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Abstract. Random binary search trees are obtained by recursively inserting the elements
σ(1), σ(2), . . . , σ(n) of a uniformly random permutation σ of [n] = {1, . . . , n} into a binary
search tree data structure. Devroye (1986) proved that the height of such trees is asymptotically
of order c∗ logn, where c∗ = 4.311 . . . is the unique solution of c log((2e)/c) = 1 with c ≥ 2. In
this paper, we study the structure of binary search trees Tn,q built from Mallows permutations.
A Mallows(q) permutation is a random permutation of [n] = {1, . . . , n} whose probability is
proportional to qInv(σ), where Inv(σ) = #{i < j : σ(i) > σ(j)}. This model generalizes random
binary search trees, since Mallows(q) permutations with q = 1 are uniformly distributed. The
laws of Tn,q and Tn,q−1 are related by a simple symmetry (switching the roles of the left and
right children), so it suffices to restrict our attention to q ≤ 1.

We show that, for q ∈ [0, 1], the height of Tn,q is asymptotically (1+o(1))(c∗ logn+n(1−q)) in
probability. This yields three regimes of behaviour for the height of Tn,q , depending on whether
n(1− q)/ logn tends to zero, tends to infinity, or remains bounded away from zero and infinity.
In particular, when n(1 − q)/ logn tends to zero, the height of Tn,q is asymptotically of order
c∗ logn, like it is for random binary search trees. Finally, when n(1− q)/ logn tends to infinity,
we prove stronger tail bounds and distributional limit theorems for the height of Tn,q .
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1. Introduction

Let T∞ = {∅} ∪
⋃
k≥0{0, 1}k be the complete infinite rooted binary tree, with nodes at depth

n ≥ 1 indexed by strings u = u1, . . . , uk ∈ {0, 1}k, so u has parent u1, . . . , uk−1 and children u0
and u1. For a set V ⊂ T∞ and node u ∈ T∞, we write uV = {uv, v ∈ V }.

For u ∈ {0, 1}k, we write |u| = k and say that u has depth k. A subtree of T∞ (or just “a tree”,
for short) is a set T ⊂ T∞ which is connected when viewed as a subgraph of T∞. For any subtree
T of T∞, the root of T is defined to be the unique element of T of minimum depth. For a tree T
and a node u ∈ T∞, we write T (u) = (uT∞)∩T for the subtree of T rooted at u; when ∅ ∈ T , then
T (u) = ∅ if and only if u /∈ T . Finally, for T ⊂ T∞, we write h(T ) = sup(|u|, u ∈ T )−inf(|u|, u ∈ T );
if T is a tree then h(T ) is the greatest distance of any node of T from the root of T .

For n ≥ 1 we write [n] = {1, 2, . . . , n}. Given an injective function f : [n] → Z+ := {1, 2, . . .},
the binary search tree T 〈f〉 is the subtree of T∞ defined inductively as follows (see Figure 1 for
an example). If n = 0, then T 〈f〉 := ∅ is the empty tree. Otherwise, view f as a sequence of
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distinct integers f =
(
f(1), f(2), ..., f(n)

)
, and write f− (respectively f+) for the subsequence of f

consisting of terms f(i) such that f(i) < f(1) (respectively f(i) > f(1)), listed in the same order
as in f . Then set T 〈f〉 := {∅} ∪

(
0T 〈f−〉

)
∪
(
1T 〈f+〉

)
.

We label the nodes of T 〈f〉 by the elements of {f(1), f(2), ..., f(n)} as follows. Set τ〈f〉(∅) =
f(1); then, inductively, for nodes u ∈ T 〈f〉 with |u| ≥ 1, set

τ〈f〉(u) =
{
τ〈f−〉(v) if u = 0v
τ〈f+〉(v) if u = 1v

The definitions of T 〈f〉 and τ〈f〉 easily extend to injective functions f : Z+ 7→ Z+, by considering
the sequence

(
f(i), i ≥ 1

)
.
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Figure 1. The labelled tree
(
T 〈f〉, τ〈f〉

)
for f = (4, 1, 9, 7, 2, 6, 12, 8). The se-

quences f− and f+ are (1, 2) and (9, 7, 6, 12, 8) respectively. The subtree in blue
corresponds to T 〈f−〉 and the one in red corresponds to T 〈f+〉. The correspond-
ing labels given by τ〈f〉 are written on the nodes; so, for example, τ〈f〉(01) = 2
and τ〈f〉(11) = 12.

In this article, we study the heights of binary search trees built from random, Mallows-distributed
permutations. For n ≥ 0 and q ∈ [0,∞), the Mallows distribution with parameters n and q
(introduced in [22]) is the probability measure πn,q on the symmetric group Sn given by

πn,q(σ) := Z−1
n,q · qInv(σ) .

Here Inv(σ) :=
∣∣{1 ≤ i < j ≤ n : σ(i) > σ(j)

}∣∣ is the number of inversions of σ and Zn,q :=∑
σ∈Sn q

Inv(σ) is a normalizing constant.
For a permutation σ = (σ(1), . . . , σ(n)), the reversed permutation σ′ = (n+1−σ(1), . . . , n+1−

σ(n)) has Inv(σ′) =
(
n
2
)
− Inv(σ). This implies that, if σ is a πn,q-distributed random permutation,

then its reversal is πn, 1
q
-distributed. The effect of this reversal on the associated binary search

trees is also easy to understand: Tσ′ is obtained from Tσ by swapping all left and right subtrees.
Since the map q 7→ 1

q bijectively sends (1,∞) to (0, 1), it follows from these observations that we
may as well restrict our attention to q ∈ [0, 1]. Note that when q = 0, πn,q assigns weight 1 to the
identity permutation and when q = 1, πn,q is the uniform distribution on Sn.

We prove the following results. In what follows, we write Tn,q for a random tree with the
distribution of T 〈σ〉 for σ a πn,q-distributed random permutation, and we write MT(n, q) for the
law of such a tree; we call Tn,q a Mallows tree (with parameters n and q). Also, we let c∗ = 4.311 . . .
be the unique solution of c log

( 2e
c

)
= 1 with c ≥ 2.

Theorem 1.1. For any [0, 1]-valued sequence (qn)n≥0,
h(Tn,qn)

n(1− qn) + c∗ logn → 1

in probability and in Lp for any p > 0.
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When qn = 1 for all n, the trees Tn,qn are random binary search trees - the binary search
trees corresponding to uniformly random permutations. This case of Theorem 1.1 implies that
h(Tn,1)
c∗ logn → 1 in probability, which is a well-known result of Devroye [11].

On the other hand, when qn = q ∈ [0, 1) for all n, Theorem 1.1 implies that h(Tn,qn) =(
1− q + oP(1)

)
n. In this case, Tn,q consists of a “rightward” path of length

(
1− q + oP(1)

)
n, with

left subtrees of height OP
(

log 1
1−q
)
hanging from each of its nodes. (The notation OP and oP is

defined in Section 1.2, below.)
When (qn)n≥0 is small enough that the first term in the denominator overwhelms the second,

we are able to strengthen the above result, obtaining strong bounds on the rate of convergence.

Theorem 1.2. Fix any [0, 1]-valued sequence (qn)n≥0 such that n(1 − qn)/ logn → ∞. Then for
any ε > 0 and λ > 0,

P
(∣∣∣∣ h(Tn,qn)
n(1− qn) − 1

∣∣∣∣ > ε

)
= O

(
1
nλ

)
.

When the first term in the denominator is dominant and also nqn →∞, we prove a central limit
theorem for the height.

Theorem 1.3. Fix any [0, 1]-valued sequence (qn)n≥0 such that n(1− qn)/ logn→∞ and nqn →
∞. Then

h(Tn,qn)− n(1− qn)− c∗ log
(
(1− qn)−1)√

n(1− qn)qn
d−→ Normal(0, 1) .

Finally when nqn = O(1), we prove a Poisson limit theorem for the height (after re-centering
but without re-scaling).

Theorem 1.4. Let (qn)n≥0 be any [0, 1]-valued sequence such that nqn → λ ∈ [0,∞). Then

n− 1− h(Tn,qn) d−→ Poisson(λ) .

The next subsection briefly discusses related literature on random trees and Mallows permuta-
tions. Section 1.2 then introduces some notation we need. The remainder of Section 1 describes
some of the key tools used in proving Theorem 1.1 - 1.4, and, while doing so, provides an overview
of our approach to their proofs. Theorem 1.1 is proved in three parts, depending on whether
n(1 − qn) is much smaller than, much larger than, or of the same order as logn. The arguments
for these cases are sketched in Sections 1.3 - 1.5, respectively. Since the proof of Theorem 1.2
essentially consists in extracting quantitative estimates from the proof of Theorem 1.1, we do not
spend much space on it in the introduction. Finally, Section 1.6 describes our arguments for our
distributional limit results, Theorem 1.3 and 1.4.

1.1. Related work. The Mallows permutation model was first introduced by C.L. Mallows [22]
in the context of ranking theory. The study of its probabilistic properties has taken off in the past
decade; previously studied properties of Mallows permutations include the length of the longest
increasing subsequence [4, 6, 23], the cycle structure [10, 16, 20, 24, 25], relations to exchange-
ability [17, 18] and to random matchings [3], random dynamics with Mallows permutations as
stationary distribution [5, 12], and thermodynamic properties of Mallows measures [29, 30].

Since our work is focused on random trees built from Mallows permutations, it is also natural
to situate it in the context of the literature on random trees. This is a vast literature and we
only discuss a smattering of it. As mentioned above, Devroye [11] proved that the height hn of
a random binary search tree of size n is asymptotically

(
c∗ + oP(1)

)
logn; this built on previous

work of Pittel [26], who proved that hn/ logn→ α ∈ (0,∞) almost surely, but did not identify the
constant α. Random binary search trees lie within the more general increasing tree model, for which
the first order behaviour of the height has been well-characterized [8, 14]. Building on Devroye’s
results, Reed [27] and Drmota [13] found two conceptually different proofs that the variance of hn
is bounded in n.

The study of random binary trees, random increasing trees, and their ilk, is intimately connected
to the properties of branching random walk; results on the height of random trees are often ex-
tracted (at varying levels of difficulty) from results on the maximal displacement of a corresponding
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branching random walk. For example, the results of [8, 9, 11] rely on the Hammersley-Kingman-
Biggins theorem [7, 19, 21], which provides a law of large numbers for the maximum of branching
random walks; and the arguments of Reed [27] proceeds by relating the height of binary search
trees to the minimal position in a binary branching random walk with exponential step distribu-
tion. Further related results on minima in branching random walks can be found in [1, 2]. The
lecture notes [28] provide an excellent introduction to the theory of branching random walks.

Finally, Mallows trees were introduced by S.N. Evans, R. Grübel, and A. Wakolbinger [15], who
studied properties of the tree and generating processes. They showed, among other results, that
Mallows trees are a specific case of trickle down process; that is to say, they can be generated in a
sequential manner, by adding one leaf at a time.

1.2. Notation. For functions f : R→ R, g : R→ R or f : N→ R, g : N→ R, we write f = O(g)
to mean f(n) = O(g(n)) as n → ∞ unless a different limit is specified. If f = O(g) then we also
write g = Ω(f). We also use the notation f = o(g) and its synonym g = ω(f). If f = o(g) then we
will also write f � g and g � f . We write f ∼ g to mean that f(n) = (1 + o(1))g(n) as n→∞.

For sequences of random variables (Xn)n≥0 and (Yn)n≥0, we write Xn = OP(Yn) if, for all ε > 0,
there exists K > 0 such that

lim sup
n≥0

P
(
|Xn| ≥ KYn

)
< ε .

We write Xn = oP(Yn) if, for all ε > 0,

lim
n→∞

P
(
|Xn| > εYn

)
= 0 .

For random variables X and Y , we write X d= Y if X and Y have the same distribution. We
write X � Y , or equivalently Y � X, if for all x ∈ R, we have

P
(
X ≥ x

)
≤ P

(
Y ≥ x

)
;

in this case we say X is stochastically smaller than Y .

1.3. Mallows trees and random binary search trees. Many properties of random binary
search trees can be extended to Mallows trees. Perhaps the most fundamental of these are the
branching property, which means that disjoint subtrees of a Mallows tree are conditionally indepen-
dent given their sizes, and the projective consistency, which is the fact that subtrees of Mallows trees
are again Mallows trees. The following proposition, due to Evans, Grübel and Wakolbinger, [15],
formalizes these properties, and additionally describes the joint distribution of the sizes of the left
and right subtrees of the root in a Mallows tree.

Proposition 1.5 ([15, Section 7]). For all q ∈ [0, 1] and n ≥ 1, for any 0 ≤ k ≤ n− 1, we have

P
(∣∣Tn,q(0)

∣∣ = k
)

= P
(∣∣Tn,q(1)

∣∣ = n− 1− k
)

=
{

(1−q)qk
1−qn if q ∈ [0, 1)

1
n if q = 1

.

Moreover, Tn,q(0) and Tn,q(1) are conditionally independent Mallows trees given their sizes. That
is, for every 0 ≤ k ≤ n− 1, for any trees t0 and t1 rooted at ∅, of respective sizes k and n− 1− k,
we have

P
(
Tn,q(0) = 0t0, Tn,q(1) = 1t1

∣∣∣ ∣∣Tn,q(0)
∣∣ = k

)
= P

(
Tk,q = t0

)
P
(
Tn−1−k,q = t1

)
.

Conversely, these properties characterize Mallows trees.

From this proposition, one can see that the split between left and right subtree is not symmet-
ric; the right subtree at any node is stochastically larger than its left subtree. This observation
straightforwardly leads to the following proposition, stating that the rightmost path in Tn,q is the
stochastically longest path.

Proposition 1.6. For all q ∈ [0, 1] and n ≥ 1, for all v ∈ T∞,

P
(
v ∈ Tn,q

)
≤ P

(
1|v| ∈ Tn,q

)
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We prove Proposition 1.6 in Section 2.2. With the result of this last proposition, we can bound
the height of Tn,qn from above by using a union bound over all nodes at a given depth, as

P
(
h(Tn,qn) ≥ h

)
≤

∑
v∈T∞:|v|=h

P
(
v ∈ Tn,qn

)
≤ 2hP

(
1h ∈ Tn,qn

)
.

When n(1−qn)/ logn→ 0, this bound is tight enough to prove the upper bound of Theorem 1.1. It
will also be useful in proving that

(( h(Tn,qn )
n(1−qn)+c∗ logn

)p)
n≥1 is uniformly integrable for any sequence

(qn)n≥0, thereby extending the convergence in probability to the Lp convergence.
For (qn)n≥0 such that n(1− qn)/ logn→ 0, we also use a comparison argument, albeit a slightly

more complicated one, to prove the lower bound. At the heart of the argument is the following
computation. Let U be Uniform([0, 1]). Then, for any q ∈ [0, 1), n ≥ 1 and 0 ≤ k ≤ n− 1,

P
(⌊

log (1− U(1− qn))
log q

⌋
= k

)
= P

(
k ≤ log (1− U(1− qn))

log q < k + 1
)

= P
(

1− qk

1− qn ≤ U <
1− qk+1

1− qn

)
= (1− q)qk

1− qn

This identity and Proposition 1.5 together imply that we can generate a MT(n, q)-distributed tree
as follows. Let (Uv)v∈T∞ be independent Uniform([0, 1]) random variables indexed by the nodes
of T∞. Set Sn,q(∅) = n. Then, for v ∈ T∞, inductively define

Sn,q(v0) =


⌊

log(1−Uv(1−qSn,q(v)))
log q

⌋
if q ∈ (0, 1)

bSn,q(v)Uvc if q = 1
0 if q = 0

and
Sn,q(v1) = Sn,q(v)− 1− Sn,q(v0) .

Then the tree Tn,q =
{
v ∈ T∞ : Sn,q(v) ≥ 1

}
is MT(n, q)-distributed, and Sn,q corresponds to the

size of the subtree at any given node: Sn,q(u) =
∣∣Tn,q(u)

∣∣.
This construction couples the trees (Tn,q) as both q and n vary. Using this coupling, we will be

able to prove the following proposition.

Proposition 1.7. For all q ∈ [0, 1) and n ≥ 1, for any 0 ≤ ` ≤ n, with m =
⌊

1−qn
1−q`+2

⌋
, then

P
(
h(Tn,q) ≤ `

)
≤ P

(
h(Tm,1) ≤ `

)
.

The proof of Proposition 1.7 can be found in Section 2.3. When (qn)n≥0 is such that n(1 −
qn)/ logn → 0, this stochastic bound combined with results of Devroye [11] will yield the desired
lower bound.

1.4. Right depth and height of Mallows trees. The results of the previous section, relating
Mallows trees to random binary search trees, give tight bounds on the height only when n(1 −
qn)/ logn→ 0; in this case the two tree models show strong resemblance. When (qn)n≥0 does not
satisfy this condition, the rightmost path of a Mallows tree is playing a more important role in its
height. We now study the properties of this path and its connection to the rest of the tree.

Note that if f : [n] → Z+ is an injective function and f ′ = f |[n−1], then T 〈f ′〉 is the subtree
of T 〈f〉 consisting of the nodes with labels f(1), . . . , f(n − 1). More precisely, T 〈f ′〉 = {v ∈ Tf :
τ〈f〉(v) 6= f(n)}, and τ〈f ′〉 is the restriction of τ〈f〉 to T 〈f ′〉. For example, in Figure 1, with
f ′ = (f(1), . . . , f(7)) = (4, 1, 9, 7, 2, 6, 12), the tree T 〈f ′〉 is obtained from the depicted tree T (f)
by removing the node with label 8. We next use this fact to describe an explicit construction of a
nested sequence of Mallows trees, which will be useful for our analysis.

Given an infinite {0, 1}-valued matrix b = (bi,j)i,j≥1 with infinitely many ones in every row,
define an injective function f b = (f b(i), i ≥ 1) as follows. Let f b(1) = inf{j ∈ N : b1,j = 1}. Having
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defined (f b(k), 1 ≤ k < i), let F bi−1 = {f b(k), 1 ≤ k < i} and set f b(i) = inf{j ∈ N\F bi−1 : bi,j = 1}.
We write T bn as shorthand for T 〈f bn〉, where f bn = (f b(i), 1 ≤ i ≤ n). An example is shown in
Figure 2. For the matrix b shown in that figure, we obtain f b8 = (4, 1, 9, 7, 2, 6, 12, 8), so the tree
T b8 is precisely the binary search tree shown in Figure 1.

bi,j

1

2

3

4

5

6

7

8
...

1 2 3 4 5 6 7 8 9 10 11 12 13 · · ·

0 0 0 1 1 0 0 1 1 0 1 0 0 · · ·

1 0 1 0 0 1 1 0 0 1 0 0 1
0 0 0 1 0 0 0 0 1 1 1 0 0 · · ·

0 0 0 0 0 0 1 0 1 0 0 1 1 · · ·

0 1 1 0 1 0 1 1 0 0 0 0 1 · · ·

1 1 0 0 0 1 0 0 1 0 0 1 0 · · ·

0 0 0 1 0 1 1 0 0 0 0 1 0 · · ·

1 0 0 1 0 0 1 1 0 1 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

. . .

4

1

9

7

2

6

12

8

Figure 2. An example of the top-left corner of an infinite {0, 1}-valued matrix b =
(bi,j)i,j≥1. The boxed 1’s are in position (i, f b(i)) and their column numbers are
indicated as blue subscripts. For a given column i, the numbers in red correspond
to positions (i, j) where j ∈ F bi−1 and can be found below the boxed 1’s; the boxed
1 in row i is always the first non-red 1 in row i.

The infinite b-model for trees is the sequence of (labelled) trees
(
T bn
)
n≥0, which by construction

is increasing, in that T bn is a subtree of T bn+1 for all n ≥ 0. The corresponding sequence of labelling
functions is defined by (τ bn)n≥0 :=

(
τ〈f bn〉

)
n≥0. We sometimes omit the matrix b when it is clear

from context. The utility of this construction is explained by the following proposition.

Proposition 1.8. Fix q ∈ [0, 1) and let B =
(
Bi,j

)
i,j≥1 have independent Bernoulli(1 − q)

entries, and for n ≥ 1, let σBn ∈ Sn be the permutation of [n] defined by σBn (i) = rank
{
fBn (i), FBn

}
.

Then σBn is πn,q-distributed for all n ≥ 0.

We prove Proposition 1.8 in Section 3.1. It follows that for B as in the proposition, TBn is
MT(n, q)-distributed for all n. The random trees in the sequence (TBn )n≥0 may be viewed as the
successive states of a transient Markov chain taking values in the set of finite subtrees of T∞. This
chain was already defined in [15], where aspects of its asymptotic behaviour were studied; however,
the observation that its one-dimensional marginals are all Mallows-distributed appears to be new.

The next corollary is a direct consequence of Proposition 1.8 and the fact that (T bn)n≥0 is
increasing for all b.

Corollary 1.9. Let n ≥ 0 and q ∈ [0, 1]. Then, for all u ∈ T∞
P
(
u ∈ Tn,q

)
≤ P

(
u ∈ Tn+1,q

)
.

We write TB =
⋃
n≥0 T

B
n for the infinite tree which is the increasing limit of the sequence

(TBn )n≥0, and τB for the corresponding labelling. It is immediate from the construction that
TB = T 〈fB〉.

