
Finding the maximum-weight induced k-partite

subgraph of an i-triangulated graph

Louigi Addario-Berry, William S. Kennedy, Andrew D. King,
Zhentao Li, and Bruce Reed

September 24, 2006

Abstract

An i-triangulated graph is a graph in which every odd cycle has two non-crossing

chords; i-triangulated graphs form a subfamily of perfect graphs. A slightly more gen-

eral family of perfect graphs are clique-separable graphs. A graph is clique-separable

precisely if every induced subgraph either has a clique cutset, or is a complete mul-

tipartite graph or a clique joined to an arbitrary bipartite graph. We exhibit a

polynomial time algorithm for finding the maximum-weight induced k-partite sub-

graph of an i-triangulated graph, and show that the same problem is NP -complete

for clique-separable graphs, even in the unweighted case when k = 2.

1 Introduction

Given a graph G = (V, E) with a weight function w : V → (0, 1], the subgraph induced by
V ′ ⊆ V consists of V ′ together with all edges of E with both endpoints in V ′. We denote
this graph G[V ′]; it has weight w(V ′) =

∑

v∈V ′ w(v). Finding a maximum-weight induced
k-partite graph of a given graph is NP -complete in general, even when all weights are equal
and k = 2 – this amounts to finding a maximum-size induced bipartite subgraph.

This latter problem is easily seen to be equivalent to the problem of finding a maximum
clique in terms of approximability [6], and is therefore not approximable to within n1−ǫ for
any ǫ > 0 unless NP = ZPP or within n1/2−ǫ unless P = NP [5]. We say that two chords
of a cycle are non-crossing precisely if there is a straight-line embedding of the cycle and
the two chords such that the edges of the cycle form a convex polygon and the interiors of
the chords do not intersect. We consider the general problem of finding a maximum-weight

1

induced k-partite subgraph (MWIKS) for the family of i-triangulated graphs, graphs in
which every odd cycle has two non-crossing chords. We prove:

Theorem 1. Given any i-triangulated graph G = (V, E), a maximum-weight induced k-

partite subgraph of G can be found in polynomial time.

To do this we exhibit a polynomial-time algorithm that involves first decomposing G in a
manner that satisfies our needs, then applying dynamic programming to the decomposition.
Note that k is part of the problem, not part of the input.

The family of i-triangulated graphs is a subfamily of perfect graphs. It is well-known
that the weighted stable set problem (i.e. MWIKS for k = 1) is solvable in polynomial time
on all perfect graphs. As the structure of perfect graphs is now well-understood (c.f. [2]),
it may be thought that as a matter of fact MWIKS can be efficiently solved for all perfect
graphs and all k. We show that this is not the case. There is a closely related superset of
i-triangulated graphs called clique-separable graphs. A graph G is clique-separable if every
induced subgraph H of G either has a clique cutset, or is a complete multipartite graph or
is a clique joined to a bipartite graph (the join of two graphs consists of adding all possible
edges between them). Clique-separable graphs are also perfect graphs. We show:

Theorem 2. The maximum induced bipartite subgraph problem is NP-complete for clique-

separable graphs.

In Section 2 we present the basic concepts, notation, and results we will use throughout
the paper, including some structural properties of i-triangulated graphs. In Section 3 we
use this method to show that i-triangulated graphs have subtree decompositions with certain
useful properties. In Section 4 we show how such subtree decompositions can be used to
efficiently find maximum-weight induced k-partite subgraphs via dynamic programming,
establishing Theorem 1. Finally, in Section 5 we prove Theorem 2.

2 Structural Basics of i-triangulated Graphs

Unless otherwise specified, a graph G will always have vertex set V and edge set E. We say
that a vertex v sees a vertex u if u and v are adjacent. The join of two graphs G1 = (V1, E1)
and G2 = (V2, E2) has vertex set V1 ∪ V2 and edge set E1 ∪ E2 ∪ {v1v2 | v1 ∈ V1, v2 ∈ V2}.
The neighbourhood of v ∈ V is {w | vw ∈ E} and is denoted N(v). Given a set of vertices
S ⊆ V , the neighbourhood of v in S is N(v) ∩ S and is sometimes written NS(v). A block

of G is a maximal 2-connected subgraph of G, and a universal vertex of G is a vertex that
is adjacent to every vertex other than itself.

