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Abstract. In these expository notes, we describe some features of the mul-
tiplicative coalescent and its connection with random graphs and minimum
spanning trees. We use Pitman’s proof [13] of Cayley’s formula, which pro-
ceeds via a calculation of the partition function of the additive coalescent,
as motivation and as a launchpad. We define a random variable which may
reasonably be called the empirical partition function of the multiplicative
coalescent, and show that its typical value is exponentially smaller than its
expected value. Our arguments lead us to an analysis of the susceptibility of
the Erdős-Rényi random graph process, and thence to a novel proof of Frieze’s
ζ(3)-limit theorem for the weight of a random minimum spanning tree.

1. Introduction

Consider a discrete time process (Pi, 1 ≤ i ≤ n) of coalescing blocks, with the
following dynamics. The process starts from the partition of [n] = {1, . . . , n} into
singletons: P1 = {{1}, . . . , {n}}. To form Pi+1 from Pi choose two parts P, P ′ from
Pi and merge them. We assume there is a function κ such that the probability of
choosing parts P, P ′ is proportional to κ(|P |, |P ′|); call κ a rate kernel.

Different rate kernels lead to different dynamics. Three kernels whose dynam-
ics have been studied in detail are κ(x, y) = 1, κ(x, y) = x+ y, and κ(x, y) = xy;
these are often called Kingman’s coalescent, the additive coalescent, and the mul-
tiplicative coalescent, respectively. In these cases there is a natural way to enrich
the process and obtain a forest-valued coalescent.

These notes are primarily focussed on the properties of the forest-valued
multiplicative coalescent. We proceed from a statistical physics perspective, and
begin by analyzing the partition functions of the three coalescents. Here is what
we mean by this. Say that a sequence (P1, . . . , Pn) of partitions of [n] is an n-chain
if P1 = {{1}, . . . , {n}} is the partition of n into singletons, and for 1 ≤ i < n, Pi+1

can be formed from Pi by merging two parts of Pi. Think of κ(x, y) as the number
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of possible ways to merge a block of size x with one of size y. Then corresponding
to an n-chain P = (P1, . . . , Pn) there are

n−1∏
i=1

κ(|Ai(P )|, |Bi(P )|)

possible ways that the coalescent may have unfolded; here we write Ai(P ) and
Bi(P ) for the blocks of Pi that are merged in Pi+1. Writing Pn for the set of
n-chains, it follows that the total number of possibilities for the coalescent with
rate kernel κ is ∑

P=(P1,...,Pn)∈Pn

n−1∏
i=1

κ (|Ai(P )|, |Bi(P )|) ,

and we view this quantity as the partition function of the coalescent with kernel
κ.

The partition functions of Kingman’s coalescent and the additive and multi-
plicative coalescents have particularly simple forms: they are

Zkc(n) = n!(n− 1)! ,

Zac(n) = nn−1(n− 1)! , and

Zmc(n) = nn−2(n− 1)! .

These formulae are proved in Section 2. A corollary of the formula for Zkc(n)
is that the number of increasing trees with n vertices is (n− 1)!; this easy fact is
well-known. The formula for Zac(n) is due to Pitman [13], who used it to give a
beautiful proof of Cayley’s formula; this is further detailed in Section 2.1.

It may seem surprising that the partition function of the multiplicative coa-
lescent is so similar to that of the additive coalescent: near the start of the process,
when most blocks have size 1, the additive coalescent has twice as many choices as
the multiplicative coalescent. Later in the process, blocks should be larger, and one
would guess that usually xy > x+ y. Why these two effects should almost exactly
cancel each other out is something of a mystery. On the other hand, the simi-
larity of the partition functions may suggest that the additive and multiplicative
coalescents have similar behaviour.

A more detailed investigation will reveal interesting behaviour whose sub-
tleties are not captured by the above formulae. We will see in Section 2.3 that there
is a naturally defined “empirical partition function” Ẑmc(n) such that Zmc(n) =

E
[
Ẑmc(n)

]
. However, Ẑmc(n) is typically exponentially smaller than Zmc(n) (see

Corollary 4.3), so in a quantifiable sense, the partition function Zmc(n) takes the
value it does due to extremely rare events. Correspondingly, it turns out that
the behaviour of the additive and multiplicative coalescents are typically quite
different.