For B as in the proposition, the random function fB : Z+ → Z+ defined previously is a.s.
a bijection, and its law is the so-called Mallows(q) distribution on S∞ = {σ : Z+ → Z+ :
σ a permutation}, introduced in [18]; the fact that fB is Mallows(q)-distributed was proved in
[16].

Let MB
0 = 0 and for n ≥ 1, let MB

n = max
(
fB(1), . . . , fB(n)

)
. Then set RB0 = 0 and for n ≥ 1,

let RBn = #{i ∈ [n] : MB
i > MB

i−1} be the number of records in the sequence
(
fB(1), . . . , fB(n)

)
.
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Note that RBn is precisely the right depth of TBn , i.e., RBn = max{d : 1d ∈ TBn }. Also, for all k ≥ 1,
if RBn−1 = k − 1 and RBn = k then τB(1k) = MB

n .
For any k ≥ 0 and any node u ∈ TB(1k0), we have τB(1k−1) < τB(u) < τB(1k); here we write

10 = ∅ and for k = 0, set τB(1k−1) = 0. Since fB is a bijection, it follows that the subtree
TB(1k0) contains exactly τB(1k) − τB(1k−1) − 1 nodes, and the labels assigned to these nodes
by τB are precisely the elements of the set

{
τB(1k−1) + 1, . . . , τB(1k) − 1

}
. Moreover, since any

infinite sequence of positive integers contains infinitely many records, necessarily TB contains the
infinite rightward path PR := {1k, k ≥ 0}, and the left subtrees

(
TB(1k0), k ≥ 0

)
hanging from PR

have respective sizes
(
τB(1k)− τB(1k−1)− 1, k ≥ 1

)
.

Much of our analysis will be based on the decompositions of TB and TBn as

TB = PR ∪
⋃
k≥0

TB
(
1k0
)
,

TBn = {1k, 0 ≤ k ≤ RBn } ∪
⋃

0≤k≤RBn

TBn
(
1k0
)
.

From the second decomposition, it is immediate that

h(Tn,q)
d= h(TBn ) = max

0≤k≤RBn

{
h
(
TBn
(
1k0
))

+ k + 1
}
≤ max

0≤k≤RBn

{
h
(
TB
(
1k0
))

+ k + 1
}

(1.1)

In order to use (1.1) to get useful information about the height, we need to understand the
distributions of RBn and of the subtrees TBn (1k0) and TB(1k0). The last of these is the easiest to
describe. We say a random variable G is Geometric(c)-distributed if P(G = k) = (1 − c)kc for
k ∈ N = {0, 1, 2, ...}.

Lemma 1.10. Fix q ∈ [0, 1) and let B =
(
Bi,j

)
i,j≥1 have independent Bernoulli(1− q) entries.

Then the random trees
(
TB(1k0)

)
k≥0 are independent and identically distributed with

TB
(
1k0
) d= 1k0TG(q),q,

where G(q) is Geometric(1 − q)-distributed and is independent of the trees
(
Tn,q

)
n≥0. In other

words, for all k, n ≥ 0 and any tree t ⊆ T∞ with |t| = n, we have

P
(
TB
(
1k0
)

= 1k0t
)

= qn(1− q) · P
(
Tn,q = t

)
.

We prove Lemma 1.10 in Section 3.1. Combined with (1.1), this lemma yields a key distributional
upper bound on h(Tn,q). We now have

h(Tn,q)
d= max

0≤k≤RBn

{
h
(
TBn
(
1k0
))

+ k + 1
}
≤ max

0≤k≤RBn

{
h
(
TB
(
1k0
))

+ k + 1
}

= RBn + 1 + max
0≤k≤RBn

{
h
(
TB
(
1R

B
n−k0

))
− k
}

d= RBn + 1 + max
0≤k≤RBn

{
h
(
TB
(
1k0
))
− k
}

≤ RBn + 1 + sup
k≥0

{
h
(
TB
(
1k0
))
− k
}
.

Considering that RBn corresponds to the depth of the rightmost path in TBn , we also have RBn ≤
h(TBn ) d= h(Tn,q). In combination with (1.1), this yields that

RBn � h(Tn,q) � RBn + 1 + sup
k≥0

{
h
(
TB
(
1k0
))
− k
}
,(1.2)

where we recall that � denotes stochastic inequality. Lemma 1.10 tells us the trees whose heights
appear in the final supremum are independent and TG(q),q-distributed. Combining this inequality
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with a union-bound and Proposition 1.6, we now have

P
(
h(Tn,q) ≥ h

)
≤ P

(
RBn + 1 + sup

k≥0

{
h
(
TB
(
1k0
))
− k
}
≥ h

)
≤ inf

0≤`≤h

{
P
(
RBn + 1 ≥ h− `

)
+
∑
k≥0

P
(
h
(
TB(1k0)

)
≥ `+ k

)}

= inf
0≤`≤h

{
P
(
RBn + 1 ≥ h− `

)
+
∑
k≥0

P
(
h
(
TG(q),q

)
≥ `+ k

)}

≤ inf
0≤`≤h

{
P
(
RBn + 1 ≥ h− `

)
+
∑
k≥0

2k+`P
(
RBG(q) ≥ `+ k

)}
where in the final line G(q) should be understood to be independent of the random variables in
B. The preceding argument gives us a way to derive upper tail bounds on

(
h(Tn,q)

)
exclusively by

controlling the upper tails of the random variables (RBn , n ≥ 1). The next proposition is our key
tool for doing so.

Proposition 1.11. Fix q ∈ [0, 1) and let B =
(
Bi,j

)
i,j≥1 have independent Bernoulli(1 − q)

entries. Then the sequence (RBn ,MB
n )n≥0 is a Markov chain with transition probabilities given by

P
(
RBn+1 = r + k,MB

n+1 = m+ `
∣∣∣RBn = r,MB

n = m
)

=

 qm+`−n−1(1− q) if k = 1 and ` ≥ 1
1− qm−n if k = 0 and ` = 0
0 otherwise

.

Moreover, for x, y ∈ C such that q|y| < 1, we have

E
[
xR

B
n+1yM

B
n

]
= yn

∏
1≤k≤n

q + (1− q)x− qk

1− qky .

We prove Proposition 1.11 in Section 3.1. We obtain the moment generating function of RBn
from Proposition 1.11 by taking x = et and y = 1. Using the moment generating function to
control the behaviour of RBn − E[RBn ] yields Chernoff-type bounds for both the upper and lower
tail. The bounds are strong enough that they allow us to prove both the upper and lower bounds of
Theorem 1.2, implying the bounds of Theorem 1.1 when (qn)n≥0 is such that n(1−qn)/ logn→∞.
For the upper bound, the key consequence of Proposition 1.11 is the following proposition, which
allows us to control the right hand side of (1.2). It will also be used in the analysis for other ranges
of (qn)n≥0.

Proposition 1.12. There exist universal constants M , C and λ such that, for all q ∈ [0, 1) and
ξ ∈ R, we have

P

(
sup
k≥0

{
h
(
TB
(
1k0
))
− k
}
≥ c∗ log

(
1

1− q

)
+M

√
log
(

1
1− q

)
+ ξ

)
≤ Ce−λξ.

As above, c∗ is the unique solution of c log
( 2e
c

)
= 1 with c ≥ 2. The proof of this proposition

can be found in Section 3.2.

1.5. Intermediate values. The most technical part of the proof of Theorem 1.1 appears when
n(1− qn)/ logn = Θ(1). In this situation, the proof uses a combination of the techniques from the
two previous cases, when n(1− qn)/ logn→ 0 and when n(1− qn)/ logn→∞.

In order to obtain the identities and bounds in (1.2), we decomposed TBn into its rightmost
path

(
1k, 0 ≤ k ≤ RBn

)
, together with the left subtrees hanging from each of its nodes. Because

TBn
(
1R

B
n+1) = ∅, this decomposition can be rewritten as

TBn = {1k, 0 ≤ k < RBn + 1} ∪

 ⋃
0≤k<RBn+1

TBn
(
1k0
) ∪ TBn (1RBn+1)

.
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For any 0 ≤ d ≤ RBn + 1, we may similarly decompose TBn along the initial segment
(
1k, 0 ≤ k < d

)
of the rightmost path to obtain

TBn = {1k, 0 ≤ k < d} ∪

 ⋃
0≤k<d

TBn
(
1k0
) ∪ TBn (1d) .

From this decomposition, it is immediate that, for all d ≥ 0,

h(Tn,q)
d= h(TBn ) ≤ max

{
max

0≤k<d

{
h
(
TBn
(
1k0
))

+ k + 1
}
, d+ h

(
TBn
(
1d
))}

,

with equality whenever d ≤ RBn + 1. This inequality implies that, for all d ≥ 0, we have

h(Tn,q) � max
{

max
0≤k<d

{
h
(
TB
(
1k0
))

+ k + 1
}
, d+ h

(
TBn
(
1d
))}

d= d+ max
{

max
0≤k<d

{
h
(
TB
(
1k0
))
− k
}
, h
(
TBn
(
1d
))}

≤ d+ max
{

sup
k≥0

{
h
(
TB
(
1k0
))
− k
}
, h
(
TBn
(
1d
))}

;(1.3)

The first term in the maximum is the same supremum as appears in (1.2), and Proposition 1.12
gives an essentially sharp upper tail bound for this term of the form c∗ logn+OP

(√
logn

)
. Because

we aim to prove that h(Tn,qn )
n(1−qn)+c∗ logn → 1 in probability, a natural choice for d is then n(1 − qn).

This choice indeed gives the desired bound for h
(
TBn (1d)

)
, due to the following proposition.

Proposition 1.13. Let (qn)n≥0 be such that n(1− qn)/ logn = Θ(1). Then,

h
(
Tn,qn

(
1bn(1−qn)c))

c∗ logn → 1

in probability.

The proof of this proposition can be found in Section 4.4, and boils down to showing that∣∣Tn,qn(1bn(1−qn)c)∣∣ = oP(logn/(1− qn)), so that

(1− qn) ·
∣∣Tn,qn(1bn(1−qn)c)∣∣ = oP

(
log
∣∣Tn,qn(1bn(1−qn)c)∣∣) .

This proposition, combined with the upper bound on the supremum, proves the upper bound of
Theorem 1.1 when n(1− qn) = Θ(1).

To prove the corresponding lower bound, we use the simple inequality

h(Tn,q)
d= h(TBn ) ≥ d+ h

(
TBn
(
1d
))
,

which holds for any 0 ≤ d ≤ RBn + 1. Again taking d = bn(1 − qn)c, which is at most RBn with
high-probability, Proposition 1.13 then yields that h(Tn,qn) ≥ n(1− qn) +

(
c∗+ oP(1)

)
logn, which

is the lower bound of Theorem 1.1 when n(1− qn) = Θ(1).

1.6. Distributional limits. In Section 1.4, we described the strong connection between h(Tn,qn)
and the right depth RBn whenever (qn)n≥0 is such that n(1 − qn)/ logn → ∞; in this regime, we
can transfer many results on the asymptotic behaviour of (RBn )n≥0 to the sequence

(
h(Tn,qn)

)
n≥0.

If not only n(1−qn)/ logn→∞ but, more strongly, nqn → λ ∈ [0,∞), then it is straightforward
to prove that P

(
h(TBn ) = RBn

)
= 1 − o(1). In this case, by studying the characteristic function of

n− 1−RBn , it follows fairly easily that

n− 1−RBn
d−→ Poisson(λ) ,

from which Theorem 1.4 follows. The details of this argument appear in Section 5.3.
If we assume now that n(1−qn)/ logn→∞ and nqn →∞, by analyzing the moment generating

function of RBn given in Proposition 1.11, we can prove a central limit theorem for the right depth;
this is stated in the following proposition.
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Proposition 1.14. Let (qn)n≥0 be such that n(1− qn)/ logn→∞ and nqn →∞. Then
RBn − n(1− qn)− log

(
(1− qn)−1)√

n(1− qn)qn
d−→ Normal(0, 1).

The proof can be found in Section 5.1. If we furthermore assume that n(1− qn)/(logn)2 →∞,
then the log

(
(1 − qn)−1) term in the numerator of this proposition can be removed; in this case,

using (1.2) to compare h(Tn,qn) with RBn gives tight enough bounds to establish the conclusion of
Theorem 1.3.

For the remaining regime of (qn)n≥0, i.e. when n(1− qn)/ logn→∞ and n(1− qn)/(logn)2 =
O(1), both terms n(1− qn) and log

(
(1− qn)−1) contribute to the asymptotic behaviour of RBn . In

this regime, the proof of the central limit theorem for h(Tn,qn) requires a similar technique to the
one of the proof of Theorem 1.1 in the intermediate case (when n(1− qn)/ logn = Θ(1)), but with
a different choice of d.

Previously, we deterministically chose d = bn(1−qn)c. In the current setting, we instead require
d to be a random variable defined as follows. For n ≥ 0, let m = m(n) be the smallest integer such
that m(1− qn) + logm ≥ n(1− qn) and let D = D(n) = RBm + 1. The same chain of reasoning that
yielded (1.2) and (1.3) now gives us the bounds

h
(
TBn
(
1D(n))) ≤ h(TBn )−D(n) ≤ max

{
sup
k≥0

{
h
(
TB
(
1k0
))
− k
}
, h
(
TBn
(
1D(n)))}

.(1.4)

It is not hard to see that m(n) = n − (1 + o(1)) logn
1−qn and then we use Proposition 1.14 to prove

that
RBm(n) − n(1− qn)√

n(1− qn)qn
d−→ Normal(0, 1) .

Moreover, Proposition 1.12 straightforwardly implies that the supremum on the right hand side of
(1.4) is at most c∗ logn + OP

(√
logn

)
. Finally, the next proposition gives the last ingredient to

conclude the proof of Theorem 1.3 in the case n(1−qn)/ logn→∞ and n(1−qn)/(logn)2 = O(1).
Proposition 1.15. Let (qn)n≥0 be such that log

(
n(1 − qn)

)
= O

(√
logn

)
and n(1 − qn) =

ω
(√

logn
)
. For n ≥ 0, let m = m(n) = min

{
` ≥ 0 : `(1 − qn) + log ` ≥ n(1 − qn)

}
. Then,

the sequence of random variablesh
(
TBn
(
1R

B
m+1))− c∗ logn
√

logn


n≥2

is tight.
The rather technical proof of Proposition 1.15 can be found in Section 5.2. Proposition 1.15

implies that h
(
TBn (1R

B
m+1)

)
/c∗ logn → 1 in probability, which suggests some relation to Proposi-

tion 1.13. However, we did not see a simple way to give a unified statement. The reason for the
hypothesis on (qn)n≥0 in Proposition 1.15 is mainly due to an error term of order O

(√
logn

)
in

several of the asymptotic estimates which arise in our analysis.
Combining Proposition 1.14 and 1.13, the bounds in (1.2) and (1.4), and a subsequence argument

as for Theorem 1.1, we can conclude the proof of Theorem 1.3. This also concludes the sketch of
the proofs of the three theorems.

2. Connection to random binary search trees

In this section, we prove Theorem 1.1 in the case when (qn)n≥0 is such that n(1−qn)/ logn→ 0.
As explained in Section 1.3, the proof will be divided into upper and lower bound. We also prove
the following proposition, which gives a bound on the second order term for the convergence in
probability and will be useful for Theorem 1.3.
Proposition 2.1. Let (qn)n≥0 be taking values in [0, 1) such that n(1− qn)/ logn→ 0. Then, for
any sequence (γn)n≥0 such that γn/

(
n(1− qn) ∨

√
logn

)
→∞, we have

lim
n→∞

P
(∣∣∣h(Tn,qn)− c∗ logn

∣∣∣ ≥ γn) = 0.
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2.1. A useful function. Before proving Proposition 2.1, we introduce and study a very useful
function, which will play a role in the analysis for all the regimes of (qn)n≥0. For n ≥ 0, q ∈ [0, 1)
and α ≥ 1, let

µα(n, q) :=
∑

1<k≤n

(
1− q
1− qk

)α
.

The following fact gives a first indication of the importance of µα.
Fact 2.2. For all n ≥ 0 and q ∈ [0, 1), with B = (Bi,j)i,j≥1 having independent Bernoulli(1− q)
entries, we have

E
[
RBn
]

= µ1(n, q)
and

Var
[
RBn
]

= µ1(n, q)− µ2(n, q) .

More generally, there is a formula relating the expectation of (RBn )α to the functions µi for
i ≤ α, as given in the next proposition.
Proposition 2.3. Let n ≥ 0, q ∈ [0, 1), and B = (Bi,j)i,j≥1 have independent Bernoulli(1− q)
entries. Write Sβ = {(s1, . . . , sβ) : s1 + 2s2 + · · · + βsβ = β} and for s = (s1, . . . , sβ) ∈ Sβ, let
|s| = s1 + · · ·+ sβ. Then, for all integer α ≥ 1, we have

E
[(
RBn
)α] =

∑
1≤β≤α∧(n−1)

∑
s∈Sβ

(−1)β+|s|β!
{
α

β

} ∏
1≤i≤β

µi(n, q)si
isisi!

,

where
({
α
β

})
α,β≥1 are Stirling numbers of the second kind.

The proofs of Fact 2.2 and Proposition 2.3 can be found in Appendix A. Because µ1(n, q) relates
to the expected value of RBn , it can also be used to give concentration bounds on the right depth,
as shown below.
Lemma 2.4. Fix n ≥ 0 and q ∈ [0, 1). Then, for any c > 1, we have

P
(
RBn > cµ1(n, q)

)
≤ exp

([
c log

(e
c

)
− 1
]
µ1(n, q)

)
and

P
(
RBn < c−1µ1(n, q)

)
≤ exp

([
c−1 log

(
ce
)
− 1
]
µ1(n, q)

)
Proof. The proof simply follows from Chernoff’s bounds. For all t > 0, by Proposition 1.11, we
have

P
(
RBn > cµ1(n, q)

)
≤

E
[
etR

B
n

]
etcµ1(n,q)

= e−tcµ1(n,q)
∏

1<k≤n

(
1 +

(
et − 1

) 1− q
1− qk

)
.

By the convexity of the exponential function, we have 1 + x ≤ ex, hence∏
1<k≤n

(
1 +

(
et − 1

) 1− q
1− qk

)
≤

∏
1<k≤n

e

(
et−1

)
1−q

1−qk = exp
(

(et − 1)µ1(n, q)
)
.

Using this bound in the previous equation, we obtain

P
(
RBn > cµ1(n, q)

)
≤ exp

(
− tcµ1(n, q) +

(
et − 1

)
µ1(n, q)

)
The optimal value for t corresponds to et = c and yields the first bound of the lemma. Similarly,
for any t > 0, we have

P
(
RBn < c−1µ1(n, q)

)
≤ etc

−1µ1(n,q)
∏

1<k≤n

(
1 +

(
e−t − 1

) 1− q
1− qk

)
≤ exp

(
tc−1µ1(n, q) +

(
e−t − 1

)
µ1(n, q)

)
,
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and the optimal bound is given by e−t = c−1, yielding the second bound. �

In order to use these results, we need to better understand the behaviour of µα. The following
two propositions describe the asymptotic growth of µ1, and of µα for α > 1, respectively.

Proposition 2.5. Consider any sequence (qn)n≥0 taking values in [0, 1). Then we have

µ1(n, qn) = n(1− qn) + log
(
n ∧ 1

1− qn

)
+O

(√
log
(
n ∧ 1

1− qn

))
.

Proposition 2.6. Let α > 1. Consider any sequence (qn)n≥0 taking values in [0, 1). Then we
have

µα(n, qn) = n(1− qn)α + ζ(α)− 1 +O

((
(1− qn) ∨ 1

n

)α−1
α+1
)

= n(1− qn)α +O(1) ,

where ζ(α) is the Riemann zeta function: ζ(α) =
∑
k≥1

1
kα .

The second equality in Proposition 2.6 directly follows from the first one as (1 − qn) ∨ 1
n ≤ 1.

The proofs of these two propositions can be found in Appendix B. Since the details of the proofs
are tedious, we provide a brief sketch of the idea. The proof technique heavily relies on the fact
that 1−q

1−qk ∼
1
k whenever k(1 − q) = o(1), and that 1−q

1−qk ∼ (1 − q) whenever k(1 − q) = ω(1).
Pretending for the moment that the first asymptotic holds whenever k(1 − q) ≤ 1 and that the
second one holds whenever k(1− q) > 1, and assuming that 1� 1

1−q � n, it follows that

µα(n, q) =
∑

1<k≤n

(
1− q
1− qk

)α
'

∑
1<k≤ 1

1−q

1
kα

+
∑

1
1−q<k≤n

(1− q)α

' n(1− q)α − 1 +
∑

1≤k≤ 1
1−q

1
kα

;

the second term asymptotically simplifies to log
(

1
1−q

)
when α = 1 and to ζ(α) when α > 1.

The fact that when α > 1, the second order term of the development of µα is ζ(α) − 1, is
interesting to us, and we can imagine it has already appeared in the literature; however, we were
unable to find a reference.

2.2. Upper tail bound. To prove the upper bound of Proposition 2.1, we start by proving Propo-
sition 1.6, as this stochastic bound is at the heart of the proof.