2

A hole (resp. k-hole) of G is an induced subgraph of G which is a chordless cycle of
length 4 or more (resp. a chordless cycle of length k ≥ 4). A cap is a cycle C of length
at least 4 with exactly one chord vx which forms a triangle with two consecutive edges
vw, wx of the cycle; the vertex w is called the tip of the cap. C is a k-cap if it is a cap
with k vertices. An odd hole or cap is a k-hole or k-cap with k odd. The following fact is
immediate from the definition of an i-triangulated graph:

Fact 3. If a graph is i-triangulated then it contains no odd cap or odd hole.

The following lemma will help us build our structural decomposition in the next section:

Lemma 4. Let G be an i-triangulated graph. If H = u1 . . . uku1 is an even hole in G then

for any v ∈ G adjacent to u1 and uk, H ⊂ N(v).

Proof. Suppose v does not see all of H . Then there must be two consecutive (in the cycle
order of H) vertices of H that see v, followed by a maximal set of ≥ 1 consecutive vertices
of H that do not see v. If this set has odd size we have an even hole and therefore an odd
cap. If the set has even size we have an odd hole. Either case yields a contradiction.

3 Subtree Decompositions

We define a base graph to be a graph that is either a complete multipartite graph with no
clique cutset or a clique joined to a bipartite graph. Thus a graph G is clique separable
precisely if for every induced subgraph H of G, G has a clique cutset or is a base graph.

Before giving our structural decomposition of i-triangulated graphs, we consider a de-
composition of a related class. A subtree intersection representation (SIR) of G consists of
a tree T = (N, A) and a collection S = {Sv|v ∈ V (G)} of non-empty subtrees of T such
that for any two vertices u and v of G, u and v are adjacent precisely if Su and Sv intersect.
See Figure 1 for an example, and observe that associated with each node s ∈ N we have
the set Ws = {v ∈ V (G)|s ∈ Sv}; we denote the set {Ws|s ∈ N} by W and we denote the
SIR by [T,W]. A graph G is chordal if it contains no hole; G has a subtree intersection
representation precisely if it is chordal [4]. Observe that in an SIR, for any node s ∈ N ,
Ws induces a clique, and for any arc ts ∈ A, Ws ∩ Wt is a clique cutset so long as neither
Ws nor Wt is a subset of the other.

As we need to consider graphs that may not be chordal, we use the more general idea of
a subtree decomposition. A subtree decomposition of G consists of a tree T = (N, A) and a
collection S = {Sv|v ∈ V (G)} of non-empty subtrees of T such that for any two adjacent
vertices u and v of G, Su and Sv intersect. We define Ws and W as before and denote the
decomposition by [T,W]. A subtree decomposition is standard if Ws ⊆ Wt for no arc ts.

3

S

S
S

S

S

S

a

b c d

f e

g

S

a

b c

f
g

e

d

Figure 1: A chordal graph with a subtree intersection representation

Returning now to our given i-triangulated graph G, we wish to build a subtree decom-
position [T,W] of G with certain properties. We will abuse notation and sometimes write
Ws to denote G[Ws] for a node s of T . We write Us for the set of universal vertices in Ws

and Hs for Ws \ Us.
We insist that our subtree decomposition satisfy the following properties:

(C1) For each node t ∈ T , the graph induced by Wt is a base graph.

(C2) For every arc ts of T, Ws ∩ Wt is a clique.

(C3) For each node t ∈ T , at least one of the following must be true:

(a) Ht = ∅

(b) Ht is a 2-connected bipartite graph.

(c) Ht is a complete multipartite graph with more than 2 parts and each part has
more than one vertex.