To analyze the typical value of Ẑmc(n), we are led to develop the connection
between the multiplicative coalescent and the classical Erdős-Rényi random graph
process (G(n, p), 0 ≤ p ≤ 1). The most technical part of the notes is the proof of
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a concentration result for the susceptibility of G(n, p); this is Theorem 4.4, below.
Using a well-known coupling between the multiplicative coalescent and Kruskal’s
algorithm for the minimum weight spanning tree problem, our susceptibility bound
leads easily to a novel proof of the ζ(3) limit for the total weight of the minimum
spanning tree of the complete graph (this is stated in Theorem 5.1, below).1

Stylistic remarks

The primary purpose of these notes is expository (though there are some new
results, notably Theorems 4.2 and 4.4). Accordingly, we have often opted for repe-
tition over concision. We have also included plenty of exercises and open problems
(the open problems are mostly listed in Section 7). Some exercises state facts which
are required later in the text; these are distinguished by a ⊛.

2. A tale of three coalescents

2.1. Cayley’s formula and Pitman’s coalescent

We begin by describing the beautiful proof of Cayley’s formula found by Jim
Pitman, and its link with uniform spanning trees. Cayley’s formula states that the
number of trees with vertices {1, 2, . . . , n} is nn−2, or equivalently that the number
of rooted trees with vertices labeled by [n] := {1, 2, . . . , n} is nn−1. To prove this
formula, Pitman [13] analyzes a process we call Pitman’s coalescent. To explain
the process, we need some basic definitions. A forest is a graph with no cycles; its
connected components are its trees. A rooted forest is a forest in which each tree
t has a distinguished root vertex r(t).

Pitman’s Coalescent, Version 1. The process has n steps, and at step i

consists of a rooted forest Fi = {T (i)
1 , . . . , T

(i)
n+1−i} with n + 1 − i trees.

(At step 1, these trees are simply isolated vertices with labels 1, . . . , n.)
To obtain Fi+1 from Fi, choose a pair (Ui, Vi), where Ui ∈ [n] and Vi is
the root of some tree of Fi not containing Ui, uniformly at random from
among all such pairs. Add an edge from Ui to Vi, and root the resulting
tree at the root of Ui’s old tree. The forest Fi+1 consists of this new tree
together with the n− i− 1 unaltered trees from Fi.

The coalescents we consider all have the general form of Pitman’s coales-
cent: they are forest-valued stochastic processes (Fi, 1 ≤ i ≤ n), where Fi =

{T (i)
1 , . . . , T

(i)
n+1−i} is a forest with vertices labeled by [n].

1We find this proof of the ζ(3) limit for the MST weight pleasing, as it avoids lemmas which
involve estimating the number of unicyclic and complex components in G(n, p); morally, the
cycle structure of components of G(n, p) should be unimportant, since cycles are never created

in Kruskal’s algorithm!
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Pitman’s Coalescent, Version 2. Consider the directed graph K→
n with

vertices {1, . . . , n} and an oriented edge from k to ℓ for each 1 ≤ k ̸=
ℓ ≤ n. Let W = {W(k,ℓ) : 1 ≤ k ̸= ℓ ≤ n} be independent copies of a
continuous random variable W , that weight the edges of K→

n . Let F1 be
as in Version 1. For i ∈ {1, . . . , n− 1}, form Fi+1 from Fi by adding the
smallest weight edge (k, ℓ) whose head ℓ is the root of one of the trees in
Fi. (Each tree of Fi is rooted at its unique vertex having indegree zero
in Fi.)

Note that in Version 2, for each i ∈ {1, . . . , n} and each tree T of Fi, all edges
of T are oriented away from a single vertex of T ; so, viewing this vertex as the
root of T , the orientation of edges in T is fully specified by the location of its root.

Exercise 1. View the trees of Version 2 as rooted rather than oriented. Then
the sequences of forests (F1, . . . , Fn) described in Version 1 and Version 2 have
the same distribution.

Say that a finite set {Xi, i ∈ I} of random variables is exchangeable if for
any two deterministic orderings of I as, say, i1, . . . , ik and i′1, . . . , i

′
i, the vectors

(Xi1 , . . . , Xik) and (Xi′1
, . . . , Xi′k

) are identically distributed. In particular, if the

elements of {Xi, i ∈ I} are iid then the set is exchangeable.