Proof of Proposition 1.6. We must show that, for all v ∈ T∞, n ≥ 0 and q ∈ [0, 1], we have

P
(
v ∈ Tn,q

)
≤ P

(
1|v| ∈ Tn,q

)
.

First of all, if q = 0, then Tn,q = {1k, 0 ≤ k ≤ n}, and the inequality is clearly true. Secondly, if
q = 1, then Tn,q is a random binary search tree, and by symmetry we have

P(v ∈ Tn,q) = P(u ∈ Tn,q)
for all u, v such that |u| = |v|, which also proves the inequality.

Fix now q ∈ (0, 1). We prove the result by induction on n. For n ≤ 1 the assertion holds
because either Tn,q is empty or Tn,q = {∅}. Consider now some node v ∈ T∞. Write TLn,q and TRn,q
respectively for the left and right subtrees of Tn,q re-rooted at ∅; in other words, Tn,q(0) = 0TLn,q
and Tn,q(1) = 1TRn,q.

Assume first that v = 1v′. In this case, v ∈ Tn,q if and only if v′ ∈ TRn,q. Moreover, by
Proposition 1.5, we know that, conditioned on its size, TRn,q is a Mallows tree; since

∣∣TRn,q∣∣ < n, by
induction we thus have

P
(
v ∈ Tn,q

)
= P

(
v′ ∈ TRn,q

)
≤ P

(
1|v
′| ∈ TRn,q

)
= P

(
1|v| ∈ Tn,q

)
,

which proves the statement in this case.
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Assume next that v = 0v′. In this case, v ∈ Tn,q if and only if v′ ∈ TLn,q. Moreover, by
Proposition 1.5, for 0 ≤ k ≤ n− 1, we have

P
(∣∣TLn,q∣∣ ≤ k) = 1− qk+1

1− qn ≥ qn−k−1 1− qk+1

1− qn = qn−k−1 − qn

1− qn = P
(∣∣TLn,q∣∣ ≥ n− k − 1

)
.

Since P
(
|TLn,q| ≥ n − k − 1

)
= P

(
|TRn,q| ≤ k

)
, it follows that P

(
|TLn,q| ≤ k

)
≥ P

(
|TRn,q| ≤ k

)
, which

means that
∣∣TLn,q∣∣ � ∣∣TRn,q∣∣. By Corollary 1.9, it follows that

P
(
v ∈ Tn,q

)
= P

(
v′ ∈ TLn,q

)
≤ P

(
v′ ∈ TRn,q

)
≤ P

(
1v ∈ Tn,q

)
,

proving the assertion in this case.
Finally, if v = ∅, then v = 1|v| and P

(
v ∈ Tn,q

)
= P

(
1|v| ∈ Tn,q

)
. This completes the proof. �

Before proving Proposition 2.1, we state and prove the following proposition, which allows us
to extend the results from convergence in probability to convergence in Lp in Theorem 1.1.
Proposition 2.7. For any sequence (qn)n≥0 and any p > 0, the family of random variables((

h(Tn,qn)
n(1− qn) + c∗ logn

)p)
n≥1

is uniformly integrable.
Proof. First of all, by Proposition 2.5 we have n(1 − qn) + c∗ logn = Θ

(
µ1(n, qn)

)
; hence, for

simplification and without loss of generality, we now prove that
(
h(Tn,qn)/µ1(n, qn)

)p is uniformly
integrable.

Fix a ∈ R. Combine Proposition 1.6 with a union bound to obtain

P
((

h(Tn,qn)
µ(n, qn)

)p
≥ a

)
= P

(
h(Tn,qn) ≥ a

1
pµ(n, qn)

)
= P

(
∃v ∈ Tn,qn such that |v| =

⌈
a

1
pµ1(n, qn)

⌉)
≤ 2a

1
p µ(n,qn)+1P

(
RBn ≥ a

1
pµ1(n, qn)

)
.(2.1)

Using Chernoff’s bound together with the moment generating function of RBn from Proposition 1.11,
we have

P
(
RBn ≥ a

1
pµ1(n, qn)

)
≤ e−ta

1
p µ1(n,qn)E

[
etR

B
n

]
≤ exp

(
− ta

1
pµ1(n, qn) + (et − 1)µ1(n, qn)

)
.

Taking t = log 2 + 1 and using this bound in (2.1), it follows that

P
((

h(Tn,qn)
µ(n, qn)

)p
≥ a

)
≤ 2 exp

(
−
[
a

1
p + 1− 2e

]
µ1(n, qn)

)
.

Thus, for a > (2e− 1)p, we have

lim
n→∞

P
((

h(Tn,qn)
µ(n, qn)

)p
≥ a

)
= 0 ,

which proves the claimed uniform integrability. �

This result implies that the convergence in Lp in Theorem 1.1 follows from the convergence in
probability. Therefor, from now on we can only focus our attention on proving the latter type of
convergence.

Using a similar argument as for the previous proof, we conclude this section by proving the
upper tail bound of Proposition 2.1.

Proof of Proposition 2.1 (Upper Tail). Fix n ≥ 0 and h = hn > µ1(n, qn). By combining Proposi-
tion 1.6 with a union bound, we have

P
(
h
(
Tn,qn

)
≥ h

)
= P

(
∃v ∈ T∞ : |v| = h, v ∈ Tn,qn

)
≤ 2hP

(
1h ∈ Tn,qn

)
= 2hP

(
RBn ≥ h

)
.
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Because h > µ1(n, qn), it follows from Lemma 2.4 that

P
(
RBn ≥ h

)
≤ exp

([
h

µ1(n, qn) log
(
eµ1(n, qn)

h

)
− 1
]
µ1(n, qn)

)
,

hence

P
(
h
(
Tn,qn

)
≥ h

)
≤ exp

(
h log

(
2eµ1(n, qn)

h

)
− µ1(n, qn)

)
.(2.2)

Fix a sequence (γn)n≥0 such that γn = ω
(
n(1−qn)∨

√
logn

)
and with γn = o(logn); this second

hypothesis on (γn)n≥0 suffices to prove Proposition 2.1 as the probabilities we aim to bound are
decreasing functions of γn. By Proposition 2.5, we have µ1(n, qn) = n(1−qn)+logn+O

(√
logn

)
=

logn+ o(γn). Taking hn = bc∗ logn+ γnc and since c∗ > 1, we thus have that hn > µ1(n, qn) for
n large enough, so (2.2) gives

P
(
h
(
Tn,qn

)
≥ hn

)
≤ exp

(
hn log

(
2eµ1(n, qn)

hn

)
− µ1(n, qn)

)
.(2.3)

To bound the right hand side of (2.3), we note that c∗µ1(n, qn) = c∗ logn+o(γn) = hn−(1+o(1))γn,
so

log
(

2eµ1(n, qn)
hn

)
= log

(
2e
c∗
· c
∗µ1(n, qn)

hn

)
= log

(
2e
c∗

)
+ log

(
1− (1 + o(1))γn

hn

)
= 1
c∗
− (1 + o(1))γn

hn
,

the last identity holding since c∗ log
( 2e
c∗

)
= 1 and since γn = o(hn). Together with (2.3), this yields

P
(
h
(
Tn,qn

)
≥ hn

)
≤ exp

(
hn
c∗
− (1 + o(1))γn − µ1(n, qn)

)
= exp

((
1
c∗
− 1 + o(1)

)
γn

)
.

Because hn ≤ c∗ logn+ γn and γn →∞ this concludes the proof of the upper bound. �

2.3. Lower tail bound. We now prove the lower tail bound of Proposition 2.1. In order to do
so, we use the coupling explained in Section 1.3: Sn,q(∅) = n and given Sn,q(v), we have

Sn,q(v0) =


⌊

log(1−Uv(1−qSn,q(v)))
log q

⌋
if q ∈ (0, 1)

bSn,q(v)Uvc if q = 1
0 if q = 0

and

Sn,q(v1) = Sn,q(v)− 1− Sn,q(v0) .

As we saw in Section 1.3, it follows from Proposition 1.5 that {v ∈ T∞ : Sn,q(v) ≥ 1} is MT(n, q)-
distributed.

For any node v ∈ T∞, write X(v,v0) = Uv and X(v,v1) = 1 − Uv. and let Pv =
∏
e≺vXe, where

e ≺ v denotes the set of edges on the path from ∅ to v. The following proposition gives useful
bounds for Sn,q using P .

Lemma 2.8. Let n ≥ 1 and q ∈ (0, 1). Then, a.s. for all v ∈ T∞, we have

log
(
1− Pv(1− qn)

)
log q − |v| ≤ Sn,q(v) ≤ n−

log
(
qn + Pv(1− qn)

)
log q .

Moreover, these inequalities naturally extend to q = 1 as follows: almost surely

nPv − |v| ≤ Sn,1(v) ≤ nPv .

Proof. We only consider the case q ∈ (0, 1) as in the case q = 1 the assertion was already proven
in [11], and can be obtained from our formula by taking the limit q → 1.
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We prove this lemma by induction on the depth of v. For v = ∅, Pv = 1 and the inequalities
hold. Assume now it holds for some v ∈ T∞. We start by proving that the lower bound holds for
the left child of v. By definition, we know that

Sn,q(v0) =
⌊

log
(
1− Uv

(
1− qSn,q(v)))

log q

⌋
≥

log
(
1− Uv

(
1− qSn,q(v)))

log q − 1 ,

and the right hand side is increasing in Sn,q(v). By the induction hypothesis, we know that

Sn,q(v) ≥ log
(

1−Pv(1−qn)
)

log q − |v|. Replacing Sn,q(v) by its lower bound into the previous formula
gives us

Sn,q(v0) ≥
log
(

1− Uv
(

1− q
log(1−Pv(1−qn))

log q −|v|
))

log q − 1

=
log
(
1− Uv + Uvq

−|v| (1− Pv(1− qn))
)

log q − 1.

Since log q < 0 and (1− Uv) ≤ q−|v|(1− Uv), it follows that

Sn,q(v0) ≥
log
(
q−|v|(1− Uv) + Uvq

−|v| (1− Pv(1− qn))
)

log q − 1

= log (1− UvPv(1− qn))
log q − |v| − 1,

which is the desired lower bound.
We now prove that the upper bound holds for the right child of v. Using the definition again,

we have

Sn,q(v1) = Sn,q(v)− 1− Sn,q(v0)

= Sn,q(v)− 1−
⌊

log
(
1− Uv(1− qSn,q(v))

)
log q

⌋

=
⌈
Sn,q(v)−

log
(
1− Uv(1− qSn,q(v))

)
log q

⌉
− 1

a.s.=
⌊
Sn,q(v)−

log
(
1− Uv(1− qSn,q(v))

)
log q

⌋
,

the last equality following from the fact that log(1−Uv(1−qSn,q(v)))
log q is a.s. not an integer. From this

equality, we obtain

Sn,q(v1) ≤ Sn,q(v)−
log
(
1− Uv

(
1− qSn,q(v)))

log q ,

and the right hand side is increasing in Sn,q(v), which can be checked by direct computation.
Applying the induction hypothesis, we obtain

Sn,q(v1) ≤ n−
log
(
qn + Pv(1− qn)

)
log q −

log
(

1− Uv

(
1− qn−

log
(
qn+Pv(1−qn)

)
log q

))
log q

= n−
log
(
qn + (1− Uv)Pv(1− qn)

)
log q ,

which is the desired upper bound.
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For the two remaining bounds, note that, for any integer S ≥ 1 and U ∈ (0, 1), we have(
S −

log
(
1− U

(
1− qS

))
log q

)
−

(
log
(
1− (1− U)

(
1− qS

))
log q

)

=
S log q − log

(
qS + U(1− U)

(
1− qS

)2
)

log q

= 1
log 1

q

log
(

1 +
U(1− U)

(
1− qS

)2

qS

)
≥ 0.(2.4)

From this inequality, it follows that

Sn,q(v1) =
⌊
Sn,q(v)−

log
(
1− Uv

(
1− qSn,q(v)))

log q

⌋

≥

⌊
log
(
1− (1− Uv)

(
1− qSn,q(v)))

log q

⌋
,

and then the same technique as the one used to bound Sn,q(v0) from below gives us that

Sn,q(v1) ≥ log (1− (1− Uv)Pv(1− qn))
log q − |v| − 1,

which yields the desired lower bound. Similarly, (2.4) gives that

Sn,q(v0) =
⌊

log
(
1− Uv

(
1− qSn,q(v)))

log q

⌋

≤

⌊
Sn,q(v)−

log
(
1− (1− Uv)

(
1− qSn,q(v)))

log q

⌋
,

from which we deduce that

Sn,q(v0) ≤ n−
log
(
qn + UvPv(1− qn)

)
log q

by the same technique used to bound Sn,q(v1) from above. This last inequality concludes the
induction and the proof of the lemma. �

With this results, we can now compare (Sn,q) for different values of n and q using P . This leads
to Proposition 1.7.

Proof of Proposition 1.7. We must prove that

P
(
h(Tn,q) ≤ `

)
≤ P

(
h(Tm,1) ≤ `

)
where m =

⌊
1−qn

1−q`+2

⌋
. First of all, if q = 0, then h(Tn,q) = n and m =

⌊
1−qn

1−q`+2

⌋
= 1, so the

inequality holds. Assume now that q ∈ (0, 1). Because {v ∈ T∞ : Sn,q(v) ≥ 1} is MT(n, q)-
distributed, we have

P
(
h
(
Tn,q

)
≤ `
)

= P
(
∀v ∈ T∞ with |v| = `+ 1 : Sn,q(v) < 1

)
.

Using the lower bound in Lemma 2.8, this implies that

P
(
h
(
Tn,q

)
≤ `
)
≤ P

(
∀v ∈ T∞ with |v| = `+ 1 :

log
(
1− Pv(1− qn)

)
log q − |v| < 1

)

= P
(
∀v ∈ T∞ with |v| = `+ 1 : Pv <

1− q`+2

1− qn

)
.



THE HEIGHT OF MALLOWS TREES 17

Consider now some m ≥ 1 and use the same technique but with the upper bound of Lemma 2.8:

P
(
h
(
Tm,1

)
≤ `
)

= P
(
∀v ∈ T∞ with |v| = `+ 1 : Sm,1(v) < 1

)
≥ P

(
∀v ∈ T∞ with |v| = `+ 1 : Pv <

1
m

)
.

The proposition now follows by defining m =
⌊

1−qn
1−q`+2

⌋
, since 1

m ≥
1−q`+2

1−qn . �

We now have all the results necessary to prove the lower bound of Proposition 2.1.

Proof of Proposition 2.1 (Lower Bound). Consider (qn)n≥0 and (γn)n≥0 as in the proposition and
let mn =

⌊
1−(qn)n

1−(qn)`n+2

⌋
where `n = bc∗ logn−γnc. We again assume without loss of generality that

γn = o(logn).
Let us first study the asymptotic behaviour of logmn. Note that

⌊
1−qn

1−q`+2

⌋
is monotone in q

provided `+ 2 ≤ n. Because n(1− qn) < logn for n large enough, it follows that

1−
(

1− logn
n

)n
1−

(
1− logn

n

)`n+2 − 1 ≤ mn ≤ lim
q→1

1− qn

1− q`+2 = n

`n + 2 .

Moreover,
(

1− logn
n

)n
= o(1) and

(
1− logn

n

)`n+2
= e−(1+o(1)) c

∗(logn)2
n = 1 − (1 + o(1)) c

∗(logn)2

n ,
which implies that

log

 1−
(

1− logn
n

)n
1−

(
1− logn

n

)`n+2 − 1

 = log
(

(1 + o(1)) n

c∗(logn)2 − 1
)

= logn+O(log logn) .

It follows that

logn+O(log logn) ≤ logmn ≤ logn− log(`n + 2) = logn+O(log logn) ,

hence logmn = logn+O(log logn).
Let us now study (Tmn,1)n≥0. Recall that when q = 1, a MT(n, q)-distributed tree has the

distribution of a random binary search tree. We use the results of Reed [27] and Drmota [13], who
prove that

E
[
h
(
Tmn,1

)]
= c∗ logmn +O (log logmn)

and

Var
[
h
(
Tmn,1

)]
= O(1).

Next,

P
(
h
(
Tmn,1

)
≤ `n

)
= P

(
h
(
Tmn,1

)
− E

[
h
(
Tmn,1

)]
≤ `n − E

[
h
(
Tmn,1

)] )
,

and

`n − E
[
h
(
Tmn,1

)]
= c∗ logn− γn − c∗ logmn +O(log logmn) = (−1 + o(1))γn ,

the last equality holding since γn = ω
(√

logn
)

= ω(log logn). Applying Chebyshev’s inequality,
we obtain

P
(
h
(
Tmn,1

)
≤ `n

)
≤

Var
[
h
(
Tmn,1

)](
`n − E

[
h
(
Tmn,1

)])2 = O

(
1

(γn)2

)
= o(1) .

The lower bound of Proposition 2.1 follows by applying Proposition 1.7 to obtain

P
(
h
(
Tn,qn

)
≤ c∗ logn− γn

)
= P

(
h
(
Tn,qn

)
≤ `n

)
≤ P

(
h
(
Tmn,1

)
≤ `n

)
= o(1) .

�
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3. Right depth of Mallows trees

In this section, we study the right depth RBn of a Mallows tree and use its properties to prove
Theorem 1.2.

3.1. General results. We start by proving the general results regarding the infinite b-model that
was defined in Section 1.4.

Proof of Proposition 1.8. Fix n ≥ 0 and q ∈ [0, 1), and letB = (Bi,j) have independent Bernoulli(1−
q) entries. We want to prove that σBn is πn,q-distributed. For any σ ∈ Sn define

θ(σ) :=
{
f : [n]→ Z+ : ∀i ∈ [n], rank

(
f(i), {f(1), . . . , f(n)}

)
= σ(i)

}
for the set of functions f with the same ordering as σ. By definition, we have

P
(
σBn = σ

)
= P

(
fBn ∈ θ(σ)

)
=

∑
f∈θ(σ)

P
(
∀i ∈ [n], fB(i) = f(i)

)
=

∑
f∈θ(σ)

∏
1≤i≤n

P
(
fB(i) = f(i)

∣∣∣∀j ∈ [i− 1], fB(j) = f(j)
)
.(3.1)

Recall that FBi−1 = {fB(1), . . . , fB(i − 1)} and note that
∣∣[f(i) − 1] \ FBi−1

∣∣ = f(i) − 1 −
∣∣{j ∈

[i− 1] : fB(j) < f(i)
}∣∣. By using the definition fB(i) = inf

{
j ∈ Z+ \ FBi−1 : Bi,j = 1

}
, it follows

that

P
(
fB(i) = f(i)

∣∣∣∀j ∈ [i− 1], fB(j) = f(j)
)

= P
(
∀` ∈ [f(i)− 1] \ FBi−1, Bi,` = 0 and Bi,f(i) = 1

∣∣∣∀j ∈ [i− 1], fB(j) = f(j)
)

= qf(i)−1−|{j∈[i−1]:f(j)<f(i)}|(1− q) .

Plugging this result back into (3.1), we obtain

P
(
σBn = σ

)
=

∑
f∈θ(σ)

∏
1≤i≤n

(
qf(i)−1−|{j∈[i−1]:f(j)<f(i)}|(1− q)

)
=

∑
f∈θ(σ)

q

∑
1≤i≤n

(
f(i)−1−|{j∈[i−1]:f(j)<f(i)}|

)
(1− q)n .

The sum in the power can be divided into two parts:∑
1≤i≤n

(
f(i)− 1−

∣∣{j ∈ [i− 1] : f(j) < f(i)}
∣∣)

=
∑

1≤i≤n

(
f(i)− 1

)
−
∑

1≤i≤n

∣∣{j ∈ [i− 1] : f(j) < f(i)}
∣∣ ;

and because f has the same ordering as σ, the second sum can be rewritten as∑
1≤i≤n

∣∣{j ∈ [i− 1] : f(j) < f(i)}
∣∣ =

∣∣∣{(i, j) ∈ [n]2 : j < i and f(j) < f(i)
}∣∣∣ =

(
n

2

)
− Inv(σ) .

This proves that (3.1) can be rewritten as

P
(
σBn = σ

)
=

∑
f∈θ(σ)

q
Inv(σ)−(n2)+

∑
1≤i≤n

f(i)−1(1− q)n

= qInv(σ)

 ∑
f∈θ(σ)

q
−n(n+1)

2 +
∑

1≤i≤n
f(i)(1− q)n

 .
To conclude the proof, note that the term in brackets is independent of σ just by reordering the f(i)
in the sum. This means that P(σBn = σ) is proportional to qInv(σ), and so σBn is πn,q-distributed,
as required. �
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With Proposition 1.8 proven, we can now use this equivalent model to study Mallows permu-
tations and trees. Moreover, Corollary 1.9 directly follows from this result and the increasing
property of the infinite b-model explained in Section 1.4.

The infinite b-model is also used to prove Lemma 1.10 and Proposition 1.11.

Proof of Lemma 1.10. Fix q ∈ [0, 1) and B with independent Bernoulli(1− q) entries. We study
the distribution of TB

(
1k0
)
for all k ≥ 0. First of all, we explained in Section 1.4 that, for all

k ≥ 0 ∣∣∣TB(1k0
)∣∣∣ = τB

(
1k
)
− τB

(
1k−1)− 1 .