(C4) For all arcs ts of T, |(Ws ∩ Wt) \ Us| ≤ 1

We call a subtree decomposition satisfying the above requirements happy. The aim of
this section is to prove the following theorem.

Theorem 5. Every i-triangulated graph has a happy standard subtree decomposition. Fur-

thermore, such a decomposition can be found in polynomial time.

First we provide two elementary structural results. The following is a well-known prop-
erty of sets of subtrees.

4

Helly Property for Trees. If T1, T2, . . . , Tk are connected subgraphs of a tree T such that

for all 1 ≤ i ≤ j ≤ k, Ti ∩ Tj 6= ∅, then
⋂k

i=1 Ti 6= ∅.

We omit the straightforward proof of the Helly Property for Trees, which is by induction
on the size of T . An easy consequence is the following:

Lemma 6. Let G be a graph, C a clique in G and [T,W] a subtree decomposition of G.

Then there exists t ∈ T such that C ⊆ Wt.

Proof. By definition of a subtree decomposition, if v1v2 ∈ E(G), Tv1
∩ Tv2

6= ∅. Since C is
a clique, ∀v1, v2 ∈ C, Tv1

∩ Tv2
6= ∅. By the Helly Propery for Trees,

⋂

v∈C Tv 6= ∅. For any
node t in

⋂

v∈C Tv, C ⊆ Wt.

To prove Theorem 5 we will construct, in polynomial time, a standard happy subtree
decomposition for G, then prove the correctness of our construction. We begin by building
a subtree decomposition [T,W] which satisfies properties C1 and C2.

We do this recursively. First find a minimal clique cutset C in G, or if there is none, let
T be an isolated node t with Wt = V (G). Now let V1 be the vertex set of a component of
G−C, let G1 = G[C∪V1], and let G2 = G[V \V1]. Now recursively construct happy standard
subtree decompositions [T1,W1] and [T2,W2] of G1 and G2 respectively. By Lemma 6 there
are two nodes t1 ∈ T1 and t2 ∈ T2 such that both Wt1 and Wt2 contain C. Note that
Wt1 ∩ Wt2 = C. Construct T by joining T1 and T2 with an arc between t1 and t2, and
let W = W1 ∪ W2. If both Wt1 and Wt2 are the join of a bipartite graph and a clique,
Ut1 = Ut2 , and |Ht1 ∩ Ht2 | > 1, then contract the arc t1t2, replacing Wt1 and Wt2 with
Wt1t2 = Wt1 ∪ Wt2 .

It remains to be shown that [T,W] satisfies (C1) to (C4) and is a standard subtree
decomposition. We do this by induction, assuming that [T1,W1] and [T2,W2] are happy
standard subtree decompositions. As a basis, [T,W] is clearly a happy standard subtree
decomposition if T is an isolated node since G is clique-separable.

Proof of Theorem 5. If we do not contract the arc t1t2 then Wt is a base graph for every
t ∈ N(T), since W = W1∪W2. If we do contract t1t2, then [T,W] satisfies (C1) precisely if
Wt1t2 is a base graph. This is the case, because we know that G[Ht1 ∩Ht2] is a 2-connected
bipartite graph since it consists of two 2-connected bipartite graphs pasted together on an
edge. Therefore [T,W] satisfies (C1). Note that for the same reason, G satisfies (C3) if the
arc t1t2 is contracted, and clearly satisfies (C3) if it is not contracted.

To see that our subtree decomposition satisfies (C2), first note that there is nothing
to show if we contract t1t2, since for any node s, Ws ∩ Wt1t2 is equal to either Ws ∩ Wt1

or Ws ∩ Wt2 , so the result follows by induction. We only need to show that if t1t2 is not

5

contracted then Wt1 ∩Wt2 is a clique, but we know that Wt1 ∩Wt2 = C, our clique cutset,
so [T,W] satisfies (C2).