Exercise 2. Suppose that the edge weights W are only assumed to be exchange-
able and a.s. pairwise distinct. Show that the sequences of forests (F1, . . . , Fn)
described in Version 1 and Version 2 still have the same distribution.

To prove Cayley’s formula, we compute the partition function of Pitman’s
coalescent: this is the total number of possibilities for its execution. (To do so, it’s
easiest to think about Version 1 of the procedure.) For example, when n = 3, there
are 6 possibilities for the first step of the process: 3 choices for the first vertex,
then 2 choices of a tree not containing the first vertex. For the second step, there
are 3 choices for the first vertex; there is only one component not containing the
chosen vertex, and we must choose it. Thus, for n = 3, the partition function has
value Zac(3) = 6 · 3 = 18. More generally, for the n-vertex process, when adding
the i’th edge we have n choices for the first vertex and n − i choices of tree not
containing the first vertex, so a total of n(n − i) possibilities. Thus the partition
function is

Zac(n) =

n−1∏
i=1

n · (n− i) = nn−1(n− 1)! (2.1)

It is not possible to recover the entire execution path of the additive coalescent
from the final tree, since there is no way to tell in which order the edges were added.

If we wish to retain this information, we may label each edge of T
(n)
1 with the step

at which it was added. More precisely, L(e) is the unique integer i ∈ {1, . . . , n−1}
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Figure 1. One of the 30002998 labeled trees with 3000 vertices,
selected uniformly at random.

such that e is not an edge of Fi but is an edge of Fi+1. It follows from the definition

of the process that the edge labels are distinct, so L : E(T
(n)
1 ) → {1, . . . , n− 1} is

a bijective map.
Now fix a rooted tree t with vertices {1, . . . , n}, and consider the restricted

partition function Zac,t(n); this is simply the number of possibilities for the ex-
ecution of the process for which the end result is the tree t. We claim that
Zac,t(n) = (n − 1)!. This is easy to see: for any labelling ℓ of the edges of t with

integers {1, . . . , n−1}, there is a unique execution path for which (T
(n)
1 , L) = (t, ℓ),

and there are (n − 1)! possible labellings ℓ. Thus, the probability of ending with
the tree t is Zac,t(n)/Zac(n) = 1/nn−1. Since this number doesn’t depend on t,
only on n, it follows that every rooted labelled tree with n vertices is equally likely,
and so there must be nn−1 such trees.

Note. The preceding argument is correct, but treads lightly around an impor-
tant point. When performing the process, the number of possibilities for the i’th
edge does not depend on the first i − 1 choices, so the probability of building a
particular tree t by adding its edges in in a particular order is [nn−1(n − 1)!]−1

regardless of the order. Of course, the set of possible choices at a given step must
depend on the history of the process – for example, we must not add a single edge
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twice. More generally, thinking of Version 2, applying the procedure to a graph
other than K→

n need not yield a uniform spanning tree of the graph, and indeed
may not even build a tree. (Consider, for example, applying the procedure to a
two-edge path.)

By stopping Pitman’s coalescent before the end, one can use a similar analysis
to obtain counting formulae for forests. Write Zac(n, k) for the total number of
possibilities for Pitman’s coalescent stopped at step k (so ending with n + 1 − k

forests). We write (m)ℓ to denote the falling factorial
∏ℓ−1

i=0(m− i).

Exercise 3. (a) Show that Zac(n, k) = nk−1(n− 1)k−1 for each for 1 ≤ k ≤ n.
(b) An ordered labeled forest is a sequence (t1, . . . , tℓ) where each ti is a rooted

labelled tree and all labels of vertices in the forest are distinct. Show that
for each 1 ≤ ℓ ≤ n the number of ordered labeled forests (t1, . . . , tℓ) with∪ℓ

i=1 V (ti) = [n], is ℓ · nn−ℓ−1 · (n)ℓ.

We briefly discuss a special case of Version 2. Suppose that W(k,l) is exponen-
tial with rate X(k,ℓ), where X = {X(k,ℓ) : 1 ≤ k ̸= ℓ ≤ n} are independent copies
of any non-negative random variable X. By standard properties of exponentials
and the symmetry of the process, the dynamics in this case may be described as
follows.