Moreover, the random variables
(
τB
(
1k
)
−τB

(
1k−1)−1

)
k≥0 are independent and Geometric(1−

q)-distributed. Finally, by Proposition 1.5, conditionally on having a given size n, TB(1k0) is
MT(n, q)-distributed, from which the result follows. �

Proof of Proposition 1.11. Fix q ∈ [0, 1) and let B =
(
Bi,j

)
i,j≥1 have independent Bernoulli(1−

q) entries. Let us first study the transition probabilities of the random process (RBn ,MB
n )n≥0.

Define Ln = σ
(
Bi,j , 1 ≤ i ≤ n, j ≥ 1

)
for the σ-algebra generated by the first n rows of the matrix

B and note that RBn and MB
n are Ln-measurable. Since (RBn )n≥0 corresponds to the number of

records of the sequence (MB
n )n≥0, we have

P
(
RBn+1 = r,MB

n+1 = m
∣∣∣RBn = r,MB

n = m,Ln
)

= P
(
fB(n+ 1) < MB

n

∣∣∣RBn = r,MB
n = m,Ln

)
= P

(
∃j ∈ [MB

n − 1] \ FBn , Bn+1,j = 1
∣∣∣RBn = r,MB

n = m,Ln
)

= 1− P
(
∀j ∈ [MB

n − 1] \ FBn , Bn+1,j = 0
∣∣∣RBn = r,MB

n = m,Ln
)
.(3.2)

Moreover, since RBn , MB
n and FBn are Ln-measurable, and

(
Bn+1,j

)
j≥1 is independent of Ln, we

have

P
(
∀j ∈ [MB

n − 1] \ FBn , Bn+1,j = 0
∣∣∣RBn = r,MB

n = m,Ln
)

= E
[
q|[M

B
n −1]\FBn |

∣∣∣RBn = r,MB
n = m,Ln

]
= qm−n ;(3.3)

the final equality holding since∣∣[MB
n − 1] \ FBn

∣∣ =
∣∣[MB

n − 1] \ {fB(1), ..., fB(n)}
∣∣

=
∣∣[MB

n ] \ {fB(1), ..., fB(n)}
∣∣

= MB
n − n .

Combining (3.2) and (3.3) shows that the desired transition probability has the claimed value when
k = 0 and ` = 0. Similarly, for ` ≥ 1, we have

P
(
RBn+1 = r + 1,MB

n+1 = m+ `
∣∣∣RBn = r,MB

n = m,Ln
)

= P
(
fB(n+ 1) = m+ `

∣∣∣RBn = r,MB
n = m,Ln

)
= P

(
∀j ∈ [MB

n + `− 1] \ FBn , Bn+1,j = 0 and Bn+1,MB
n +` = 1

∣∣∣RBn = r,MB
n = m,Ln

)
= qm+`−n−1(1− q) .

This establishes the Markov property and proves that the transition probability is as claimed.
We now move on to the derivation of the bivariate characteristic function, and we do so by

induction. The equation does hold when n = 0, as can be straightforwardly checked, but for the
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sake of the proof, it is more natural to start the induction at n = 1. In this case, we have

E
[
xR

B
1 +1yM

B
1

]
=
∑
j≥1

E
[
xR

B
1 +1yM

B
1

∣∣∣ fB(1) = j
]
P
(
fB(1) = j

)
=
∑
j≥1

x1yjqj−1(1− q)

= xy(1− q)
1− qy

= y1 q + (1− q)x− q1

1− q1y
,

which is the desired formula. Assume now that the formula holds for some n ≥ 1. First, by
conditioning on (RBn ,MB

n ), we have

E
[
xR

B
n+1+1yM

B
n+1

]
=
∑
r,m

E
[
xR

B
n+1+1yM

B
n+1

∣∣∣RBn = r,MB
n = m

]
P
(
RBn = r,MB

n = m
)
.(3.4)

For the first term inside the sum, we have

E
[
xR

B
n+1+1yM

B
n+1

∣∣∣RBn = r,MB
n = m

]
=

∑
k∈{0,1}

∑
`≥0

xr+k+1ym+`P
(
RBn+1 = r + k,MB

n+1 = m+ `
∣∣∣RBn = r,MB

n = m
)
.

We now split the sum according to whether ` = 0 or ` ≥ 1. Note that if ` = 0, then k = 0, and if
` ≥ 1, then k = 1. Using the previously derived transition probabilities, we obtain

E
[
xR

B
n+1+1yM

B
n+1

∣∣∣RBn = r,MB
n = m

]
= xr+1ym

(
1− qm−n

)
+
∑
`≥1

xr+2ym+`qm+`−n−1(1− q)

= xr+1ym
(
1− qm−n

)
+ xr+2ym+1qm−n(1− q)

1− qy .

Plugging this back into (3.4), we have

E
[
xR

B
n+1+1yM

B
n+1

]
=
∑
r,m

[
xr+1ym

(
1− qm−n

)
+ xr+2ym+1qm−n(1− q)

1− qy

]
P
(
RBn = r,MB

n = m
)

= E
[
xR

B
n+1yM

B
n

]
− 1
qn

E
[
xR

B
n+1(qy)M

B
n

]
+ xy(1− q)
qn(1− qy)E

[
xR

B
n+1(qy)M

B
n

]
= E

[
xR

B
n+1yM

B
n

]
+ 1
qn

[
xy(1− q)

1− qy − 1
]
E
[
xR

B
n+1(qy)M

B
n

]
.

Using the induction hypothesis, this yields the equation

E
[
xR

B
n+1+1yM

B
n+1

]
=

yn ∏
1≤k≤n

q + (1− q)x− qk

1− qky

+ 1
qn

[
xy(1− q)

1− qy − 1
](qy)n

∏
1≤k≤n

q + (1− q)x− qk

1− qk(qy)


= yn

∏
1≤k≤n

q + (1− q)x− qk

1− qky + (xy(1− q)− 1 + qy)yn

1− qy
∏

1≤k≤n

q + (1− q)x− qk

1− qk+1y
.
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Finally, factorizing by yn
∏

1≤k≤n
q+(1−q)x−qk

1−qky , it follows that

E
[
xR

B
n+1+1yM

B
n+1

]
=

yn ∏
1≤k≤n

q + (1− q)x− qk

1− qky

[1 + xy(1− q)− 1 + qy

1− qn+1y

]

=

yn ∏
1≤k≤n

q + (1− q)x− qk

1− qky

[y (q + (1− q)x− qn+1)
1− qn+1y

]

= yn+1
∏

1≤k≤n+1

q + (1− q)x− qk

1− qky ,

establishing the second assertion of the proposition. �

With these two results, we now have strong properties regarding Mallows trees and we can prove
bounds on their height in the case when n(1− qn)/ logn→∞.

3.2. Bounds on the left subtrees. Before proving Theorem 1.2, we prove Proposition 1.12,
whose bounds will be useful in in the proof of all three theorems of this paper.

Proof of Proposition 1.12. Before starting the actual proof, let us briefly explain why

M := c∗ × sup
n≥2,q∈(0,1)


µ1(n, q)− n(1− q)− log

(
n ∧ 1

1−q

)
√

log
(
n ∧ 1

1−q

)
 .(3.5)

is finite. Assuming it is not, we can find a sequence (nk, qk)k≥0 such that the term inside the
supremum of (3.5) goes to infinity. By extracting subsequences, we can assume that (qk)k≥0
converges in [0, 1] and that (nk)k≥0 is constant equal to some n ≥ 2 or diverges to ∞.

If nk = n, the numerator is bounded and the only way for this term to diverge is to have
log
(
n ∧ 1

1−qk

)
→ 0, hence qk → 0. In this case, we have

µ1(nk, qk)− nk(1− qk)− log
(
nk ∧

1
1− qk

)
=
∑

1≤i≤n

1− qk
1− qik

− n(1− qk)− log
(

1
1− qk

)
= O(qk) ,

and since log
(
nk ∧ 1

1−qk

)
∼ qk, the term inside the supremum of (3.5) actually converges to 0 and

not infinity. On the other hand, if nk →∞, we can apply Proposition 2.5 to bound the numerator
in (3.5) and see that the supremum is again finite.

We will prove the bound stated in the proposition for this value of M . By the definition of M ,
for all n ≥ 2 and q ∈ (0, 1), we have

µ1(n, q)− n(1− q)− log
(
n ∧ 1

1− q

)
≤ M

c∗

√
log
(
n ∧ 1

1− q

)
;

moreover, this inequality remains true when n = 1 or q = 0 as both sides equal 0.
Now, without loss of generality, fix ξ > 0, write

PLS := P

(
sup
k≥0

{
h
(
TB
(
1k0
)
− k
)}
≥ c∗ log

(
1

1− q

)
+M

√
log
(

1
1− q

)
+ ξ

)
,

and let ` =
⌈
c∗ log

(
1

1−q

)
+M

√
log
(

1
1−q

)
+ ξ

⌉
. By taking a union bound over k, we obtain

PLS ≤
∑
k≥0

P
(
h
(
TB
(
1k0
))
≥ `+ k

)
.(3.6)

By Lemma 1.10, TB(1k0) d= TG(q),q, so

P
(
h
(
TB
(
1k0
))
≥ `+ k

)
= P

(
h
(
TG(q),q

)
≥ `+ k

)
.
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Consider now some λ > 0 and divide the probability according to whether G(q) ≥ λ(k+ξ)+2−q
1−q or

G(q) < λ(k+ξ)+2−q
1−q , to obtain

P
(
h
(
TB
(
1k0
))
≥ `+ k

)
= P

(
h
(
TG(q),q

)
≥ `+ k,G(q) ≥ λ(k + ξ) + 2− q

1− q

)
+ P

(
h
(
TG(q),q

)
≥ `+ k,G(q) < λ(k + ξ) + 2− q

1− q

)
.(3.7)

For the first term, drop the first event and use that G(q) is geometric to obtain

P
(
h
(
TG(q),q

)
≥ `+ k,G(q) ≥ λ(k + ξ) + 2− q

1− q

)
≤ q

λ(k+ξ)+2−q
1−q ≤ e−λ(k+ξ)−1 ,

where the last inequality follows from the fact that 0 ≤ q ≤ eq−1. For the second term, use the
increasing property of (Tn,q)n≥0 from Corollary 1.9 to bound G(q) by its maximal value, and then
drop the second event, to obtain

P
(
h
(
TG(q),q

)
≥ `+ k,G(q) < λ(k + ξ) + 2− q

1− q

)
≤ P

(
h
(
Tm,q

)
≥ `+ k

)
,

where m =
⌊
λ(k+ξ)+2−q

1−q

⌋
. Putting this back into (3.7) gives us

P
(
h
(
TB
(
1k0
))
≥ `+ k

)
≤ e−λ(k+ξ)−1 + P

(
h
(
Tm,q

)
≥ `+ k

)
.(3.8)

In order to bound PLS, we now need to bound P
(
h
(
Tm,q

)
≥ `+ k

)
. Taking a union bound over

all nodes at depth `+ k and then applying Proposition 1.6, we obtain

P
(
h
(
Tm,q

)
≥ `+ k

)
≤ 2`+kP

(
RBm ≥ `+ k

)
.

Using Chernoff’s bound with the moment generating function of RBm from Proposition 1.11, it
follows that, for any t > 0

P
(
RBm ≥ `+ k

)
≤ e−t(`+k)E

[
etR

B
m

]
≤ exp

(
− t(`+ k) + (et − 1)µ1(m, q)

)
.

Putting this back into the previous inequality and taking t = log c∗ gives us

P
(
h
(
Tm,q

)
≥ `+ k

)
≤ exp

(
log
(

2
c∗

)
(`+ k) + (c∗ − 1)µ1(m, q)

)
.

Since m ≥ 1
1−q and by using the definition of M , we know that

µ1(m, q) ≤ m(1− q) + log
(

1
1− q

)
+ M

c∗

√
log
(

1
1− q

)
.

From this inequality, we obtain

P
(
h
(
Tm,q

)
≥ `+ k

)
≤ exp

(
log
(

2
c∗

)
(`+ k) + (c∗ − 1)

(
m(1− q) + log

(
1

1− q

)
+ M

c∗

√
log
(

1
1− q

)))
.

From their respective definitions, we know that ` ≥ c∗ log
(

1
1−q

)
+ M

√
log
(

1
1−q

)
+ ξ and that

m ≤ λ(k+ξ)+2−q
1−q . Using these bounds together with the fact that log

( 2
c∗

)
= 1

c∗ − 1 < 0 in the
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preceding inequality, we obtain

P
(
h
(
Tm,q

)
≥ `+ k

)
≤ exp

(
−c
∗ − 1
c∗

(
c∗ log

(
1

1− q

)
+M

√
log
(

1
1− q

)
+ ξ + k

)

+(c∗ − 1)
(
λ(k + ξ) + 2− q + log

(
1

1− q

)
+ M

c∗

√
log
(

1
1− q

)))

≤ exp
(
− (c∗ − 1)(1− c∗λ)

c∗
(ξ + k) + 2(c∗ − 1)

)
.

Using this bound in (3.8), and then plugging the result into (3.6), we obtain

PLS ≤
∑
k≥0

[
exp

(
− λ(k + ξ)− 1

)
+ exp

(
− (c∗ − 1)(1− c∗λ)

c∗
(ξ + k) + 2(c∗ − 1)

)]
.

Choosing λ = c∗−1
(c∗)2 so that λ = (c∗−1)(1−c∗λ)

c∗ , this bound becomes

PLS ≤ e−λξ
∑
k≥0

[
exp

(
− λk − 1

)
+ exp

(
− λk + 2(c∗ − 1)

)]
=
(
e−1 + e2(c∗−1)

1− e−λ

)
e−λξ ,

proving the proposition. �

3.3. Almost sure convergence. To conclude this section, we prove Theorem 1.2, from which we
deduce Theorem 1.1 in the case when n(1− qn)/ logn→∞ by combining it with Proposition 2.7.

Proof of Theorem 1.2. Let (qn)n≥0 be a sequence such that n(1 − qn)/ logn → ∞ and fix ε > 0
and λ > 0. We prove that

P
(∣∣∣∣ h(Tn,qn)
n(1− qn) − 1

∣∣∣∣ > ε

)
= O

(
1
nλ

)
by bounding the lower tail and the upper tail separately.

We start with the lower tail as the technique for the upper tail bound is similar but more
involved. Using RBn as a stochastic lower bound for h(Tn,qn) as in (1.2), we have

P
(
h
(
Tn,qn

)
< (1− ε)n(1− qn)

)
≤ P

(
RBn < (1− ε)n(1− qn)

)
.

Since n(1 − qn) = ω(logn), by applying Proposition 2.6 we know that µ1(n, qn) ∼ n(1 − qn). It
follows that, for n large enough, we have (1 − ε)n(1 − qn)/µ1(n, qn) < 1 and we can apply the
second bound of Lemma 2.4 to the previous inequality to obtain

P
(
h
(
Tn,qn

)
< (1− ε)n(1− qn)

)
≤ exp

([
(1− ε)n(1− qn)

µ1(n, qn) log
(

eµ1(n, qn)
(1− ε)n(1− qn)

)
− 1
]
µ1(n, qn)

)
= exp

([
(1− ε) log

(
e

1− ε

)
− 1 + o(1)

]
n(1− qn)

)
.

By convexity, (1− ε) log
(

e
1−ε

)
< 1. Since n(1− qn) = ω(logn), this proves that

P
(
h
(
Tn,qn

)
< (1− ε)n(1− qn)

)
= O

(
1
nγ

)
,

which is the desired lower bound for h(Tn,qn).
Let us now prove that the upper bound also holds. Using the second stochastic inequality given

in (1.2), we have

P
(
h
(
Tn,qn

)
> (1 + ε)n(1− qn)

)
≤ P

(
RBn + 1 + sup

k≥0

{
h
(
TB
(
1k0
))
− k
}
> (1 + ε)n(1− qn)

)
.
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Using that X + Y > x+ y implies that X > x or Y > y to bound the probability on the right, we
obtain

P
(
h
(
Tn,qn

)
> (1 + ε)n(1− qn)

)
≤ P

(
RBn > (1 + ε/2)n(1− qn)

)
+ P

(
1 + sup

k≥0

{
h
(
TB
(
1k0
))
− k
}
> εn(1− qn)/2

)
.

For the first term, using the first bound of Lemma 2.4 and the same arguments as for the lower
bound, it follows that

P
(
RBn > (1 + ε/2)n(1− qn)

)
= O

(
1
nγ

)
.

For the second term, apply Proposition 1.12 with

ξ = ξn = εn(1− qn)/2− 1− c∗ log
(

1
1− qn

)
−M

√
log
(

1
1− qn

)
to obtain

P
(

1 + sup
k≥0

{
h
(
TB
(
1k0
))
− k
}
> εn(1− qn)/2

)
≤ Ce−λξn .

Since n(1− qn)/ logn→∞, it follows that log 1
1−qn = O(logn) and then ξn ∼ εn(1− qn)/2 which

proves that

P
(

1 + sup
k≥0

{
h
(
TB
(
1k0
))
− k
}
> εn(1− qn)/2

)
= O

(
1
nγ

)
.

This yields the desired upper bound for h(Tn,qn) and concludes the proof of Theorem 1.2. �

4. Intermediate values and threshold process

In this section, we will prove Proposition 1.13, which will allow us to conclude the proof of
Theorem 1.1 in the last case, i.e. when n(1 − qn)/ logn = Θ(1). In order to do so, we prove the
following proposition, which in fact handles a somewhat wider range of asymptotic behaviour for
the sequence (qn)n≥0. The bounds in Proposition 4.1, below, are actually tight enough that they
will also be used in Section 5.1 to prove Proposition 1.15, which is a key input of the central limit
theorem for the height of Mallows trees.

Proposition 4.1. Let (qn)n≥0 be such that log
(
n(1 − qn)

)
= O

(√
logn

)
and n(1 − qn) =

ω
(√

logn
)
. For n ≥ 0, let m = m(n) = min

{
` ≥ 0 : `(1 − qn) + log ` ≥ n(1 − qn)

}
. Then,

for all (βn)n≥0 such that βn = ω
(√

logn
)
, we have

lim
n→∞

P
(
e−βn ≤

∣∣∣TBn (1RBm+1)∣∣∣(1− qn) ≤ βn
)

= 1 .

From this proposition, with m = m(n) as previously defined, we will show that∣∣∣TBn (1RBm+1)∣∣∣(1− qn) = o

(
log
(∣∣∣TBn (1RBm+1)∣∣∣))

which allows us to apply Proposition 2.1 to prove that

h
(
TBn
(
1R

B
m+1)) =

(
c∗ + oP(1)

)
logn .

It is not hard to show that RBm =
(
1 + oP(1)

)
n(1− qn). Once we establish this, we will be able to

prove Proposition 1.13 by comparing the sizes of TBn
(
1R

B
m+1) and TBn (1bn(1−qn)c).

In order to study the size of TBn
(
1R

B
m+1), recall the definition of (TBn )n≥0 from Section 1.4 and

note that, for all d ≥ 0 ∣∣∣TBn (1d+1)∣∣∣ =
∣∣∣{i ∈ [n] : fB(i) > τB

(
1d
)}∣∣∣ ,



THE HEIGHT OF MALLOWS TREES 25

where τB is the labelling function of the tree TB . Moreover, since τB
(
1R

B
m
)

= MB
m where MB

m =
max

(
fB(i), i ∈ [m]

)
, we have∣∣∣TBn (1RBm+1)∣∣∣ =

∣∣∣{i ∈ [n] : fB(i) > MB
m

}∣∣∣ .
In order to study the size of the random set on the right hand side of this equation, we define

the threshold process NB as follows. For all n ∈ N and s ∈ N, let

NB(n, s) :=
∣∣∣{i ∈ [n] : fB(i) > s

}∣∣∣ .(4.1)

The two preceding displays show that∣∣∣TBn (1RBm+1)∣∣∣ = NB
(
n,MB

m

)
,

which will be our key tool for bounding
∣∣TBn (1RBm+1)∣∣. The analysis of this identity is made easier

by the following lemma, which partially decouples MB and NB .

Lemma 4.2. For all n ≥ 0, q ∈ [0, 1) and 0 ≤ m ≤ n, we have∣∣∣TBn (1RBm+1)∣∣∣ d= NB∗
(
n−m,MB

m −m
)
,

where B = (Bi,j) and B∗ = (B∗i,j) are independent matrices with independent Bernoulli(1 − q)
entries.

Using this distributional identity, the proof of Proposition 4.1 will be divided into the following
three steps:

Step 1: We study the threshold process NB(n, s) for all values of n and s and prove bounds
for its upper and lower tail probabilities (see Proposition 4.5 and 4.6).

Step 2: We prove that MB
m(n) = n+OP

(√
logn/(1− qn)

)
using Proposition 1.11.

Step 3: We combine these two results to prove Proposition 4.1.
The rest of the section is organized as follows. The results of step 1, 2 and 3 are respectively

stated and proven in Section 4.1, 4.2 and 4.3. Finally, in Section 4.4, we prove Proposition 1.13
and deduce Theorem 1.1 in the case when n(1− qn)/ logn = Θ(1).