Since C is a clique cutset, it is easy to see by induction that [T,W] is a standard subtree
decomposition; we can similarly see that when t1t2 is contracted, (C4) is satisfied. All that
remains is to prove that |(Wt1 ∩ Wt2) \ Ut1 | ≤ 1 if t1t2 is not contracted; it will follow that
|(Wt1 ∩ Wt2) \ Ut2 | ≤ 1 by a symmetric argument.

Note that Ht1 is 2-connected but not a clique, so if Ht1 6= ∅ then |Ht1| ≥ 4 and
furthermore it follows from (C3) that for any edge e in Ht1 there is an even hole in Ht1

containing e. The same is true of Ht2 . If Ht1 = ∅ then (C4) is clearly satisfied. Suppose
that |(Wt1∩Wt2)\Ut2 | < 1 is not satisfied and let u and v be two vertices in (Wt1∩Wt2)\Ut1 .
If Ht2 = ∅ then since C is a clique cutset there is a vertex x ∈ Ut2 \ Wt1 . This vertex x,
along with an even hole in Ht1 containing uv, forms an odd cap. Note that x sees only u
and v in the even hole because C = Wt1 ∩ Wt2 is a clique cutset. This contradicts Fact 3,
so if |(Wt1 ∩ Wt2) \ Ut2 | < 1 neither Ht1 nor Ht2 is empty.

Assume, then, that Ht2 is a complete multipartite graph containing at least three parts,
none of which is a singleton. Since Ht1 is not empty there must be an even hole in Ht1

containing uv, and since Wt1 ∩Wt2 is a clique there is a vertex x ∈ Ht2 \Wt1 that sees both
u and v, forming an odd cap, again contradicting Fact 3. Therefore Ht2 must be bipartite.
We will show that in this case Ut2 ⊆ Ut1 .

First assume there is a vertex x ∈ Ut2 \ Ut1 ; once again uv is contained in some even
hole in Ht1 . We know x sees u and v, so it follows from Lemma 4 that x sees all of every
even hole containing uv. In fact, by repeating this argument we can see that x sees all of
the block of Ht1 containing uv, which is all of Ht1 since Ht1 is 2-connected. Since Wt1 ∩Wt2

is a clique cutset, it must contain x, therefore x ∈ Wt1 and everything in Ut1 sees x, so x
is universal in Wt1 , a contradiction since x ∈ Ut2 \ Ut1 . Therefore no such x can exist and
Ut2 ⊆ Ut1 . Observe now that (Wt1 ∩ Wt2) \ Ut1 ⊆ Ht1 ∩Ht2 ; since in this case {u, v} ⊆ Ht2

we can deduce that Ht1 is also bipartite by applying an argument symmetric to the one
used to show that Ht2 is bipartite. Similarly, we can show that Ut1 ⊆ Ut2 by applying
an argument symmetric to the one used to show that Ut2 ⊆ Ut1 , so Ut1 = Ut2 . But this
contradicts the construction of [T,W] because t1t2 was not contracted, therefore [T,W]
satisfies (C4) and the proof is complete.

4 The Dynamic Programming

Suppose we have a family of graphs F for which we can solve the maximum-weight stable
set problem efficiently. If G is the family of graphs which can be constructed by pasting
together members of F on cliques, we can efficiently solve the same problem for any graph

6

G ∈ G through a simple application of dynamic programming similar to that outlined
in [1]. This method involves constructing, via decomposition on clique cutsets, a subtree
decomposition in which Wt ∈ F for every node t of the tree, then working up through the
tree from the leaves, constructing partial solutions along the way.

Noting that the maximum-weight stable set problem is precisely MWIKS for k = 1,
we seek to know whether or not this general method extends to larger k. We show in
this section that we can solve MWIKS efficiently for complete multipartite graphs and
bipartite graphs joined to cliques, for any fixed k. Therefore the NP -completeness of MIBS
for clique-separable graphs, which we prove in the next section, illustrates that the method
does not extend in general. However, by adding extra restrictions to the kind of subtree
decomposition we can get and doing a little more work, we reach a partial extension of the
method in the form of a polynomial-time algorithm for MWIKS on i-triangulated graphs.

