence or absence
changes nothing so we assume complete independence to simplify notation.

17

change of measure applied to the summands of Sk. We will do so in a moment, but first we see
how (2.3) yields lower bounds on Mk.

Let D = DX be the set of values t for which Λ(t) <∞. Let Do = DoX be the interior of D. Let
also g(t) = gX(t) = tΛ′(t)−Λ(t). The function Λ is infinitely differentiable and convex on Do, and
f is strictly convex on Do (see [3], Lemma 2.2.5 and Exercise 2.2.24).

Suppose that there exists t∗ ∈ Do, t∗ < 0 for which g(t∗) = ln 2. Such a t∗, if it exists, is
necessarily unique by the convexity of f . Furthermore, for any t < t∗, t ∈ Do, we will have
g(t) > ln 2, again by convexity. Then from (2.3), we see that for such t,

P {Sk ≤ Λ′(t)} ≤ e−kg(t) ≤ c−k

for some c > 2. It follows by a union bound and Borel-Cantelli, then optimizing over t < t∗ that

lim inf
k

Mk/k ≥ Λ′(t∗). (2.4)

This lower bound on Mk precisely corresponds to the upper bound on Hn proved earlier. (Indeed,
this is essentially the same proof as we gave in Section 1.5 to upper bound Hn.)

We now turn to the exponential change of measure. Let F be the distribution function of X.
We remark that for t ∈ Do,

Λ′(t) =
E
[
XetX

]
E [etX]

and Λ′′(t) =
E
[
X2etX

]
E [etX]

−
(

E
[
XetX

]
E [etX]

)2

.

Consider the random variable Yt, with distribution function Gt defined by

Gt(x) =
1

E [etX]

∫ x

−∞
ety dF (y).

Then, we have

E [Yt] =
∫ ∞
−∞

y dGt(y) =
1

E [etX]

∫ ∞
−∞

xetx dF (x) = Λ′(t), (2.5)

E
[
Y 2
t

]
=
∫ ∞
−∞

y2 dGt(y) =
1

E [etX]

∫ ∞
−∞

x2etx dF (x) = Λ′′(t) + Λ′(t)2,

so the random variable Zt = Yt−Λ′(t) is such that E [Zt] = 0 and Var {Zt} = Var {Yt} = Λ′′(t).2

We now show that we may express the probability of events such as {X1+· · ·+Xk ≤ ck} – which
are exponentially unlikely when c < E [X] – in terms of the distribution of the sum Z1 + · · ·+ Zk
of i.i.d. copies of Zt in the central regime. This allows for the use of precise limit results related to
the central limit theorem.

Let Sk = X1 + . . .+Xk and fix any a ∈ R and c < E [X], and assume there exists t ∈ Do with
t < 0 such that c = Λ′(t). Then using the same change of measure as in (2.5), we have

P {Sk ≤ ck + a} =
∫
{x1+···+xk≤ck+a}

dF (x1) · · · dF (xk)

= ekΛ(t)

∫
{y1+...+yk≤ck+a}

e−t(y1+...+yk) dGt(y1) · · · dGt(yk).

Now let Zt be a random variable having distribution function Ht satisfying dHt(z) = etΛ
′(t)dGt(z).

Then this further change of measure yields

P {Sk ≤ Λ′(t)k + a} = ekΛ(t)

∫
{z1+...+zk≤a}

e−t(z1+...+zk)e−tΛ
′(t)k dHt(z1) · · · dHt(zk)

= e−kg(t)

∫
{z1+...+zk≤a}

e−t(z1+...+zk) dHt(z1) · · · dHt(zk).

2It may also easily be checked that E
ˆ
|Yt|3

˜
<∞, a fact we will use later.

18

Writing Wk for the distribution function of Z1+. . .+Zk, k i.i.d. copies of Zt, the preceding equation
asserts that

P {Sk ≤ Λ′(t)k + a} = e−kg(t)

∫ ∞
−∞

e−ts1[s≤a] dWk(s). (2.6)

To make this result useful, we need one more ingredient, which is a local central limit theorem.
We say X is a lattice random variable with period 1/d > 0 if there is a constant z such that dX−z
is an integer random variable and d is the smallest positive real number for which this holds; in
this case, we say that the set LX = {(n + z)/d : n ∈ Z} is the lattice of X. If X is not a lattice
random variable then we say it is non-lattice. The following is a weakening of Theorem 1 from [8].

Theorem 22 ([8]). Fix any b > 0. If EX = 0 and 0 < E
[
X2
]
< ∞ then for any h > 0, if X is

non-lattice then for all x with |x| ≤ b
√
n,

P {x ≤ Sn < x+ h} = (1 + o(1))
h · e−x

2/(2nE[X2])√
2πE [X2]n

,

and if X is lattice then for all x ∈ LX with |x| ≤ b
√
n,

P {Sn = x} = (1 + o(1))
e−x

2/(2nE[X2])√
2πE [X2]n

.

In both cases, o(1)→ 0 as n→∞ uniformly over all x in the allowed range.