4.1. Threshold process. This section is focused on the behaviour of NB(n, s) as defined in (4.1).
From the definition, we see that NB is increasing in n and decreasing in s. Since fB is bijective,
it is also straightforward to verify that (n − s)+ ≤ N(n, s) ≤ n where x+ = max(x, 0). The next
proposition gives further properties related to the distribution of N .

Proposition 4.3. Let q ∈ [0, 1) and B = (Bi,j)i,j≥0 have independent Bernoulli(1− q) entries.
For k ≥ 0, write Lk(B) = σ(Bi,j , 1 ≤ i ≤ k, j ≥ 1) for the σ-algebra generated by the first k rows
of B. Then, for any integers n, s ≥ 1, for all ` ≥ 0, we have

P
(
NB(n, s) = `

∣∣∣ fB(1) ≤ s,Lk(B)
)
d= P
(
NB(n− 1, s− 1) = `

∣∣∣Lk−1(B)
)

and

P
(
NB(n, s) = `

∣∣∣ fB(1) > s,Lk(B)
)
d= P
(
NB(n− 1, s) = `− 1

∣∣∣Lk−1(B)
)
.

Proof. Write B(i,j) for the minor of B obtained by deleting the i-th row and the j-th column, and
note that B(i,j) d= B. Moreover, given that fB(1) = r, the rest of the values fB(2), fB(3), . . .
becomes independent of the first row and the r-th column of B. Hence, for 1 ≤ r ≤ s, we have

P
(
NB(n, s) = `

∣∣∣ fB(1) = r,Lk(B)
)

= P
(
NB(1,r)

(n− 1, s− 1) = `
∣∣∣Lk(B)

)
d= P
(
NB(n− 1, s− 1) = `

∣∣∣Lk−1(B)
)
,

where the second equality holds since Lk(B) is generated by Lk−1(B(1,r)) and σ
(
{B1,j , j ≥ 1} ∪

{Bi,r, i ≥ 1}
)
, and B(1,r) is independent of the second of these σ-algebras. Similarly, for r > s, we



26 LOUIGI ADDARIO-BERRY & BENOÎT CORSINI

have

P
(
NB(n, s) = `

∣∣∣ fB(1) = r,Lk(B)
)

= P
(
NB(1,r)

(n− 1, s) = `− 1
∣∣∣Lk(B)

)
d= P
(
NB(n− 1, s) = `− 1

∣∣∣Lk−1(B)
)
.

This proves the two desired equalities. �

Applying this proposition, we can now prove Lemma 4.2.

Proof of Lemma 4.2. By definition, we know that∣∣∣TBn (1RBm+1)∣∣∣ = NB
(
n,MB

m

)
.

Let s ≥ 1 be an integer. Conditioning on the value of MB
m and applying Proposition 4.3 with

k = 1, we obtain

P
(
NB(n,MB

m) = `
∣∣∣MB

m = s
)

= P
(
NB(n, s) = `

∣∣∣MB
m = s, fB(1) ≤ s

)
= E

[
P
(
NB(n, s) = `

∣∣∣MB
m = s, fB(1) ≤ s,L1

)]
= P

(
NB(n− 1, s− 1) = `

∣∣∣MB
m−1 = s− 1

)
.

Applying this identity m− 1 times, we obtain that

P
(
NB(n,MB

m) = `
∣∣∣MB

m = s
)

= P
(
NB(n−m+ 1, s−m+ 1) = `

∣∣∣MB
1 = s−m+ 1

)
.

For the last step, since {fB(1) ≤ s−m+ 1,MB
1 = s−m+ 1} = {fB(1) = s−m+ 1}, it follows

that

P
(
NB(n,MB

m) = `
∣∣∣MB

m = s
)

= P
(
NB(n−m+ 1, s−m+ 1) = `

∣∣∣MB
1 = s−m+ 1, fB(1) ≤ s−m+ 1

)
= P

(
NB(n−m+ 1, s−m+ 1) = `

∣∣∣ fB(1) = s−m+ 1
)

= P
(
NB(n−m, s−m) = `

)
.

Thus, the proof of the lemma is immediate by observing that

P
(
NB∗(n−m,MB

m −m) = `
∣∣∣MB

m = s
)

= P
(
NB∗(n−m, s−m) = `

)
. �

In order to bound the size of TBn
(
1R

B
m+1) using the threshold process, we now state and prove

an exact formula for the probability mass function of NB(n, s). For the remainder of the section,
we write N(n, s) = NB(n, s).

Proposition 4.4. Let n, s ≥ 0. Then, for all ` ∈ N, we have

P
(
N(n, s) = `

)
= q(s−n)`+ `(`+1)

2

 ∏
s+1−n+`≤i≤s

(1− qi)

 ∑
A⊆[n]:|A|=`

q
∑

a∈A
(a−1)

.

Proof. First, note that the right hand side of the equality is 0 if ` ≤ n − s − 1 or ` ≥ n + 1 since
either the product

∏
s+1−n+`≤i≤s(1 − qi) equals 0 or the sum

∑
A⊆[n]:|A|=` is empty. For such `,

P
(
N(n, s) = `

)
= 0 as well, so the claimed equality holds when ` ≤ n − s − 1 or ` > n. We now

prove that the equality holds for (n− s)+ ≤ ` ≤ n by induction on n+ s.
First, if n + s = 0, then N(n, s) = 0 and the right hand side is equal to 1 if and only if ` = 0,

which proves the formula.
Fix some n, s ≥ 0 and assume the formula holds for any n′, s′ such that n′ + s′ < n + s. Let

` be such that (n − s)+ ≤ ` ≤ n. By considering the possible values for fB(1) and using the two
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formulas in Proposition 4.3, we obtain

P
(
N(n, s) = `

)
= P

(
N(n, s) = `

∣∣∣ fB(1) ≤ s
)
P
(
fB(1) ≤ s

)
+ P

(
N(n, s) = `

∣∣∣ fB(1) > s
)
P
(
fB(1) > s

)
= P

(
N(n− 1, s− 1) = `

)
P
(
fB(1) ≤ s

)
+ P

(
N(n− 1, s) = `− 1

)
P
(
fB(1) > s

)
.

Using the definition of fB , we know that

P
(
fB(1) ≤ s

)
=
∑

1≤j≤s
P
(
fB(1) = j

)
= 1− qs

and
P
(
fB(1) > s

)
= qs .

This gives us that

P
(
N(n, s) = `

)
= (1− qs)P

(
N(n− 1, s− 1) = `

)
+ qsP

(
N(n− 1, s) = `− 1

)
.(4.2)

Using the induction hypothesis, we know that

P
(
N(n− 1, s− 1) = `

)
= q(s−n)`+ `(`+1)

2

 ∏
s+1−n+`≤i≤s−1

(1− qi)

 ∑
A⊆[n−1]:|A|=`

q
∑

a∈A
(a−1)

.

Hence, multiplying by (1− qs) on both sides and putting it into the product, we obtain

(1− qs)P
(
N(n− 1, s− 1) = `

)
= q(s−n)`+ `(`+1)

2

 ∏
s+1−n+`≤i≤s

(1− qi)

 ∑
A⊆[n−1]:|A|=`

q
∑

a∈A
(a−1)

Similarly, we have

qsP
(
N(n− 1, s) = `− 1

)
= qs · q(s−n+1)(`−1)+ `(`−1)

2

 ∏
s+1−n+`≤i≤s

(1− qi)

 ∑
A⊆[n−1]:|A|=`−1

q
∑

a∈A
(a−1)

= q(s−n)`+ `(`+1)
2

 ∏
s+1−n+`≤i≤s

(1− qi)

 ∑
A⊆[n−1]:|A|=`−1

q
n−1+

∑
a∈A

(a−1)
.

Putting the previous formulas into (4.2), we obtain

P
(
N(n, s) = `

)
= q(s−n)`+ `(`+1)

2

 ∏
s+1−n+`≤i≤s

(1− qi)

 ∑
A⊆[n−1]:|A|=`

q
∑

a∈A
(a−1)

+ q(s−n)`+ `(`+1)
2

 ∏
s+1−n+`≤i≤s

(1− qi)

 ∑
A⊆[n−1]:|A|=`−1

q
n−1+

∑
a∈A

(a−1)
.

In order to conclude, note that∑
A⊆[n−1]:|A|=`−1

q
n−1+

∑
a∈A

(a−1) =
∑

A⊆[n−1]:|A|=`−1

q

∑
a∈A∪{n}

(a−1)
,

which implies that∑
A⊆[n−1]:|A|=`

q
∑

a∈A
(a−1) +

∑
A⊆[n−1]:|A|=`−1

q
n−1+

∑
a∈A

(a−1) =
∑

A⊆[n]:|A|=`

q
∑

a∈A
(a−1)

,

and this proves the desired formula for P
(
N(n, s) = `

)
. The induction and the proposition follow.

�
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We conclude this section on the threshold process with upper and lower tail bounds for N . Both
of these bounds use the following inequalities:∑

A⊆[n]:|A|=`

q
∑

a∈A
(a−1) ≤ 1

`!
∑

a1,...,a`≥0
qa1+···+a` ≤ 1

`!

(
1

1− q

)`
.(4.3)

Proposition 4.5. Let n, s ≥ 0. For any integer ξ such that qξ+s−n ≤ ξ(1− q), we have

P
(
N(n, s) ≥ ξ

)
≤ n

ξ!q
ξ2
2

(
qs−n

1− q

)ξ
.

Proof. This proof will be very straightforward using (4.3). Fix some ξ respecting the given condi-
tions. If ξ > n, the inequality holds as the left hand side equals 0. Assume now that ξ ≤ n. Using
Proposition 4.4, we have

P
(
N(n, s) ≥ ξ

)
=
∑
ξ≤`≤n

q(s−n)`+ `(`+1)
2

 ∏
s+1−n+`≤i≤s

(1− qi)

 ∑
A⊆[n]:|A|=`

q
∑

a∈A
(a−1)

.

Applying (4.3) along with the fact that (1− qi) ≤ 1 when s+ 1− n+ ` ≤ i ≤ s, it follows that

P
(
N(n, s) ≥ ξ

)
≤
∑
ξ≤`≤n

q(s−n)`+ `(`+1)
2

1
`!

(
1

1− q

)`
=
∑
ξ≤`≤n

q
`(`+1)

2

`!

(
qs−n

1− q

)`
.(4.4)

To conclude the proof, we now show that the summands on the right are decreasing in `. To
see this, note that

q
`(`+1)

2

`!

(
qs−n

1− q

)`
= q`+s−n

`(1− q) ×
q
`(`−1)

2

(`− 1)!

(
qs−n

1− q

)`−1

≤ q
`(`−1)

2

(`− 1)!

(
qs−n

1− q

)`−1

,

the last ineuality holding since the function ` 7→ q`

` is decreasing and since we assumed that
qξ+s−n ≤ ξ(1− q). Bounding all summands on the right hand side of (4.4) by the ` = ξ term, we
obtain

P
(
N(n, s) ≥ ξ

)
≤ (n− ξ + 1)q

ξ(ξ+1)
2

ξ!

(
qs−n

1− q

)ξ
≤ n

ξ!q
ξ2
2

(
qs−n

1− q

)ξ
,

where the second inequality uses that n− ξ + 1 ≤ n and q
ξ
2 ≤ 1. �

Proposition 4.6. Let n, s ≥ 0. For any integer ξ such that qξ+s−n ≥ ξ(1− q)2, we have

P
(
N(n, s) ≤ ξ

)
≤ 2(1− q)n−s(

(ξ − 1)+
)
!
(
(s− n)+

)
!
q
ξ2
2

(
qs−n

(1− q)2

)ξ
.

Proof. The proof will be very similar to the previous one as we will first bound the probability
with a sum over ` and then consider the largest term. Fix some ξ respecting the given condition. If
ξ < (n−s)+, then the inequality holds as the left hand side equals 0. Assume now that ξ ≥ (n−s)+.
First, by applying Proposition 4.4 along with (4.3), we obtain

P
(
N(n, s) ≤ ξ

)
=

∑
(n−s)+≤`≤ξ

q(s−n)`+ `(`+1)
2

 ∏
s+1−n+`≤i≤s

(1− qi)

 ∑
A⊆[n]:|A|=`

q
∑

a∈A
(a−1)

≤
∑

(n−s)+≤`≤ξ

q(s−n)`+ `(`+1)
2

1
`!

(
1

1− q

)` ∏
s+1−n+`≤i≤s

(1− qi)

 .(4.5)

Write s̃ = min
(
s,
⌊

1
1−q

⌋)
and use that 1− qi ≤ 1 and that 1− qi ≤ i(1− q), to obtain

∏
s+1−n+`≤i≤s

(1− qi) ≤
∏

s+1−n+`≤i≤s̃
i(1− q) = s̃!(1− q)s̃−s+n−`

(s− n+ `)! ≤ 1(
(s− n)+

)
!

(
1

1− q

)s−n+`
,



THE HEIGHT OF MALLOWS TREES 29

where the last inequality follows from the bounds (s− n+ `)! ≥
(
(s− n)+

)
! and

s̃!(1− q)s̃ =
∏

1≤k≤s̃

[
k(1− q)

]
≤ 1 .

Put this bound back into (4.5) to obtain

P
(
N(n, s) ≤ ξ

)
≤ (1− q)n−s(

(s− n)+
)
!

∑
(n−s)+≤`≤ξ

1
`!q

(s−n)`+ `(`+1)
2

(
1

1− q

)2`
.(4.6)

Looking for the largest term in the sum again, we note that

1
`!q

(s−n)`+ `(`+1)
2

(
1

1− q

)2`
= qs−n+`

`(1− q)2 ×
1

(`− 1)!q
(s−n)(`−1)+ `(`−1)

2

(
1

1− q

)2(`−1)
,

and qs−n+` ≥ `(1− q)2 for all ` ≤ ξ by using the assumption on ξ. This implies that we can bound
all terms in the sum in (4.6) from above by the ` = ξ term, and obtain

P
(
N(n, s) ≤ ξ

)
≤
[
ξ + 1− (n− s)+

] (1− q)n−s(
(s− n)+

)
!

1
ξ!q

(s−n)ξ+ ξ(ξ+1)
2

(
1

1− q

)2ξ
.

The desired bound follows by using that ξ + 1− (n− s)+ ≤ 2ξ and q
ξ
2 ≤ 1. �

4.2. Bounds on MB
m. For the reminder of Section 4, we define

m = m(n) = min
{
` ≥ 0 : `(1− qn) + log ` ≥ n(1− qn)

}
.

Under the assumption that n(1− qn) = ω
(√

logn
)
, this definition implies that

µ1
(
m(n), qn

)
∼ n(1− qn) ,(4.7)

by using the asymptotic estimate for µ1
(
m(n), qn

)
from Proposition 2.5.

The goal of this section is to prove the following proposition.

Proposition 4.7. Let (qn)n≥0 be such that log
(
n(1 − qn)

)
= O

(√
logn

)
and n(1 − qn) =

ω
(√

logn
)
. For n ≥ 0, let m = m(n) = min

{
` ≥ 0 : `(1 − qn) + log ` ≥ n(1 − qn)

}
. Then,

for all (αn)n≥0 such that αn = ω
(√

logn
)
, we have

lim
n→∞

P
(∣∣∣MB

m(n) − n
∣∣∣ > αn

1− qn

)
= 0 .

Proof. For the rest of the proof, we omit B and n from the notation. We also write p = pn = 1−qn.
By assumption, log(np) = O

(√
logn

)
, so p → 0 and also np2 → 0, we will use these facts in the

proof.
We prove the proposition by establishing upper and lower tail bounds for Mm separately. For

both bounds, we will use the following inequality obtained from the moment generating function
of Mm given in Proposition 1.11: for all t ∈ R such that qet < 1, we have

E
[
etMm

]
=

∏
1≤k≤m

(
1 + (et − 1) 1

1− qket

)
≤ exp

(et − 1)
∑

1≤k≤m

1
1− qket

 .(4.8)

For the upper tail bound and for all t > 0 such that qet < 1, use Markov’s inequality and (4.8)
to obtain

P
(
Mm > n+ α

p

)
≤ exp

−t [n+ α

p

]
+ (et − 1)

∑
1≤k≤m

1
1− qket

 .

Let t = − 1
2 log q, so that et = 1/√q. Using that qket = qk−

1
2 ≤ qk−1, it follows that∑

1≤k≤m

1
1− qket ≤

1
1−√q +

∑
2≤k≤m

1
1− qk−1 = 1

1−√q + 1
p

+ 1
p
µ1(m− 1, q) .
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From (4.7), we know that µ1(m− 1, q) = µ1(m, q)− 1−q
1−qm = np+O

(√
logn

)
, since 1−q

1−qm ≤ 1; this
implies that ∑

1≤k≤m

1
1− qket ≤ n+O

(√
logn
p

)
.

Moreover, since p = 1 − q → 0, we have t = p
2 + O(p2) and et − 1 = p

2 + O(p2). Combining this
with the previous bound on the sum, we obtain

P
(
Mm > n+ α

p

)
≤ exp

((p
2 +O(p2)

)[
−n− α

p
+ n+O

(√
logn
p

)])
= exp

(
−α2 + o(α)

)
;

the last equality follows from the fact that np2 → 0 and that α = ω
(√

logn
)
. This proves the

desired upper tail bound for Mm.
For the lower tail bound, using Markov’s inequality and (4.8) again, for all t > 0 we have

P
(
Mm < n− α

p

)
≤ exp

t [n− α

p

]
+ (e−t − 1)

∑
1≤k≤m

1
1− qke−t

 .

Let t = − log q, so e−t = q. Arguing similarly to the proof of the upper tail, we see that t = p+O(p2)
and e−t − 1 = −p. Moreover, by (4.7), it follows that∑

1≤k≤m

1
1− qke−t =

∑
2≤k≤m+1

1
1− qk = 1

p
µ1(m+ 1, q) = n+O

(√
logn
p

)
.

This gives us that

P
(
Mm < n− α

p

)
≤ exp

((
p+O(p2)

) [
n− α

p
− n+O

(√
logn
p

)])
= exp

(
− α+ o(α)

)
,

which concludes the proof of the lower tail bound and the proposition. �

4.3. Bounds on
∣∣TBn (1RBm+1)∣∣. With the results from the two previous sections, we now have all

the tools required to prove Proposition 4.1.

Proof of Proposition 4.1. By using the distributional identity from Lemma 4.2, it suffices to prove
that

lim
n→∞

P
(
e−βn

1− qn
≤ NB∗

(
n−m(n),MB

m(n) −m(n)
)
≤ βn

1− qn

)
= 1 .

We write pn = 1 − qn and note that pn → 0 as n → ∞. We now prove that the corresponding
upper and lower tail probabilities converge to 0 as n→∞:

UB := P
(
NB∗

(
n−m(n),MB

m(n) −m(n)
)
>
βn
pn

)
−→ 0

and

LB := P
(
NB∗

(
n−m(n),MB

m(n) −m(n)
)
<
e−βn

pn

)
−→ 0 .

For the rest of the proof α = (αn)n≥0 refers to a sequence such that αn = ω
(√

logn
)
and αn =

o(βn). In other words, we have
√

logn� αn � βn. From now on, we omit n and the superscript
B and B∗ from the notations, since the random variables N =

(
N(n, s)

)
n,s≥0 =

(
NB∗(n, s)

)
n,s≥0

are independent of the random variables M = (Mm)m≥0 = (MB
m)m≥0.

For the upper tail, divide the probability according to the values of Mm as follows

UB = P
(
N
(
n−m,Mm −m

)
>
β

p
,Mm > n− α

p

)
+ P

(
N
(
n−m,Mm −m

)
>
β

p
,Mm ≤ n−

α

p

)
.
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Applying Proposition 4.7, we know that the second term converges to 0. Recall now that N(n, s)
is decreasing in s. By independence of N and M ,taking s =

⌊
n− α

p

⌋
= n−

⌈
α
p

⌉
, it follows that

P
(
N
(
n−m,Mm −m

)
>
β

p
,Mm ≥ n−

α

p

)
≤ P

(
N
(
n−m, s−m

)
>
β

p

)
.(4.9)

Write ξ =
⌊
β
p

⌋
. We now need to verify that qξ+(s−m)−(n−m) ≤ ξ(1 − q), so that Proposition 4.5

applies. For this, since ξ ∼ β
p and (s −m) − (n −m) ∼ −αp , and using that α = o(β) and that

q
1
p = (1− p)

1
p → e−1, we have

qξ+(s−m)−(n−m)

ξp
=
(
1 + o(1)

)e−(β−α)(1+o(1))

β
= o(1) ,

which proves that this ratio is less than 1 for n large enough. This means that we can indeed apply
Proposition 4.5 and obtain

P
(
N
(
n−m, s−m

)
>
β

p

)
≤ n−m

ξ! q
ξ2
2

(
qs−n

p

)ξ
= exp

(
log(n−m)− log ξ! + ξ

[
ξ

2 + (s− n)
]

log q − ξ log p
)
.

By the definition of ξ and s, we know that
− log ξ!− ξ log p = −ξ log ξ +O(log ξ)− ξ log p ∼ −ξ log β

and

ξ

[
ξ

2 + (s− n)
]

log q ∼ ξ2

2 log q ∼ −ξ
2p

2 ∼ −ξβ2 .