In the previous section we described how to construct a happy standard subtree de-
composition of an i-triangulated graph G in polynomial time – we now wish to make it
a rooted tree, so we choose an arbitrary node as the root and denote it r. Call the re-
sulting rooted happy standard subtree decomposition [(T, r),W]. Given a node t of T , let
Tt be the subtree rooted at t and let Gt be the graph induced by

⋃

s∈Tt
Ws. With these

preliminaries in hand we can proceed to a description of our dynamic programming method.

For each node t of T with parent u and each feasible set S ⊆ Wt ∩ Wu, we wish
to compute BS(Gt), which we define to be an arbitrary MWIKS B of Gt subject to the
constraint that B ∩ (Wt ∩ Wu) = S. For a node t of T , we define the set Bt of k-partite
induced subgraphs of Gt as follows:

Bt = {BS(Gt) | S ⊆ Wt ∩ Wu, 0 ≤ |S| ≤ k}.

We can think of Bt as the part of the dynamic programming table corresponding to the
node t since any k-partite induced subgraph of G contains at most k vertices in any clique.
With this in mind, we find Bt for each node t, starting with the leaves and working our
way up the tree. Suppose we are given Bsi

for every child si of t and a fixed subset S of
Wu ∩ Wt of size at most k. As the set Bt contains at most |Wt|

k + 1 = O(nk) elements,
to compute Bt in polynomial time it is necessary and sufficient to compute each BS(Gt) in
polynomial time. First consider the case in which t is a leaf.

Lemma 7. Given a leaf t of [(T, r),W] with parent u and a subset S of Gt such that

|S ∩ Ht| ≤ 1, we can find BS(Gt) in polynomial time.

Proof. If |S ∩ Ht| = 0, the problem is equivalent to that of finding a maximum-weight
(k − |S|)-partite subgraph of Gt \ S, which is also a base graph. If Gt \ S is a complete

7

multipartite graph (note that this includes the case where Gt \ S is a clique), then we take
the heaviest k − |S| parts of Gt \ S. If Gt \ S is a 2-connected bipartite subgraph H joined
to a clique U , then for 0 ≤ l ≤ 2, we consider a maximum-weight l-partite subgraph of
H along with the k − |S| − l heaviest vertices in U , then take the heaviest graph over our
choices of l. This can be done in polynomial time for l = 1 [7]; the cases l = 0 and l = 2
are trivial.

If S ∩Ht is a vertex v, we can solve the problem easily when Gt \ (S − v) is a complete
multipartite graph by taking the k − |S| heaviest parts that do not intersect with S, along
with all parts that do intersect with S. If Gt \ (S − v) is a 2-connected bipartite graph
H joined to a clique U , we can solve the problem as before by finding a maximum-weight
l-partite subgraph of H subject to the constraint that the subgraph contains v. Clearly
this makes the case l = 0 irrelevant, and the case l = 2 is still trivial (take all of H).
When l = 1 we are looking for a maximum-weight stable set of H containing v, which is a
maximum-weight stable set of H − v − N(v) together with v.

We now consider the case where t is not a leaf. We will reduce the problem to solving
MWIKS on a base graph by reweighting the vertices.

Lemma 8. Given an internal node t of [(T, r),W] with parent u and a subset S of Gt such

that |S ∩ Ht| ≤ 1, we can find BS(Gt) in polynomial time.

Proof. Given S, let S ′ ⊇ S be a given subset of S ∪Ut of size at most k whose intersection
with Wt ∩ Wu is exactly S. Note that S ′ induces a clique in Gt. We wish to find BS′(Gt);
clearly w(BS(Gt)) is the maximum over all such S ′ of w(BS′(Gt)). To this end, for any
vertex v in Ht \ S ′ we define the weight of v with respect to S ′, written wS′(v), as

wS′(v) = w(v) +
∑

Wsi
∋v

(

w(B(S′∩Wsi
)∪{v}(Gsi

) − v) − w(BS′∩Ws
i
(Gsi

))
)

.