Applying Theorem 22 in (2.6) (for simplicity assuming that X – and so Z – is non-lattice), we
obtain the following result.

Proposition 23. Assume X is non-lattice, and fix any b > 0 and t < 0, t ∈ Do. Then for positive
integers k and uniformly over a with |a| ≤ b

√
k we have

P {Sk ≤ Λ′(t)k + a} � e−kg(t)+a|t|
√
k

Proof. By (2.6) and Theorem 22, we have

P {Sk ≤ Λ′(t)k + a} = e−kg(t)

∫ ∞
−∞

e−ts1[s≤a] dWk(s)

� (e−kg(t))
∞∑
i=1

∫
(a−i,a−i+1]

e−ts dWk(s)

� e−kg(t)−at
√
k

=
e−kg(t)+a|t|
√
k

.

Remark. It is in fact possible to be more careful and derive not only the correct order of
P {Sk ≤ Λ′(t)k + a}, but its asymptotic value – this is the substance of the Bahadur–Rao theorem
[1] (see also Dembo and Zeitouni [3], Theorem 3.7.4).

Now take any t > t∗. Then g(t) < ln 2, so by Proposition 23 and linearity of expectation we
have that

E [|{L ∈ T∞,k : SL ≤ Λ′(t)k}] = Θ
(
ek(ln 2−g(t))
√
k

)
,

19

which grows exponentially in k. In particular there is k0 such that E [|{L ∈ T∞,k0 : SL ≤ Λ′(t)k0}] >
1, so we may find an embedded branching process and use an amplification argument, then optimize
over t > t∗ to show that almost surely,

lim sup
k→∞

Mk

k
≤ Λ′(t∗).

Together with (2.4), we have thus showed that limk→∞
Mk

k = Λ′(t∗) almost surely. In the next
section, we explore the lower-order terms of Mk. Before doing so, we state without proof a theorem
about how the above result generalizes to branching processes with branch factor B which is not
identically 2.

Let B be a non-negative integer random variable with 1 < EB <∞, let T be a Galton-Watson
process with branching distribution B, and write Tk for the vertices in the k’th generation of T .
Fix a real random variable X and let {Xe : e ∈ E(T)} be copies of X, independent except
perhaps on sibling edges. Then for each v ∈ V (T) let Sv =

∑
e≺vXe, and for positive integers k

let Mk = min{Sv : v ∈ Tk.

Theorem 24 (Hammersley–Kingman–Biggins Theorem [2, 5, 6]). Suppose there is t∗ < 0, t∗ ∈ Do
such that g(t∗) = ln(E [B]). Then

lim
k→∞

Mk

k
= Λ′(t∗),

almost surely and in expectation.

The H–K–B theorem is in fact more general, applying in situations where B can be infinite and
the displacements from parent to children are given by a point process on R. However, we will not
take the time to precisely formulate the most general version here. Biggins [2] also treats the case
that T is a multitype branching random walk.

Exercises

2.2.1 Let X be a real random variable. Show that there exists ε > 0 such that P {X ≤ c} ≤ eεc
for all sufficiently small c < 0, if and only if E

[
e−tX

]
<∞ for some t > 0.

2.2.2 Check that if X d= Exponential(1), then E
[
etX
]

= ∞ for all t < 0. Find the value t∗

for which g(t∗) = ln 2, and find Λ′(t∗).

2.2.3 Show that the Hammersley–Kingman–Biggins Theorem does not hold if we weaken the
independence assumption to only require independence of edges that do not share a com-
mon endpoint. (The difference between this and the previous independence assumption
is that now, for a vertex v, the edge from v to its parents may not be independent of
the edges from v to its children.)

20

Bibliography

[1] R.R. Bahadur and R. Ranga Rao. On deviations of the sample mean. Annals of Mathematical
Statistics, 31:1015–1027, 1960.

[2] J. D. Biggins. The first and last-birth problems in a multitype age-dependent branching process.
Advances in Applied Probability, 8:446–459, 1976.

[3] A. Dembo and O. Zeitouni. Large Deviation Techniques and Applications. Springer, second
edition, 1998.

[4] L. Devroye. A note on the height of binary search trees. Journal of the ACM, 33:489–498, 1986.

[5] J.M. Hammersley. Postulates for subadditive processes. The Annals of Probability, 2(4):652–
680, 1974.

[6] J.F.C. Kingman. The first birth problem for an age-dependent branching process. The Annals
of Probability, 3(5):790–801, 1975.

[7] B. Pittel. On growing random binary trees. Journal of Mathematical Analysis and Applications,
103:461–480, 1984.

[8] Charles J. Stone. On local and ratio limit theorems. In Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, pages 217–224, 1965.

21

	Random Binary Search Trees
	Binary search trees
	Introducing randomness: average-case analysis
	Two couplings
	A natural guess
	Upper tail bounds on Hn
	Lower tail bounds on Hn
	Devroye's theorem and a word on independence

	The connection with branching random walks
	Binary branching, Exponential(1) edge weights
	More general binary branching random walks