Since log(n−m) ≤ logn = o(ξβ) and ξ log β = o(ξβ), this implies that

P
(
N
(
n−m, s−m

)
>
β

p

)
≤ exp

(
−
(
1 + o(1)

)ξβ
2

)
= o(1) .

Plugging this result back into (4.9) proves the upper tail bound of the proposition.
For the lower tail bound, we similarly divide the probability to obtain

LB = P
(
N
(
n−m,Mm −m

)
<
e−β

p
,Mn ≤ n+ α

p

)
+ P

(
N
(
n−m,Mm −m

)
<
e−β

p
,Mn > n+ α

p

)
≤ P

(
N
(
n−m, s−m

)
<
e−β

p

)
+ o(1) ,(4.10)

where s =
⌊
n+ α

p

⌋
= n+

⌊
α
p

⌋
. Write ξ =

⌊
e−β

p

⌋
. To verify that the requirement of Proposition 4.6

that qξ+(s−m)−(n−m) ≥ ξ(1− q)2 is satisfied, note that
qξ+(s−m)−(n−m)

ξp2 =
(
1 + o(1)

)e(1+o(1))(β−α)

p
→∞ ,

so is larger than 1 for n large enough. For such n, applying Proposition 4.6, we obtain

P
(
N
(
n−m, s−m

)
<
e−β

p

)
≤ 2pn−s(

(ξ − 1)+
)
!
(
(s− n)+

)
!
q
ξ2
2

(
qs−n

p2

)ξ
≤ 2p

n−s−2ξ

(s− n)!

= 2 exp
(

(n− s− 2ξ) log p− log(s− n)!
)
.

Using the definition of ξ and s, we know that

(n− s) log p− log(s− n)! = (n− s) log
(
p(s− n)

)
+O(log(s− n)) ∼ −α logα

p
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and

2ξ log p ∼ −2e−β logn
p

= o

(
1
p

)
.

This implies that

P
(
N
(
n−m, s−m

)
<
e−β

p

)
≤ 2 exp

(
−
(
1 + o(1)

)α logα
p

)
= o(1) ,

which proves the desired lower tail bound by plugging this result back into (4.10). This concludes
the proof of the proposition. �

4.4. Convergence in probability. We conclude this section with the proof of Proposition 1.13
and then Theorem 1.1. We start with two straightforward lemmas.

Lemma 4.8. Let (qn)n≥0 be such that log
(
n(1− qn)

)
= O

(√
logn

)
and n(1− qn) = ω

(√
logn

)
.

For n ≥ 0, let m = m(n) = min
{
` ≥ 0 : `(1− qn) + log ` ≥ n(1− qn)

}
. Then we have

RBm(n)

n(1− qn) −→ 1

in probability as n→∞.

Proof. By applying Lemma 2.4, and since c log
(
e
c

)
< 1 for all c 6= 1, we have

RBm(n)

µ1
(
m(n), qn

) P−→ 1 .

Moreover, since n(1 − qn) = ω
(√

logn
)
, by (4.7), we have that µ1

(
m(n), qn

)
∼ n(1 − qn), which

proves the desired result. �

Lemma 4.9. Let n ≥ 0 and q ∈ (0, 1). Then, for all integers d ≥ 0 and ` ≥ 0, we have

∣∣∣Tn,q(1d+`)∣∣∣ � log
(

1− P`
(

1− q
∣∣Tn,q(1d)

∣∣))
log q − d ,

where P` is distributed as a product of ` independent Uniform([0, 1]), and is independent of∣∣Tn,q(1d)∣∣.
Proof. This is simply a restatement of the lower bound from Lemma 2.8, when applied to the
tree Tn,q(1

d). By Proposition 1.5, Tn,q(1
d) is Mallows tree once conditioned on its size, so this

application of Lemma 2.8 is indeed valid. �

The proof of Proposition 1.13 now follows from combining Lemma 4.8 and 4.9 with Proposi-
tion 4.1.

Proof of Proposition 1.13. Since TBn has the same distribution as Tn,q, we can prove the proposition
by showing that

h
(
TBn
(
1bn(1−qn)c))) =

(
c∗ + oP(1)

)
logn .

In order to prove this asymptotic result, we will show that N =
∣∣TBn (1bn(1−qn)c))∣∣ satisfies that

N(1−qn) = oP(logN) and that logN =
(
1+oP(1)

)
logn. This will allow us to apply Proposition 2.1

to conclude the proof. For the remainder of the proof, we drop the subscript n on qn and write
m = m(n) = min

{
` ≥ 0 : `(1− q) + log ` ≥ n(1− q)

}
.

We start with the upper bound on the size of the tree. In the case where RBm > bn(1− q)c, we
have that

TBn
(
1bn(1−q)c) = TBn

(
1R

B
m
)
∪
{

1k : bn(1− q)c ≤ k < RBm
}
∪

⋃
bn(1−q)c≤k<RBm

TBn
(
1k0
)

⊆ TBn
(
1R

B
m
)
∪
{

1k : bn(1− q)c ≤ k < RBm
}
∪

⋃
bn(1−q)c≤k<RBm

TB
(
1k0
)
.
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Moreover, this inclusion remains true when RBm ≤ bn(1− q)c, since

TBn
(
1bn(1−q)c) ⊆ TBn (1RBm) .

Overall, we obtain that∣∣∣TBn (1bn(1−q)c)∣∣∣ ≤ ∣∣∣TBn (1RBm)∣∣∣+
(
RBm − bn(1− q)c

)
+ +

∑
bn(1−q)c≤k<RBm

∣∣∣TB(1k0
)∣∣∣ .

Lemma 4.8 tells us that RBm − bn(1 − q)c = oP(logn). Moreover, by Lemma 1.10, we know that
the entries of the sequence

(∣∣TB(1k0
)∣∣)

k≥0 are independent Geometric(1− q) random variables,
which gives us that ∑

bn(1−q)c≤k<RBm

∣∣∣TB(1k0
)∣∣ = oP

(
logn
1− q

)
.

Finally, by Proposition 4.1, we know that
∣∣TBn (1RBm)∣∣ = oP

(
logn
1−q

)
. Combining all those results,

we obtain that ∣∣∣TBn (1bn(1−q)c)∣∣∣ = oP

(
logn
1− q

)
.(4.11)

We focus now on bounding the size of the tree from below. Write E+ =
{
RBm > bn(1 − q)c

}
and E− =

{
RBm ≤ bn(1− q)c

}
. Since on E+, we have

TBn
(
1R

B
m
)
⊆ TBn

(
1bn(1−q)c)

,

it follows that ∣∣∣TBn (1bn(1−q)c)∣∣∣1E+ ≥
∣∣∣TBn (1RBm)∣∣∣1E+ .

Moreover, by Proposition 4.1, we know that∣∣∣TBn (1RBm)∣∣∣ ≥ (1 + oP(1)
)e−(logn)

3
4

1− q ,

which implies that ∣∣∣TBn (1bn(1−q)c)∣∣∣1E+ ≥
(
1 + oP(1)

)e−(logn)
3
4

1− q 1E+ .

Using the fact that − log(1− q) ∼ logn, we obtain

1E+ log
∣∣∣TBn (1bn(1−q)c)∣∣∣ ≥ 1E+

(
1 + oP(1)

)
logn .(4.12)

For the second part of the lower bound, letting D = bn(1− q)c −RBm and applying Lemma 4.9,
we have that

∣∣∣TBn (1bn(1−q)c)∣∣∣1E− �


log
(

1− PD

(
1− q

∣∣∣TBn (1R
B
m )
∣∣∣))

log q −D

1E− .
Using the lower bound of Proposition 4.1, we obtain

log
(

1− PD

(
1− q

∣∣∣TBn (1R
B
m )
∣∣∣))

log q 1E− ≥
log
(

1− PD

(
1− q(1+oP(1)) e−(logn)

3
4

1−q

))
log q 1E−

=
(
1 + oP(1)

)PDe−(logn)
3
4

1− q 1E− .



34 LOUIGI ADDARIO-BERRY & BENOÎT CORSINI

Recalling that PD is a product of D independent uniforms, it is immediate that logPD = ΘP(D).
Moreover, by Lemma 4.8, we know that D = bn(1−q)c−RBm = oP(logn). Combining these results,
we obtain that(

PDe
−(logn)

3
4

1− q −D

)
1E− =

(
1

1− q e
oP(logn) + oP(logn)

)
1E− = n1−oP(1)

1E− ,

hence
1E− log

∣∣∣TBn (1bn(1−q)c)∣∣∣ ≥ 1E−
(
1 + oP(1)

)
logn .

Combined with (4.12), this implies that

log
∣∣∣TBn (1bn(1−q)c)∣∣∣ ≥ (1 + oP(1)

)
logn .(4.13)

On the other hand, taking the logarithm in (4.11), we have that

log
∣∣∣TBn (1bn(1−q)c)∣∣∣ ≤ (1 + oP(1)

)
logn ,

and combining this upper bound with (4.13), it follows that

log
∣∣∣TBn (1bn(1−q)c)∣∣∣ =

(
1 + oP(1)

)
logn .

Plugging this back into (4.11) shows that∣∣∣TBn (1bn(1−q)c)∣∣∣(1− q) = oP

(
log
∣∣∣TBn (1bn(1−q)c)∣∣∣) .

This bound implies that we can apply Proposition 2.1 to this subtree and obtain that

h
(
TBn
(
1bn(1−q)c)) =

(
c∗ + oP(1)

)
log
∣∣∣TBn (1bn(1−q)c)∣∣∣ =

(
c∗ + oP(1)

)
logn .

Since TBn and Tn,q are identically distributed, this concludes the proof of the proposition. �

We conclude this section with the proof of Theorem 1.1.

Proof of Theorem 1.1. Let us first assume that (qn)n≥0 is such that n(1 − qn) = Θ(logn), and
prove that

h
(
Tn,qn

)
= n(1− qn) + c∗ logn+ oP(logn) .

Using Proposition 1.13 and the fact that

h
(
TBn
)
≥ bn(1− qn)c+ h

(
TBn
(
1bn(1−qn)c))

,

it follows that
h
(
Tn,qn

) d= h
(
TBn
)
≥ n(1− qn) + c∗ logn+ oP(logn) .

For the upper bound, recall the stochastic inequality from (1.3) and apply it with d = bn(1−qn)c:

h(Tn,q) � bn(1− qn)c+ max
{

sup
k≥0

{
h
(
TB
(
1k0
))
− k
}
, h
(
TBn
(
1bn(1−qn)c))}

.

Now, Proposition 1.13 tells us that

h
(
TBn
(
1bn(1−qn)c)) =

(
c∗ + oP(1)

)
logn ,

and from Proposition 1.12, we know that

sup
k≥0

{
h
(
TB
(
1k0
))
− k
}
≤ c∗ log

(
1

1− qn

)
+OP

(√
log
(

1
1− qn

))
.

Since log 1
1−qn ∼ logn, it follows that

sup
k≥0

{
h
(
TB
(
1k0
))
− k
}
≤
(
c∗ + oP(1)

)
logn ,

and this proves that
h
(
Tn,qn

)
≤ n(1− qn) + c∗ logn+ oP(logn) .
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This concludes the proof of the fact

h
(
Tn,qn

)
= n(1− qn) + c∗ logn+ oP(logn)

whenever n(1− qn) = Θ(logn).
Now, in order to prove Theorem 1.1, let (qn)n≥0 be any sequence taking values in [0, 1]. By

Proposition 2.7, it suffices to prove that(
h
(
Tn,qn

)
n(1− qn) + c∗ logn

)
n≥1

converges in probability to 1. By considering subsequences if necessary, we can assume that (qn)n≥0
falls into one of the following regimes:

• n(1− qn) = Θ(logn).
• n(1− qn) = ω(logn).
• n(1− qn) = o(logn) and qn 6= 1 for all n ≥ 0.
• qn = 1 for all n ≥ 0.

The case n(1 − qn) = Θ(logn) was handled in the first part of the proof. The case n(1 − qn) =
ω(logn) follows from Theorem 1.2. When n(1 − qn) = o(logn), the results follows from Proposi-
tion 2.1, with the bounding seuence (γn)n≥0 in that proposition chosen so that

√
logn∨n(1−qn)�

γn � logn. Finally, the case when qn = 1 for all n is simply that of binary search trees, in which
case the result was proved by Devroye [11]. This concludes the proof of Theorem 1.1. �

5. Distributional limits

In this last section, we prove Theorem 1.3 and Theorem 1.4. The bulk of this section is devoted
to proving the central limit theorem for the right depth RBn ; this was stated as Proposition 1.14
above. We then prove the central limit theorem for the height by combining this proposition with
Proposition 1.15 and 1.12. We conclude this section with the proof of Theorem 1.4.

5.1. Central limit theorem for the right depth. Before proving the central limit theorem for
h(Tn,qn), we prove Proposition 1.14, which corresponds to a central limit theorem for the right
depth RBn .

Proof of Proposition 1.14. Let (qn)n≥0 be such that n(1 − qn) = ω(logn) and nqn = ω(1). Note
that this implies that n(1−qn)qn = ω(1). Consider the characteristic function gn defined as follows:

gn(t) = E

[
exp

(
it ·

RBn − n(1− qn)− log
(
(1− qn)−1)√

n(1− qn)qn

)]
.

We will prove that gn(t) → e−
t2
2 pointwise as n → ∞ by dividing into two cases: nq3

n = ω(1)
and nq3

n = O(1) (even though the two proofs for the two cases are very similar, we did not see a
way to combine them). The proposition then follows by the continuity theorem for characteristic
functions. For the remainder of the proof, we drop the subscript n on qn and write p = pn = 1−qn.

Assume first that np = ω(logn) and nq3 = ω(1), and fix t ∈ R. Using the characteristic function
for RBn from Proposition 1.11, we have that

gn(t) = exp
(
−itnp+ log(p−1)

√
npq

)
E
[
exp

(
it
√
npq

RBn

)]
= exp

(
−itnp+ log(p−1)

√
npq

) ∏
1<k≤n

(
1 +

(
e

it√
npq − 1

) p

1− qk

)

= exp
(
− itnp+ log(p−1)

√
npq

+
∑

1<k≤n
log
[
1 +

(
e

it√
npq − 1

) p

1− qk

])
.(5.1)

We know that npq = ω(1), which implies that

e
it√
npq = 1 + it

√
npq
− t2

2npq +O

(
1

(npq) 3
2

)
.
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Since npq = ω(1) and p
1−qk = 1−q

1−qk ≤ 1 for all 1 < k ≤ n, we have that

log
[
1 +

(
e

it√
npq − 1

) p

1− qk

]
= log

[
1 +

(
it
√
npq
− t2

2npq +O

(
1

(npq) 3
2

))
p

1− qk

]
=
(

it
√
npq
− t2

2npq +O

(
1

(npq) 3
2

))
p

1− qk

− 1
2

[(
it
√
npq
− t2

2npq +O

(
1

(npq) 3
2

))
p

1− qk

]2

+O

([(
it
√
npq
− t2

2npq +O

(
1

(npq) 3
2

))
p

1− qk

]3)
;

The second equality following from the standard expansion for the logarithm: log(1 + z) = z −
1
2z

2 + O(z3) when |z| → 0. Now simplify the last equation by absorbing lower order terms inside
the O

(
1

(npq)
3
2

)
to obtain

log
[
1 +

(
e

it√
npq − 1

) p

1− qk

]
=
(

it
√
npq
− t2

2npq +O

(
1

(npq) 3
2

))
p

1− qk

+
(

t2

2npq +O

(
1

(npq) 3
2

))[
p

1− qk

]2

+O

(
1

(npq) 3
2

)[
p

1− qk

]3
,

where the implied constants in the big-O terms are uniform in k. Take the sum of the previous
terms over all 1 < k ≤ n, to obtain∑

1<k≤n
log
[
1 +

(
e

it√
npq − 1

) p

1− qk

]
(5.2)

=
∑

1<k≤n

(
it
√
npq
− t2

2npq +O

(
1

(npq) 3
2

))
p

1− qk
(

=: CLT(1)
)

+
∑

1<k≤n

(
t2

2npq +O

(
1

(npq) 3
2

))[
p

1− qk

]2 (
=: CLT(2)

)
+
∑

1<k≤n
O

(
1

(npq) 3
2

)[
p

1− qk

]3
.

(
=: CLT(3)

)
For the first term, this gives us

CLT(1) =
(

it
√
npq
− t2

2npq +O

(
1

(npq) 3
2

)) ∑
1<k≤n

p

1− qk

=
(

it
√
npq
− t2

2npq +O

(
1

(npq) 3
2

))
µ1(n, q) .

Applying Proposition 2.5 and using that p−1 ≤ n, which by assumption holds for n large enough,
we know that µ1(n, q) = np+ log(p−1) +O

(√
| log p|

)
. This gives us that

CLT(1) =
(

it
√
npq
− t2

2npq +O

(
1

(npq) 3
2

))(
np+ log(p−1) +O

(√
| log p|

))
= it

np
√
npq
− t2

2q + it
log(p−1)
√
npq

+O

(
np

(npq) 3
2

)
+O

(
log p
npq

)
+O

(√
| log p|
npq

)
;

Three of the nine terms which are obtained by formally expanding the product have been absorbed
in the big-O terms above as they are of smaller order. Now recall that np = ω(logn) and nq3 = ω(1),
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which implies that np = o
(
(npq) 3

2
)
and that log p

npq = o(1); if follows that
√
| log p|
npq = o(1) as well.

Combining all these bounds, we obtain

CLT(1) = it
np
√
npq
− t2

2q + it
log(p−1)
√
npq

+ o(1) .(5.3)

For the second term, since Proposition 2.6 tells us that µ2(n, q) = np2 +O(1), we have

CLT(2) =
(

t2

2npq +O

(
1

(npq) 3
2

))
µ2(n, q)

=
(

t2

2npq +O

(
1

(npq) 3
2

))(
np2 +O(1)

)
= pt2

2q +O

(
np2

(npq) 3
2

)
+O

(
1
npq

)
.

We know that p ≤ 1, and as we previously explained, np = o
(
(npq) 3

2
)
. This implies that np2 =

o
(
(npq) 3

2
)
. Combining all these bounds with the fact that npq = ω(1), we obtain that

CLT(2) = pt2

2q + o(1) .(5.4)

Finally, using that µ3(n, q) = np3 +O(1) from Proposition 2.6, and similar arguments to the ones
used for the previous two terms, we obtain

CLT(3) = O

(
1

(npq) 3
2

)
µ3(n, p) = O

(
np3

(npq) 3
2

)
+O

(
1

(npq) 3
2

)
= o(1) .(5.5)

Putting the bounds for CLT(1), CLT(2) and CLT(3) obtained in (5.3), (5.4) and (5.5) back into
(5.2), we obtain∑

1<k≤n
log
[
1 +

(
e

it√
npq − 1

) p

1− qk

]
= it

np
√
npq
− t2

2q + it
log(p−1)
√
npq

+ pt2

2q + o(1)

= it
np
√
npq
− t2

2 + it
log
(
p−1)

√
npq

+ o(1) .

Once plugged back into (5.1), this gives us

gn(t) = exp
(
−itnp+ log(p−1)

√
npq

+ it
np
√
npq
− t2

2 + it
log(p−1)
√
npq

+ o(1)
)

= exp
(
− t

2

2 + o(1)
)
,

which is the desired result.
Assume now that nq3 = O(1) and nq = ω(1). Note that this implies that nq4 = o(1) and that

npq =
(
1 + o(1)

)
nq → ∞. From the second identity, it follows that log(p−1) = o

(√
npq

)
, which

implies that

gn(t) = E
[
exp

(
it
RBn − np√

npq

)]
+ o(1) .

Using the characteristic function for RBn again, we have that

gn(t) = exp
(
−it np
√
npq

) ∏
1<k≤n

(
1 +

(
e

it√
npq − 1

) p

1− qk

)
+ o(1) .(5.6)

Note that, for any 1 < k ≤ n, we have(
e

it√
npq − 1

) p

1− qk = o(1) .

Moreover, for k ≥ 4, since q → 0 and p ≤ 1, we have

p ≤ p

1− qk ≤
p

1− q4 = p+O(q4) ,
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which implies that p
1−qk = p+O(q4) where the implied bound in the big-O term is independent of

k. Using the two previous results into (5.6) and dividing the product according to whether k < 4
or k ≥ 4, we obtain

gn(t) =
(
1 + o(1)

)
exp

(
−it np
√
npq

) ∏
4≤k≤n

(
1 +

(
e

it√
npq − 1

) (
p+O(q4)

))
+ o(1)

=
(
1 + o(1)

)
exp

(
−it np
√
npq

)(
1 +

(
e

it√
npq − 1

) (
p+O(q4)

))n−3
+ o(1) .