Pitman’s Coalescent, Version 3. Let F1 be as in Version 1. For i ∈
{1, . . . , n− 1}, choose an edge whose head is the root of any one of the
trees in Fi, each such edge (k, l) chosen with probability proportional to
its weight X(k,l); add the chosen edge to create the forest Fi+1.

Consider Version 3 of the procedure after i− 1 edges have been added. Con-

ditional on X and on the forest (T
(i)
1 , . . . , T

(i)
n−i+1), the probability of adding a

particular edge (k, ℓ) whose head is a root, is proportional to X(k,ℓ), so is equal to

X(k,ℓ)∑n−i+1
m=1

∑
j∈{1,...,n}\V (T

(i)
m )

X
(j,r(T

(i)
m ))

.

Now fix any sequence f1, . . . , fn of forests that can arise in the process. Write

fi = (t
(i)
k , 1 ≤ k ≤ n + 1 − i) and for i = 1, . . . , n − 1 write (ki, ℓi) for the unique

edge of fi+1 not in fi. Then by the above,

P {Fi = fi, 1 ≤ i ≤ n | X} =
n−1∏
i=1

X(ki,ℓi)∑n−i+1
m=1

∑
j∈{1,...,n}\V (t

(i)
m )

X
(j,r(t

(i)
m ))

.

By Exercise 1 and the above analysis, it follows that for any such sequence f1, . . . , fn,

E

n−1∏
i=1

X(ki,ℓi)∑n−i+1
m=1

∑
j∈{1,...,n}\V (t

(i)
m )

X
(j,r(t

(i)
m ))

 =
1

nn−1(n− 1)!
.
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It is by no means obvious at first glance that this expectation should not depend
on law of X, let alone that it should have such a simple form.

2.2. Kingman’s coalescent and random recursive trees

Pitman’s coalescent starts from isolated vertices labeled from {1, . . . , n}, and builds
a rooted tree by successive edge addition. At each step, an edge is added to some
vertex, from some root (of a component not containing the chosen vertex). When
we calculated Zac(n), it was important that the number of possibilities at each
step depended only on the number of trees in the current forest and not, say, their
sizes, or some other feature.

Pitman’s merging rule (to any vertex, from a root) yielded a beautiful proof of
Cayley’s formula. It is natural to ask what other rules exist, and what information
may be gleaned from them. Of course, from any vertex, to a root just yields the
additive coalescent, with edges of the resulting tree oriented towards the root
rather than towards the leaves. What about from any root, to any (other) root, as
in the following procedure? In a very slight abuse of terminology, we call this rule
Kingman’s coalescent. We again start from a rooted forest F1 of n isolated vertices

{1, . . . , n}. Recall that we write Fi = {T (i)
1 , . . . , T

(i)
n+1−i}.

Kingman’s Coalescent. At step i, choose an ordered pair (Ui, Vi) of

distinct roots from {r(T (i)
1 ), . . . , r(T

(i)
n+1−i)}, uniformly at random from

among the (n+1− i)(n− i) such pairs. Add an edge from Ui to Vi, and
root the resulting tree at Ui. The forest Fi+1 consists of this new tree
together with the n− i− 1 unaltered trees from Fi.

Our convention is that when an edge is added from u to v, the root of the
resulting tree is u; this maintains that edges are always oriented towards the leaves.
For Kingman’s coalescent, when i trees remain there are i(i − 1) possibilities for
which oriented edge to add. Like for Pitman’s coalescent, this number depends only
on the number of trees, and it follows that the total number of possible execution
paths for the process is

Zkc(n) =
n∏

i=2

i(i− 1) = n!(n− 1)! . (2.2)

What does this number count?
To answer the preceding question, as in the additive coalescent let L : E(T

(n)
1 ) →

{1, . . . , n − 1} label the edges of T
(n)
1 in their order of addition. It is easily seen

that for Kingman’s coalescent, the edge labels decrease along any root-to-leaf path;
we call such a labelling a decreasing edge labelling.2 Furthermore, any decreasing

edge labelling of T
(n)
1 can arise. Once again, the full behaviour of the coalescent

is described by pair (T
(n)
1 , L), and conversely, the coalescent determines T

(n)
1 and

2It is more common to order by reverse order of addition, so that labels increase along root-to-leaf

paths; this change of perspective may help with Exercise 4.
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Figure 2. One of the 2999! rooted trees on 3000 vertices with a
decreasing edge labelling (labels suppressed).