Thus the weight of v with respect to S ′ represents the weight advantage we gain in
⋃

i Gsi
by putting v in an IKS of Gt whose intersection with S ∪ Ut is exactly S ′. Since we

want to maximize this advantage given S ′, intuition suggests that BS′(Gt) ∩ Wt will be a
MWIKS of Wt, considering weights with respect to S ′ instead of the standard weights. We
will show that this is indeed the case.

To see this, consider an IKS B of Gt whose intersection with Ht \ S ′ is X and which
has maximum weight subject to this constraint. The weight of B is exactly

8

w(S ′) +
∑

v∈X

w(v) +
∑

Wsi
∋v

w
(

B(S′∩Wsi
)∪{v}(Gsi

) − ((S ′ ∩ Wsi
) ∪ {v})

)

+
∑

i s.t. X∩Wsi
=∅

w(BS′∩Wsi
(Gsi

) − (S ′ ∩ Wsi
)).

Now consider a vertex u ∈ Wt \ (Ut∪S ′∪X) such that X ′ = X ∪{u} is k-partite, along
with an IKS B′ of Gt whose intersection with Wt \ (Ut ∪S ′) is X ′ and which has maximum
weight subject to this constraint. The weight of B′ is

w(S ′) +
∑

v∈X′

w(v) +
∑

Ws
i
∋v

w
(

B(S′∩Wsi
)∪{v}(Gsi

) − ((S ′ ∩ Wsi
) ∪ {v})

)

+
∑

i s.t. X′∩Wsi
=∅

w(BS′∩Wsi
(Gsi

) − (S ′ ∩ Wsi
))

= w(B) + w(u) +
∑

Wsi
∋u

(

w(B(S′∩Wsi
)∪{u}(Gsi

) − u) − w(BS′∩Wsi
(Gsi

))
)

= w(B) + wS′(u).

Define Gt,S′, as the subgraph of G induced by Wt with each vertex v ∈ Ht \ S ′ given
weight wS′(v) and each vertex v ∈ S ′ ∪ Ut given weight w(v). It is now clear that we can
find BS′(Gt) by fixing its intersection with Wt to be a MWIKS of Gt,S′ whose intersection
with S ∪ Ut is S ′. It is easy to construct Gt,S′ in polynomial time, and once we have done
so we can find a MWIKS of it in polynomial time as per Lemma 7. After that, we need
only consult Bsi

for each child si of t to construct BS′(Gt). Since |S ′| ≤ k there are O(nk)
choices of S ′, so we can construct BS(Gt) in polynomial time.

We are now equipped to prove Theorem 1.

Proof of Theorem 1. By the previous two lemmas, we can efficiently construct the set Bt

for any node t 6= r provided that we have already constructed Bsi
for each child si of t. By

making a postorder traversal of T we can do this for all t 6= r in polynomial time as we go:
since [(T, r),W] is a standard subtree decomposition, it follows that T contains at most n
nodes. Once this is done we can construct Br by making a dummy parent r′ of r such that
Wr′ = ∅. The maximum-weight (in fact, the only) element of Br is a MWIKS of G.

9

5 Clique-separable graphs

In this section we prove Theorem 2 via a polynomial-time reduction to the maximum stable
set problem – recall that Theorem 2 states that the problem of finding a maximum-size
induced bipartite subgraph (MIBS) of a clique-separable graph is NP -complete. Let us
formally state the two decision problems that we consider.

Max-CS-MIBS

Instance: A clique-separable graph G and an integer k.
Question: Does G have an induced bipartite subgraph containing at least k vertices?

Max-SS

Instance: A simple graph G and an integer k.
Question: Does G have a stable set of size at least k?

The problem Max-SS is well-known to be NP -complete [3], so we need only show that
given a graph G and an integer k, we can construct, in polynomial time, a clique-separable
graph H ′ with an associated integer k′ such that H ′ has an induced bipartite subgraph on
at least k′ vertices if and only if G has a stable set of size at least k. Forthwith the details.