Now, since npq →∞, we have(
e

it√
npq − 1

) (
p+O(q4)

)
=
(

it
√
npq
−
(
1 + o(1)

) t2

2npq

)(
p+O(q4)

)
= itp
√
npq
−
(
1 + o(1)

) t2p
2npq +O

(
q4
√
npq

)
,

from which it follows that(
1 +

(
e

it√
npq − 1

) (
p+O(q4)

))n−3

= exp
(

(n− 3) log
(

1 + itp
√
npq
−
(
1 + o(1)

) t2p
2npq +O

(
q4
√
npq

)))
= exp

(
(n− 3)

[
itp
√
npq
−
(
1 + o(1)

) t2p
2npq +

(
1 + o(1)

)1
2
t2p2

npq
+O

(
q4
√
npq

)])
= exp

(
it

np
√
npq
− t2

2 + o(1)
)

;

the last equality holds since √npq →∞ and nq4 → 0. This proves that

gn(t) =
(
1 + o(1)

)
exp

(
− t

2

2 + o(1)
)

+ o(1) = e−
t2
2 + o(1) ,

which concludes the proof of the proposition. �

5.2. Central limit theorem for the height of Mallows trees. Before proving Theorem 1.3,
we use results from previous sections to prove Proposition 1.15.

Proof of Proposition 1.15. Let (qn)n≥0 and m = m(n) be defined as in the statement of the propo-
sition. We want to prove that the sequence of random variablesh

(
TBn
(
1R

B
m+1))− c∗ logn
√

logn


n≥2

is tight. In order to do so, we will prove that, for any sequence (γn)n≥0 such that γn = ω
(√

logn
)
,

we have

P
( ∣∣∣h(TBn (1RBm+1))− c∗ logn

∣∣∣ ≥ γn) −→ 0 .(5.7)

Let (γn)n≥0 be a sequence such that γn = ω
(√

logn
)
, and assume without loss of generality that

γn = o(logn).
Consider a sequence (βn)n≥0 such that βn = ω

(√
logn

)
, and that βn = o(γn); in other words,√

logn� βn � γn � logn. By applying Proposition 4.1, we know that

P
(
e−βn ≤

∣∣∣TBn (1RBm+1)∣∣∣(1− qn) ≤ βn
)
−→ 1 .
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This implies that

P
( ∣∣∣h(TBn (1RBm+1))− c∗ logn

∣∣∣ ≥ γn)
= P

( ∣∣∣h(TBn (1RBm+1))− c∗ logn
∣∣∣ ≥ γn ∣∣∣∣ e−βn ≤ ∣∣TBn (1RBm+1)∣∣(1− qn) ≤ βn

)
+ o(1) .

Recall that log
(
n(1 − qn)

)
= O

(√
logn

)
. Since

√
logn � βn � γn � logn, this implies that,

for any sequence (sn)n≥0 such that e−βn ≤ sn(1−qn) ≤ βn, we have log sn = logn+O(βn) ∼ logn.
It follows that

sn(1− qn) ≤ βn = o(log sn)

and that
γn

sn(1− qn) ∨
√

logn
≥ γn
βn ∨

√
logn

= ω(1) .

This corresponds to the assumptions of Proposition 2.1, and we henceforth know that

P
(∣∣∣h(Tsn,qn)− c∗ log sn

∣∣∣ ≥ γn ) −→ 0 .

Moreover, since log sn = logn+O(βn) = logn+ o(γn), it follows that

P
(∣∣∣h(Tsn,qn)− c∗ logn

∣∣∣ ≥ γn ) −→ 0 .

Since, conditioned on having size sn, TBn
(
1R

B
m+1) is distributed as Tsn,qn , this implies that

P
( ∣∣∣h(TBn (1RBm+1))− c∗ logn

∣∣∣ ≥ γn ∣∣∣∣ e−βn ≤ ∣∣TBn (1RBm+1)∣∣(1− qn) ≤ βn
)
−→ 0 ,

which proves that (5.7) holds, and concludes the proof of the proposition. �

With the previous results, we can now prove Theorem 1.3.

Proof of Theorem 1.3. We will prove that, for all t ∈ R, we have

lim
n→∞

P

(
h(TBn )− n(1− qn)− c∗ log

(
(1− qn)−1)√

n(1− qn)qn
≤ t

)
= Φ(t) ,(5.8)

where Φ is the cumulative density function of the Normal(0, 1) distribution. By considering
subsequences if necessary, we can assume either that n(1 − qn) = ω

(
log2 n

)
, or that n(1 − qn) =

O
(

log2 n
)
. We now fix t ∈ R and prove that (5.8) holds by dividing the proof into the two previous

cases.
Assume first that n(1− qn) = ω(log2 n). Since nqn = ω(1), this implies that√

n(1− qn)qn
log
(
(1− qn)−1

) −→∞ .

Let (γn)n≥0 be any sequence that converges to infinity such that γn = ω
(

log
(
(1 − qn)−1)) and

γn = o
(√

n(1− qn)qn)
)
, and define

En =
{
h(TBn )−RBn ≥ γn

}
.

Recall the upper bound from (1.2):

h(TBn )−RBn ≤ 1 + max
k≥0

{
h
(
TB(1k0)

)
− k
}
.

Using this bound, we have

P(En) ≤ P
(

1 + max
k≥0

{
h
(
TB(1k0)

)
− k
}
≥ γn

)
,
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and the right hand side converges to 0 when n→∞, thanks to Proposition 1.12 applied with ξn =
γn−1−c∗ log

(
(1−qn)−1)−M√log(1− qn)−1; this tends to infinite since γn = ω

(
log
(
(1−qn)−1)).

It follows that

P

(
h(TBn )− n(1− qn)√

n(1− qn)qn
≤ t

)
= P

(
h(TBn )− n(1− qn)√

n(1− qn)qn
≤ t, Ecn

)
+ o(1) .(5.9)

To bound the right hand side, on one hand, using that RBn ≤ h(TBn ), we have

P

(
h(TBn )− n(1− qn)√

n(1− qn)qn
≤ t, Ecn

)
≤ P

(
RBn − n(1− qn)√

n(1− qn)qn
≤ t

)
,

and by applying Proposition 1.14, the upper bound converges to Φ(t); we are using here that√
n(1− qn)qn = ω

(
log
(
(1 − qn)−1)), so the log

(
(1 − qn)−1) term in the numerator of Proposi-

tion 1.14 is asympotically negligible and can be dropped. On the other hand, by the definition of
En, we have h(TBn ) < RBn + γn on Ecn, and it follows that

P

(
h(TBn )− n(1− qn)√

n(1− qn)qn
≤ t, Ecn

)
≥ P

(
RBn + γn − n(1− qn)√

n(1− qn)qn
≤ t, Ecn

)

≥ P

(
RBn − n(1− qn)√

n(1− qn)qn
≤ t− γn√

n(1− qn)qn

)
− P(En)

Since γn√
n(1−qn)qn

and P(En) converge to 0, this lower bound also converges to Φ(t), again thanks to

Proposition 1.14. Combing the last two results with (5.9) and again using that log
(
(1− qn)−1) =

o
(√

n(1− qn)qn
)
, it follows that

P

(
h(TBn )− n(1− qn)− c∗ log

(
(1− qn)−1)√

n(1− qn)qn
≤ t, Ecn

)
= P

(
h(TBn )− n(1− qn)√

n(1− qn)qn
≤ t, Ecn

)
+ o(1)

= Φ(t) + o(1) ,

which concludes the proof of Theorem 1.3 in the case where n(1− qn) = ω
(

log2 n
)
.

Assume now that n(1 − qn) = O(log2 n) and that n(1 − qn) = ω(logn). Note that this implies
that log

(
n(1 − qn)

)
= O(log logn) = O

(√
logn

)
and then logn = log

(
(1 − qn)−1) + O

(√
logn

)
.

Let m = m(n) = min
{
` ≥ 0 : `(1 − qn) + log ` ≥ n(1 − qn)

}
and (γn)n≥0 be a sequence such

that γn = ω
(√

logn
)
and γn = o

(√
n(1− qn)qn

)
, which is possible since n(1− qn)qn = ω(logn).

Define the event
Fn =

{∣∣h(TBn )−RBm − 1− c∗ log
(
(1− qn)−1)∣∣ ≥ γn} .

Using both bounds of (1.4), we have that

P(Fn) = P
(
h(TBn )−RBm − 1 ≥ c∗ log

(
(1− qn)−1)+ γn

)
+ P

(
h(TBn )−RBm − 1 ≤ c∗ log

(
(1− qn)−1)− γn)

≤ P
(

max
{

sup
k≥0

{
h
(
TB
(
1k0
))
− k
}
, h
(
TBn
(
1R

B
m+1))} ≥ c∗ log

(
(1− qn)−1)+ γn

)
+ P

(
h
(
TBn
(
1R

B
m+1)) ≤ c∗ log

(
(1− qn)−1)− γn) .

By applying Proposition 1.15, which states that h
(
TBn
(
1R

B
m+1)) = c∗ logn + OP

(√
logn

)
, and

Proposition 1.12, which states that supk≥0
{
h
(
TB
(
1k0
))
− k
}
≤ c∗ logn+OP

(√
logn

)
, we obtain

that P(Fn)→ 0.
Separating (5.8) according to Fn and F cn as previously, we now obtain that

P

(
h(TBn )− n(1− qn)− c∗ log

(
(1− qn)−1)√

n(1− qn)qn
≤ t

)

= P

(
h(TBn )− n(1− qn)− c∗ log

(
(1− qn)−1)√

n(1− qn)qn
≤ t, F cn

)
+ o(1) .
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Note that, by definition of m, we have m(1 − qn) + logm = n(1 − qn) + O(1). Since n(1 − qn) =
ω(logn), it follows that m ∼ n and so logm = logn+O(1). This implies that m(1−qn) = ω(logm)
and that mqn = ω(1), and by Proposition 1.14, we obtain

P

(
RBm −m(1− qn)− log

(
(1− qn)−1)√

m(1− qn)qn
≤ t

)
−→ Φ(t) .

The previous identities also imply that m(1 − qn)qn ∼ n(1 − qn)qn and, since log
(
n(1 − qn)

)
=

O(log logn), that

m(1− qn) + log
(
(1− qn)−1) = n(1− qn) +O(log logn) = n(1− qn) + o

(√
n(1− qn)qn

)
.

It follows that

P

(
RBm − n(1− qn)√

n(1− qn)qn
≤ t

)
−→ Φ(t) .

Now, use the definition of Fn and the previous asymptotic result to obtain that, on one hand

P

(
h(TBn )− n(1− qn)− c∗ log

(
(1− qn)−1)√

n(1− qn)qn
≤ t, F cn

)

≤ P

(
RBn + 1− n(1− qn)− γn√

n(1− qn)qn
≤ t, F cn

)

≤ P

(
RBn − n(1− qn)√

n(1− qn)qn
≤ t+ γn − 1√

n(1− qn)qn

)
= Φ(t) + o(1) ,

and on the other hand

P

(
h(TBn )− n(1− qn)− c∗ log

(
(1− qn)−1)√

n(1− qn)qn
≤ t, F cn

)

≥ P

(
RBn + 1− n(1− qn) + γn√

n(1− qn)qn
≤ t, F cn

)

≥ P

(
RBn − n(1− qn)√

n(1− qn)qn
≤ t− γn + 1√

n(1− qn)qn

)
− P(Fn)

= Φ(t) + o(1) .

This proves that

P

(
h(TBn )− n(1− qn)− c∗ log

(
(1− qn)−1)√

n(1− qn)qn
≤ t, F cn

)
= Φ(t) + o(1) ,

which concludes the proof of Theorem 1.3 in the second and last case. �

5.3. Poisson fluctuations for the height. We conclude this section with the proof of Theo-
rem 1.4.

Proof of Theorem 1.4. We will prove that, when nqn → λ ∈ [0,∞), then

n− 1− h(TBn ) d−→ Poisson(λ) .

Start by considering the event

En =
{
h(TBn ) > RBn

}
.

Since RBn ≤ h(TBn ), this means that Ecn =
{
RBn = h(TBn )

}
. Now, for the height of the whole

tree to be larger than the right depth, there must be a non-empty left subtree TBn (1k0) for some
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0 ≤ k ≤ RBn . Moreover, if this non-empty left subtree is not TBn (1R
B
n 0) or TBn (1R

B
n−10), then its

size has to be larger than 2. This implies that

En ⊆
{∣∣TBn (1R

B
n 0)
∣∣ ≥ 1

}
∪
{∣∣TBn (1R

B
n−10)

∣∣ ≥ 1
}
∪

⋃
0≤k≤RBn−2

{∣∣TBn (1k0)
∣∣ ≥ 2

}
.

Recall from Lemma 1.10 that the trees
(∣∣TB(1k0)

∣∣)
k≥0 are all independent, Geometric(1 − qn)

distributed random variable. Using that RBn ≤ n − 1 and that TBn (1k0) ⊆ TB(1k0), this implies
that

P(En) ≤ 2P
(∣∣TB(0)

∣∣ ≥ 1
)

+ (n− 2)P
(∣∣TB(0)

∣∣ ≥ 2
)

= 2qn + (n− 2)q2
n = o(1) .

This proves that P
(
h(TBn ) = RBn

)
= 1− o(1), when nqn = O(1). We will now prove that

n− 1−RBn
d−→ Poisson(λ) ,

by showing that the characteristic function of n−1−RBn converges to that of a Poisson(λ) random
variable.

Since qn = o(1), we have that 1−qn
1−qkn

= 1 − qn + o(qn) for all k ≥ 2, where the small-o term
can be chosen to be independent of k. Consider now the characteristic function for RBn from
Proposition 1.11 to obtain

E
[
eit(n−1−RBn )

]
= eit(n−1)

∏
1<k≤n

(
1 + (e−it − 1)1− qn

1− qkn

)
= eit(n−1)

(
1 + (e−it − 1)

(
1− qn + o(qn)

))n−1

=
(

1 +
(
eit − 1 + o(1)

)
qn

)n−1
.

Since nqn → λ, it follows that

E
[
eit(n−1−RBn )

]
−→ eλ(eit−1) ;

this concludes the proof of the theorem. �

6. Further questions

This paper studies Mallows trees and proved some of the properties of its height. However,
several related questions remain open. We discuss some of the possible further studies below.

• Between Theorem 1.3 and Theorem 1.4, we have a good understand of the distributional
limit of h(Tn,qn) when n(1−qn)/ logn→∞. Moreover, we know from the results of [13, 27]
that when qn ≡ 1, the central limit theorem does not hold anymore, and the variance of
the height is Θ(1). This means that there exists a transition between the regime n(1 −
qn)/ logn→∞ and qn = 1 where the central limit theorem of Theorem 1.3 stops holding
and moves to a more concentrated process with finite variance. It is natural to ask where
this transition occurs; it is not clear to us whether the condition n(1 − qn)/ logn → ∞ is
necessary in order for a Gaussian central limit theorem to hold, or what other distributional
limits are possible for sequences (qn)n≥0 with lim supn→∞ n(1− qn)/ logn <∞.
• In this paper, we studied the height of Tn,qn in large part by relating it to the length of the
rightmost path in Tn,qn ; we did so by bounding from above the height of the left subtrees
Tn,qn(1k0), for k ≥ 0. The intrinsic properties of the left subtrees both for finite n and
in the n → ∞ limit, deserve further exploration in our view, and we next list a couple of
specific questions of interest.

We know that for any fixed q ∈ [0, 1] and k ∈ N, the trees (Tn,q(1
k0))n≥0 are stochas-

tically increasing in n. Moreover, working in the infinite b-model, we have TB(q)
n (1k0) =

TB(q)(1k0) for all n sufficiently large (recall that, by definition, TB(q) = limn→∞ T
B(q)
n ).

It would be interesting to understand this filling process, i.e., to study the behaviour of

DB(q)
n = max

{
0 ≤ k ≤ RB(q)

n : TB(q)
n (1k0) = TB(q)(1k0)

}
,
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which corresponds to the depth until which all trees are filled, as both n and q vary, and
of

S
B(q)
n,k =

∣∣TB(q)
n (1k0)

∣∣∣∣TB(q)(1k0)
∣∣ ,

which corresponds to the proportion of the subtree TB(q)(1k0) already present at time n;
here both q and k may depend on n.

• Another direction of studies regarding the left subtrees is to consider the structure of
the tree TB(q)(0), especially as q → 1. With the results from this paper, it is fairly
straightforward to verify that, in the case when q → 1, the height of TB(q)(0) is

(
c∗ +

oP(1)
)

log(1/(1− q)). It would be interesting to understand the lower order corrections to
this height. We expect the height of TB(q)(0) to have bounded variance as q → 1, and
to converge in distribution after recentering, at least along subsequences. It could also be
interesting to characterize the filling levels (as in [11]) or the total path length of this tree.

• Corollary 1.9 says that Tn,q is stochastically increasing in n when q is fixed. Computations
for small values of n suggest that Tn,q is also stochastically decreasing in q. This would be
interesting if true and would also provide a useful comparison tool, which would simplify
some of the arguments of the current work (in particular Proposition 1.7, in which we could
simply chose m = n).
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Appendix A. Moments of the right depth

In this appendix, we prove Proposition 2.3 and deduce Fact 2.2 from it. Recall the definition of
µα from Section 2.1:

µα(n, q) =
∑

1≤k≤n

(
1− q
1− qk

)α
.

For any integer 1 ≤ β < n, we define

νβ(n, q) =
∑

{1<k1 6=···6=kβ≤n}

∏
{1≤i≤β}

1− q
1− qki .

This function is useful in computing the moments of RBn as stated in the following lemma.

Lemma A.1. Let n ≥ 1, q ∈ [0, 1), and B = (Bi,j)i,j≥1 have independent Bernoulli(1 − q)
entries. Then, for all integer α ≥ 1 we have

E
[(
RBn
)α] =

∑
1≤β≤α∧(n−1)

{
α

β

}
× νβ(n, q) ,

where
({
α
β

})
α,β≥1 are Stirling numbers of the second kind.

Proof. For n = 1, RBn = 0 and the sum on the right is empty. Assume now that n ≥ 2. We will
prove by induction on α ≥ 1 the following slightly more general result: for all t ∈ R, we have

E
[(
RBn
)α
etR

B
n

]
=

∑
1≤β≤α∧(n−1)

{
α

β

} ∑
1<k1 6=···6=kβ≤n

∏
1≤i≤β

(1− q)et

1− qki
∏

k 6=k1,...,kβ

(
1 + (et − 1) 1− q

1− qk

)
.(A.1)

The formula of the lemma follows by taking t = 0.
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For α = 1, by considering the derivative of the moment generating function of RBn from Propo-
sition 1.11 obtained by taking x = et and y = 1, we have

E
[
RBn e

tRBn

]
=

∑
1<k≤n

(1− q)et

1− qk
∏

1<`≤n: 6̀=k

(
1 + (et − 1) 1− q

1− q`

)
,

which exactly corresponds to the right hand side of (A.1) when α = 1.
Assume now that (A.1) holds for some α ≥ 1. We take the derivative in t on both sides of (A.1);

the resulting analysis then depends on whether α < n− 1 or α ≥ n− 1.
First case: α < n − 1. In this case, the last product on the right hand side is never empty

and the derivative is

E
[(
RBn
)α+1

etR
B
n

]
=

∑
1≤β≤α

{
α

β

} ∑
1<k1 6=···6=kβ≤n

β
∏

1≤i≤β

(1− q)et

1− qki
∏

k 6=k1,...,kβ

(
1 + (et − 1) 1− q

1− qk

)

+
∑

1≤β≤α

{
α

β

} ∑
1<k1 6=···6=kβ+1≤n

∏
1≤i≤β+1

(1− q)et

1− qki
∏

k 6=k1,...,kβ+1

(
1 + (et − 1) 1− q

1− qk

)
.

Performing the change of variables β 7→ β − 1 in the second sum, then regrouping the two
sums over the terms 2 ≤ β ≤ α, we obtain

E
[(
RBn
)α+1

etR
B
n

]
=

∑
2≤β≤α

(
β

{
α

β

}
+
{

α

β − 1

}) ∑
1<k1 6=···6=kβ≤n

∏
1≤i≤β

(1− q)et

1− qki
∏

k 6=k1,...,kβ

(
1 + (et − 1) 1− q

1− qk

)

+
{
α

1

} ∑
1<k1≤n

(1− q)et

1− qk1

∏
k 6=k1

(
1 + (et − 1) 1− q

1− qk

)

+
{
α

α

} ∑
1<k1 6=···6=kα+1≤n

∏
1≤i≤α+1

(1− q)et

1− qki
∏

k 6=k1,...,kα+1

(
1 + (et − 1) 1− q

1− qk

)
,

which proves the desired formula since, by definition, we have β
{
α
β

}
+
{

α
β−1
}

=
{
α+1
β

}
, as

well as
{
α
1
}

=
{
α+1

1
}

= 1 and
{
α
α

}
=
{
α+1
α+1
}
.