Proof of Theorem 2. Consider a graph G. Create an auxiliary bipartite graph H whose
vertex set is {vA, vB|v ∈ V (G)} and which has edge vAvB corresponding to each v ∈ V (G),
and two edges uAvB and vAuB corresponding to each edge uv of G.

Extend H to a graph H ′ by

1. adding for each edge e of H corresponding to an edge of G, a vertex xe adjacent to
both endpoints of e,

2. adding for each vertex v of G, three vertices xv, yv, and zv and the edges xvyv, yvzv,
xvvA, zvvB, yvvA, and yvvB.

Note that H ′ is clique-separable, as it arises from the bipartite graph H by repeatedly
pasting triangles onto edges.

We claim that the largest induced bipartite subgraph in H ′ has size 3|V (G)|+2|E(G)|+
α(G), where α(G) is the size of the largest stable set in G. It follows that letting k′ =
3|V (G)|+ 2|E(G)|+ k, H ′ has an induced bipartite subgraph on at least k′ vertices if and
only if G has a stable set of size at least k.

To prove our claim, we choose a largest induced bipartite subgraph F of H ′ that mini-
mizes the number of vertices of F in H .

10

Suppose that xe /∈ V (F) for some edge e ∈ E(H) with endpoints a and b. Since F is
maximum, both a and b must be in V (F). But (V (F)\a)∪xe induces a bipartite subgraph
in H ′ since in this subgraph xe must have degree one. This contradicts our choice of F , so
xe ∈ V (F) for every edge e ∈ E(H). Furthermore, at most one endpoint of e is in V (F),
since the two endpoints form induce a triangle with xe.

Consider a vertex v of G such that vA is in V (F). At most one of xv, yv can be in V (F).
Also, V (F) \ vA \ vB + xv + yv is bipartite as xv, yv, and zv induce a bipartite component
of H ′ \ vA \ vB. Since F is maximum, we can conclude that vB is in V (F). By a symmetric
argument, we see that either both or neither of vA and vB are in V (F) for every v ∈ V (G).

By the above remarks, V (F) ∩ V (H) is {vA, vB|v ∈ S} for some set S ⊂ V (G), and S
must be stable. It follows that V (F) is a subset of

{xv, zv, vA, vB|v ∈ S}

∪ {xv, yv, zv|v /∈ S}

∪ {xe|e ∈ E(H), 6 ∃v ∈ V (G) s.t. e = vAvB}.

Hence |V (F)| ≤ 4|S| + 3|V (G) \ S| + 2|E(G)| ≤ α + 3|V (G)| + 2|E(G)|.
On the other hand, for any stable set S of G, letting Z be

{xv, zv, vA, vB|v ∈ S}

∪ {xv, yv, zv|v /∈ S}

∪ {xe|e ∈ E(H), 6 ∃v ∈ V (G) s.t. e = vAvB},

we have that Z induces a bipartite subgraph in H ′. Indeed it is a forest, all of whose
vertices are leaves except for yv for v ∈ V (G) \ S and vA, vB for v ∈ S. Letting S be
a maximum stable set of G, we reach an induced bipartite subgraph of H ′ containing
3|V (G)| + 2|E(G)| + α(G) vertices. This completes the proof of our claim.

References

[1] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11(1–2):1–22,
1993.

[2] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph
theorem. Annals of Mathematics. To appear.

11

[3] M. R. Garey and D. S. Johnson. Computers and Intractability – A Guide to the Theory

of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[4] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16:47–56, 1974.

[5] J. H̊astad. Clique is hard to approximate within n1−ǫ. Acta Mathematica, 182:105–142,
1999.

[6] A. Panconesi and D. Ranjan. Quantifiers and approximation. Theoretical Computer

Science, 107:145–163, 1993.

[7] Sue Whitesides. A method for solving certain graph recognition and optimization prob-
lems, with applications to perfect graphs. Annals of Discrete Math, 21, 1984.

12