Second case: α ≥ n− 1. In this case, the last product is empty when β = n− 1. From this
observation, the derivative becomes

E
[(
RBn
)α+1

etR
B
n

]
=

∑
1≤β≤n−1

{
α

β

} ∑
1<k1 6=···6=kβ≤n

β
∏

1≤i≤β

(1− q)et

1− qki
∏

k 6=k1,...,kβ

(
1 + (et − 1) 1− q

1− qk

)

+
∑

1≤β≤n−2

{
α

β

} ∑
1<k1 6=···6=kβ+1≤n

∏
1≤i≤β+1

(1− q)et

1− qki
∏

k 6=k1,...,kβ+1

(
1 + (et − 1) 1− q

1− qk

)

=
∑

2≤β≤n−1

(
β

{
α

β

}
+
{

α

β − 1

}) ∑
1<k1 6=···6=kβ≤n

∏
1≤i≤β

(1− q)et

1− qki
∏

k 6=k1,...,kβ

(
1 + (et − 1) 1− q

1− qk

)

+
{
α

1

} ∑
1<k1≤n

(1− q)et

1− qk1

∏
k 6=k1

(
1 + (et − 1) 1− q

1− qk

)
,

where the second equality follows by the same argument as in the first case. Applying the
same identities for

{
α
β

}
as before, the desired formula holds for α + 1; this completes the

induction.
�

The previous lemma gives the relation between the moments of RBn and the functions νβ . Before
proving the relation between νβ and µα, we state and prove a useful formula.
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Lemma A.2. Fix two positive integers r, n ≥ 1, and for each 1 ≤ k ≤ r, choose x(k) =(
x

(k)
i

)
1≤i≤n ∈ Rn. For 1 ≤ k ≤ r, write P rk for the set of partitions of [r] into k non-empty

subsets. Then

∑
i1 6=···6=ir

∏
1≤k≤r

x
(k)
ik

=
∑

1≤k≤r

∑
(A1,...,Ak)∈P r

k

(−1)r+k
∏

1≤j≤k

(|Aj | − 1
)
!
∑
i∈[n]

∏
a∈Aj

x
(a)
i

 .

Proof. We prove the result by induction on r ≥ 1, the case r = 1 being obvious. Assuming it is
true for some r ≥ 1, to prove that the formula holds for r+ 1, rewrite the sum over i1 6= · · · 6= ir+1
by adding and subtracting the sum over ir+1 such that ir+1 = im for some 1 ≤ m ≤ r to obtain

∑
i1 6=···6=ir+1

∏
1≤k≤r+1

x
(k)
ik

=

 ∑
i1 6=···6=ir

∏
1≤k≤r

x
(k)
ik

∑
i∈[n]

x
(r+1)
i −

∑
1≤m≤r

∑
i1 6=···6=ir

x
(r+1)
im

∏
1≤k≤r

x
(k)
ik
.

(A.2)

For the first term on the right, using the induction hypothesis, we know that

∑
i1 6=···6=in

∏
1≤k≤r

x
(k)
ik

=
∑

1≤k≤r

∑
(A1,...,Ak)∈P r

k

(−1)r+k
∏

1≤j≤k

(|Aj | − 1
)
!
∑
i∈[n]

∏
a∈Aj

x
(a)
i

 ,

and hence ∑
i1 6=···6=in

∏
1≤k≤r

x
(k)
ik

∑
i∈[n]

x
(r+1)
i

=

 ∑
1≤k≤r

∑
(A1,...,Ak)∈P r

k

(−1)r+k
∏

1≤j≤k

(|Aj | − 1
)
!
∑
i∈[n]

∏
a∈Aj

x
(a)
i

∑
i∈[n]

x
(r+1)
i

=
∑

1≤k≤r+1

∑
{(A1,...,Ak)∈P r+1

k
:Ak={r+1}}

(−1)(r+1)+k
∏

1≤j≤k

(|Aj | − 1
)
!
∑
i∈[n]

∏
a∈Aj

x
(a)
i

 .

(A.3)

On the other hand, for all 1 ≤ m ≤ r, by writing y(k,m)
i = x

(k)
i if k 6= m and y(k,m)

i = x
(k)
i x

(r+1)
i if

k = m, we have∑
i1 6=···6=ir

x
(r+1)
im

∏
1≤k≤r

x
(k)
ik

=
∑

i1 6=···6=ir

∏
1≤k≤r

y
(k,m)
ik

=
∑

1≤k≤r

∑
(A1,...,Ak)∈P r

k

(−1)r+k
∏

1≤j≤k

(|Aj | − 1
)
!
∑
i∈[n]

∏
a∈Aj

y
(a,m)
i

 ,

where the second line follows from the induction hypothesis. Now, note that

∑
1≤m≤r

∏
1≤j≤k

(|Aj | − 1
)
!
∑
i∈[n]

∏
a∈Aj

y
(a,m)
i


=

∑
1≤m≤r

∏
1≤j≤k

(|Aj | − 1
)
!
∑
i∈[n]

(
x

(r+1)
i

)1m∈Aj ∏
a∈Aj

x
(a)
i


=
∑

1≤`≤k
|A`|

∏
1≤j≤k

(|Aj | − 1
)
!
∑
i∈[n]

(
x

(r+1)
i

)1j=`
∏
a∈Aj

x
(a)
i

 ,
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which implies that∑
1≤m≤r

∑
i1 6=···6=ir

x
(r+1)
im

∏
1≤k≤r

x
(k)
ik

=
∑

1≤k≤r

∑
(A1,...,Ak)∈P r

k

(−1)r+k
∑

1≤m≤r

∏
1≤j≤k

(|Aj | − 1
)
!
∑
i∈[n]

∏
a∈Aj

y
(a,m)
i


= −

∑
1≤k≤r+1

∑
1≤`≤k

∑
(A1,...,Ak)∈P r+1

k
r+1∈A`,|A`|>1

(−1)(r+1)+k
∏

1≤j≤k

(|Aj | − 1
)
!
∑
i∈[n]

∏
a∈Aj

x
(a)
i

 ,(A.4)

the last equality holding since, if k = r+ 1, then for any partition in P r+1
k all parts have size 1, so

the inner sum is empty.
Substituting (A.3) and (A.4) into the right-hand side of (A.2) and combining them, the inner

sum becomes over all (Aj) ∈ P r+1
k . This completes the inductive step. �

We now apply the previous lemma to establish the relation between νβ and µα.

Lemma A.3. Let n ≥ 0, q ∈ [0, 1), and β ≥ 1. Write Sβ = {(s1, . . . , sβ) : s1 +2s2 + · · ·+βsβ = β}
and for s = (s1, . . . , sβ) ∈ S, let |s| = s1 + · · ·+ sβ. Then, we have

νβ(n, q) = β!
∑
s∈Sβ

(−1)β+|s|
∏

1≤i≤β

µi(n, q)si
isisi!

Proof. Using the notation of Lemma A.2, let r = β and x
(k)
i = 1−q

1−qi . Then the formula can be
rewriten as∑

i1 6=···6=iβ

1− q
1− qi1 · · ·

1− q
1− qiβ =

∑
1≤k≤β

∑
(Aj)∈Pβ

k

(−1)β+k
∏

1≤j≤k

(|Aj | − 1
)
!
∑
i∈[n]

∏
a∈Aj

1− q
1− qi

 ,

which implies that

νβ(n, q) =
∑

1≤k≤β

∑
(Aj)∈Pβ

k

(−1)β+k
∏

1≤j≤k

((
|Aj | − 1

)
!µ|Aj |(n, q)

)
.

For a partition A = (Aj) ∈ P βk , write si(A) = |{j ∈ [k] : |Aj | = i}|. Then s(A) =(
s1(A), ..., sβ(A)

)
∈ Sβ and |s(A)| = s1(A) + · · · + sβ(A) = k. Regrouping the sum over (Aj),

we then obtain
νβ(n, q) =

∑
s∈Sβ

∑{
A∈Pβ|s|:s(A)=s

}(−1)β+|s|
∏

1≤j≤|s|

((
|Aj | − 1

)
!µ|Aj |(n, q)

)

=
∑
s∈Sβ

(−1)β+|s|
∏

1≤i≤β
µi(n, q)si

 ∑{
A∈Pβ|s|:s(A)=s

} ∏
1≤j≤|s|

(
|Aj | − 1

)
!

 .

To conclude the proof, note that, for a given s ∈ Sβ , we have∑{
A∈Pβ|s|:s(A)=s

} ∏
1≤j≤|s|

(
|Aj | − 1

)
! =

∣∣∣{σ ∈ Sβ : σ has si cycles of size i
}∣∣∣

= β!∏
1≤i≤β i

sisi!
.

This proves the desired formula. �

The proof of Proposition 2.3 is now a direct consequence of Lemma A.1 combined with Lemma A.3.
From this proposition, or by direct computation using the moment generating function of RBn from
Proposition 1.11, we obtain that

E
[
RBn
]

= µ1(n, q)



THE HEIGHT OF MALLOWS TREES 47

and

E
[
(RBn )2] = µ1(n, q) + µ1(n, q)2 − µ2(n, q) ,

which proves Fact 2.2.

Appendix B. Asymptotics of µα

In this appendix, we prove Proposition 2.5 and 2.6. Both these proofs will be based on the
following bounds for µα.

Proposition B.1. Let α ≥ 1, n ≥ 1, and q ∈ [0, 1). Then, for all m ∈ [n], we have

µα(n, q) ≥ (n−m)(1− q)α +
∑

1<k≤m

1
kα

and

µα(n, q) ≤ n(1− q)α + αm(1− q)αqm 1− qn

(1− qm)α+1 +
(
m(1− q)
1− qm

)α ∑
1<k≤m

1
kα

.

Proof. First write

µα(n, q) =
∑

1<k≤m

(
1− q
1− qk

)α
+

∑
m<k≤n

(
1− q
1− qk

)α
.(B.1)

For the lower bound use in the first sum that 1 − qk ≤ k(1 − q) and in the second sum that
1− qk ≤ 1 to obtain

µα(n, q) ≥
∑

1<k≤m

1
kα

+
∑

m<k≤n

(1− q)α =
∑

1<k≤m

1
kα

+ (n−m)(1− q)α ,

which is the desired bound.
For the upper bound, we start with the first term in (B.1). Define the function φ(x) = x

1−e−x ,
so that ∑

1<k≤m

(
1− q
1− qk

)α
=

∑
1<k≤m

(
1− q

1− e−k| log q|

)α
=

∑
1<k≤m

(
1− q
k| log q|φ

(
k| log q|

))α
.

Note that φ is increasing, from which we deduce the following bound:∑
1<k≤m

(
1− q
1− qk

)α
≤

∑
1<k≤m

(
1− q
k| log q|φ

(
m| log q|

))α
=
(

1− q
| log q|φ

(
m| log q|

))α ∑
1<k≤m

1
kα

=
(
m(1− q)
1− qm

)α ∑
1<k≤m

1
kα

.

which is the last term in the desired upper bound.
Consider now the second term of (B.1). Since k 7→ 1−q

1−qk is decreasing in k, we have 1−q
1−qk ≤

1−q
1−q`m

for `m ≤ k ≤ (`+ 1)m, so ∑
m<k≤n

(
1− q
1− qk

)α
≤ m

∑
1≤`≤ n

m

(
1− q

1− q`m

)α
Now, rewrite and bound the last sum as follows∑

1≤`≤ n
m

(
1− q

1− q`m

)α
= (1− q)α

⌊ n
m

⌋
+

∑
1≤`≤ n

m

[(
1− q

1− q`m

)α
− (1− q)α

]

≤ n(1− q)α

m
+ (1− q)α

∑
1≤`≤ n

m

1−
(
1− q`m

)α(
1− q`m

)α ,
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to obtain that ∑
m<k≤n

(
1− q
1− qk

)α
≤ m

n(1− q)α

m
+ (1− q)α

∑
1≤`≤ n

m

1−
(
1− q`m

)α(
1− q`m

)α


= n(1− q)α +m(1− q)α
∑

1≤`≤ n
m

1−
(
1− q`m

)α(
1− q`m

)α .

Simplifying the sum on the right using that 1
1−q`m ≤

1
1−qm when ` ≥ 1, and that 1−

(
1− q`m

)α ≤
α
(
1−

(
1− q`m

))
= αq`m, we have∑
m<k≤n

(
1− q
1− qk

)α
≤ n(1− q)α +m(1− q)α

∑
1≤`≤ n

m

αq`m(
1− qm

)α
≤ n(1− q)α + αm(1− q)α qm

(1− qm)α
1− qn

1− qm .

This corresponds to the first two terms in the desired upper bound and the proposition follows. �

In order to apply the two bounds from this proposition, we now choose the right sequence
(mn)n≥0 corresponding to (qn)n≥0, so that the first terms in the asymptotic behaviour of µα(n, qn)
correspond to n(1− qn)α and

∑
1<k≤mn

1
kα .

Proof of Proposition 2.5. We want to prove that

µ1(n, qn) = n(1− qn) + log
(
n ∧ 1

1− qn

)
+O

(√
log
(
n ∧ 1

1− qn

))
.

First, in the case where (qn)n≥0 converges to 0, since 1
1−qkn

= 1 +O(qkn) uniformly over k, it follows
from the definition of µ1(n, qn) that

µ1(n, qn) =
∑

1<k≤n
(1− qn)

(
1 +O(qkn)

)
= n(1− qn) +O(q2

n) .

Since log
(
n ∧ 1

1−qn

)
= − log(1− qn) ∼ qn, the desired asymptotic behaviour follows.

We assume now that (qn)n≥0 is bounded away from 0. In this case, we prove the lower and the
upper bounds separately.

For the lower bound, define mn =
⌊
n ∧ 1

1−qn

⌋
. Using the lower bound in Proposition B.1 and

since mn(1− qn) ≤ 1, we have

µ1(n, qn) ≥ (n−mn)(1− qn) +
∑

1<k≤mn

1
k

= n(1− qn) + logmn +O(1) .

This result is actually stronger than what we aim to prove, nevertheless the desired lower bound
follows.

For the upper bound, define mn =
⌊

n∧ 1
1−qn√

log(n∧ 1
1−qn )

⌋
and note that, since qn is bounded away

from 0, we have mn(1− qn) = O(1). Using the upper bound of Proposition B.1, we have

µ1(n, qn) ≤ n(1− qn) +mn
(1− qn)qmnn

1− qmnn
1− qnn

1− qmnn
+ (1− qn)mn

1− qmnn

∑
1<k≤mn

1
k
.

By studying the variations of the function φ : x 7→ (1−x)xm
1−xm , one can see that it is increasing and

smaller than 1
m for x ∈ [0, 1), and it follows that

mn
(1− qn)qmnn

1− qmnn
≤ 1 .

Moreover, since mn(1− qn) = O(1), we have

qmnn = emn log qn = e−mn(1−qn)+O(mn(1−qn)2) = 1−mn(1− qn) +O
(
(mn(1− qn))2) ,
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and so
(1− qn)mn

1− qmnn
= mn(1− qn)
mn(1− qn) +O

(
(mn(1− qn))2

) = 1 +O
(
mn(1− qn)

)
.

Combining the last results with the fact that
∑

1<k≤mn
1
k = logmn + O(1) and that 1 − qnn ≤

1 ∧
(
n(1− qn)

)
, we obtain

µ1(n, qn) ≤ n(1− qn) +O

(
1 ∧

(
n(1− qn)

)
mn(1− qn)

)
+
(

1 +O
(
mn(1− qn)

))(
logmn +O(1)

)
= n(1− qn) + logmn +O

(
1 ∧

(
n(1− qn)

)
mn(1− qn)

)
+O

(
mn(1− qn) logmn

)
+O(1) .

The desired upper bound follows from this formula since mn =
⌊

n∧ 1
1−qn√

log(n∧ 1
1−qn )

⌋
, which implies

that

1 ∧
(
n(1− qn)

)
mn(1− qn) = Θ

(√
log
(
n ∧ 1

1− qn

))
,

that

logmn = log
(
n ∧ 1

1− qn

)
+O

(
log log

(
n ∧ 1

1− qn

))
,

and that

mn(1− qn) logmn = O

(√
log
(
n ∧ 1

1− qn

))
. �

Proof of Proposition 2.6. We use a similar technique, by proving an upper and a lower bound
separately, to show that

µα(n, qn) = n(1− qn)α + ζ(α)− 1 +O

((
(1− qn) ∨ 1

n

)α−1
α+1
)

holds for all α > 1.
Let mn =

⌊
n ∧ 1

1−qn

⌋
. Using the lower bound of Proposition B.1, we have

µα(n, qn) ≥ (n−mn)(1− qn)α +
∑

1<k≤mn

1
kα

.

Since
∑

1<k≤mn
1
kα = ζ(α)− 1 +O

(
1

(mn)α−1

)
, we obtain

µα(n, qn) ≥ n(1− qn)α + ζ(α)− 1 +O
(
mn(1− qn)α

)
+O

(
1

(mn)α−1

)
and the lower bound now follows from the fact that mn(1− qn)α ≤ 1

(mn)α−1 ≤
(

1
mn

)α−1
α+1 .

For the upper bound, let

mn =
⌊(

1
(1− qn)2 ∧

n

1− qn
∧ nα+1

) 1
α+1
⌋
.

This definition just encodes that there are three cases to study: 1
1−qn ≤ n, n < 1

1−qn ≤ nα, and
nα < 1

1−qn . In all case, we have 1 ≤ mn ≤ n. Applying the upper bound of Proposition B.1, it
follows that

µα(n, qn) ≤ n(1− qn)α + αmn
(1− qn)αqmnn(

1− qmnn
)α 1− qnn

1− qmnn
+
(
mn(1− qn)

1− qmnn

)α ∑
1<k≤mn

1
kα

.(B.2)
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On one hand, by the definition of mn, we have mn(1 − qn) ≤ 1−qn
(1−qn)

2
α+1

= (1 − qn)
α−1
α+1 ≤ 1. It

follows that 1− qmnn = Ω
(
mn(1− qn)

)
, and since 1− qnn ≤ 1 ∧ n(1− qn), we have

αmn
(1− qn)αqmnn(

1− qmnn
)α 1− qnn

1− qmnn
= αmn(1− qn)αqmnn

(
1− qnn

)
·O

(
1(

mn(1− qn)
)α+1

)

= O

(
1 ∧ (n(1− qn))
mα
n(1− qn)

)
.

On the other hand, we claim that(
mn(1− qn)

1− qmnn

)α
= 1 +O

(
mn(1− qn)

)
.

This holds since if qn < 1−
√

2 then mn = 1, and the claim simply asserts that 1 = 1 +O(1− qn);
and if qn is bounded away from zero then, using the fact that mn(1− qn) ≤ 1 again, we have(

mn(1− qn)
1− qmnn

)α
=
(

mn(1− qn)
mn(1− qn) +O

(
(mn(1− qn)2)

))α = 1 +O
(
mn(1− qn)

)
.

We also know that
∑

1<k≤mn
1
kα = ζ(α)− 1 +O

(
1

mα−1
n

)
, which yields the following bound:(

mn(1− qn)
1− qmnn

)α ∑
1<k≤mn

1
kα

=
(

1 +O
(
mn(1− qn)

))(
ζ(α)− 1 +O

(
1

mα−1
n

))

= ζ(α)− 1 +O

(
1

mα−1
n

)
+O

(
mn(1− qn)

)
.

Plugging these results back into (B.2), we obtain

µα(n, qn) ≤ n(1− qn)α + ζ(α)− 1 +O

(
1 ∧ (n(1− qn))
mα
n(1− qn)

)
+O

(
1

mα−1
n

)
+O

(
mn(1− qn)

)
.

It thus suffices to show that

O

(
1 ∧ (n(1− qn))
mα
n(1− qn)

)
+O

(
1

mα−1
n

)
+O

(
mn(1− qn)

)
= O

((
(1− qn) ∨ 1

n

)α−1
α+1
)
.(B.3)

We divide the proof into three cases according to the value of qn.
First case: 1

1−qn ≤ n. In this case, we have

mn =
⌊

1
(1− qn)

2
α+1

⌋
= Θ

(
1

(1− qn)
2

α+1

)
,

and (B.3) holds since

1 ∧ (n(1− qn))
(mn)α(1− qn) = Θ

(
(1− qn)

2α
α+1

(1− qn)

)
= Θ

(
(1− qn)

α−1
α+1

)
,

and
1

(mn)α−1 = Θ
(

(1− qn)
2(α−1)
α+1

)
= O

(
(1− qn)

α−1
α+1

)
,

and

mn(1− qn) = Θ
(

1− qn
(1− qn)

2
α+1

)
= Θ

(
(1− qn)

α−1
α+1

)
.

Second case: n < 1
1−qn ≤ n

α. In this case, note that (1− qn) ≤ 1
n . We also have

mn =
⌊(

n

1− qn

) 1
α+1
⌋

= Θ
((

n

1− qn

) 1
α+1
)
,
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and (B.3) holds since

1 ∧ (n(1− qn))
(mn)α(1− qn) = Θ

(
n

(
1− qn
n

) α
α+1
)

= Θ
(
n

1
α+1 (1− qn)

α
α+1

)
= O

(
1

n
α−1
α+1

)
,

and

1
(mn)α−1 = Θ

((
(1− qn)

n

)α−1
α+1
)

= O

(
1

n
2(α−1)
α+1

)
= O

(
1

n
α−1
α+1

)
,

and

mn(1− qn) = Θ
((

n

1− qn

) 1
α+1

(1− qn)
)

= Θ
(
n

1
α+1 (1− qn)

α
α+1

)
= O

(
1

n
α−1
α+1

)
.

Third case: 1
1−qn > nα. In this case, we have mn = n and (B.3) holds since

1 ∧ (n(1− qn))
(mn)α(1− qn) = n

nα
= O

(
1

n
α−1
α+1

)
,

and
1

(mn)α−1 = 1
nα−1 = O

(
1

n
α−1
α+1

)
,

and

mn(1− qn) = n(1− qn) < n · 1
nα

= O

(
1

n
α−1
α+1

)
.

This concludes the proof of the upper bound and of the proposition. �
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