L. These observations yield that the number of rooted trees with vertices labelled
{1, . . . , n}, additionally equipped with a decreasing edge labelling, is n!(n − 1)!.
The factor n! simply counts the number of ways to assign the labels {1, . . . , n} to
the vertices. By symmetry, each vertex labelling of a given tree is equally likely to
arise, and so we have the following.

Proposition 2.1. The number of pairs (T, L), where T is a rooted tree with n vertices
and L is a decreasing edge labelling of T , is (n− 1)!.

Exercise 4 (Random recursive trees). Prove Proposition 2.1 by introducing
and analyzing an n-step procedure that at step i constructs a rooted tree with
i vertices.

Before the next exercise, we state a few definitions. For a graph G, write |G|
for the number of vertices of G. If T is a rooted tree and u is a vertex of T , write
Tu for the subtree of T consisting of u together with its descendants in T (we call
Tu the subtree of T rooted at u). Also, if u is not the root, write p(u) for the
parent of u in T . Finally, write aut(T ) for the number of rooted automorphisms
of T .
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Exercise 5. Show that for a fixed rooted tree T , the number of decreasing edge
labellings of T with labels 1, 2, . . . , |V (T )| − 1 is

1

aut(T )
·
∏

v∈V (T )

(|Tv| − 1)!∏
{u∈V (T ):p(u)=v} |Tu|!

.

Our convention is that an empty product equals 1; a special case is that
0! = 1. It follows from the preceding exercise that, writing Tn for the set of rooted
trees with n vertices,∑

T∈Tn

1

aut(T )
·
∏

v∈V (T )

|E(Tu)|!∏
{u∈V (T ):p(u)=v} |V (Tu)|!

= (n− 1)! ;

another formula that one may not find obvious at first glance.

To finish the section, note that just like for Pitman’s coalescent, we might well
consider a version of this procedure that is “driven by” iid non-negative weights
X = {X(k,ℓ) : 1 ≤ k ̸= ℓ ≤ n}. (Recall that we viewed these weights as exponential
rates, then used the resulting exponential clocks at each step to determine which
edge to add.) At each step, add an oriented edge whose tail and head are both the
roots of some tree of the current forest, each such edge chosen with probability
proportional to its weight. For this procedure, conditional on X, after adding the
first i− 1 edges, the conditional probability of adding a particular edge (k, ℓ) is

X(k,ℓ)∑
1≤j ̸=m≤n X(r(T

(i)
j ),r(T

(i)
m ))

.

Now fix any sequence f1, . . . , fn of forests that can arise in the process, write

fi = (t
(i)
k , 1 ≤ k ≤ n+ 1− i), and for i = 1, . . . , n− 1 write (ki, ℓi) for the unique

edge of fi+1 not in fi. Then we have

P {Fi = fi, 1 ≤ i ≤ n | X} =
n−1∏
i=1

X(ki,ℓi)∑
1≤m ̸=j≤n X(r(t

(i)
m ),r(t

(i)
j ))

.

It follows from the above analysis that for any such sequence f1, . . . , fn,

E

[
n−1∏
i=1

X(ki,ℓi)∑
1≤m ̸=j≤n X(r(t

(i)
m ),r(t

(i)
j ))

]
=

1

n!(n− 1)!
.

Once again, it is not even a priori clear that this expectation should not
depend on the law of X.

Exercise 6 (First-passage percolation). Develop and analyze a “Version 3”
variant of the tree growth procedure from Exercise 4, using exponential edge
weights.
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Figure 3. The tree resulting from the multiplicative coalescent
on 3000 points.

2.3. The multiplicative coalescent and minimum spanning trees

The previous two sections considered merging rules of the form any-to-root and
root-to-root, and obtained Pitman’s coalescent and Kingman’s coalescent, respec-
tively. We now take up the “any-to-any” merging rule. This is arguably the most
basic of the three rules, but its behaviour is arguably the hardest to analyze.
We begin as usual from a forest F1 of n isolated vertices {1, . . . , n}, and write

Fi = {T (i)
1 , . . . , T

(i)
n+1−i}. In the multiplicative coalescent there is no natural way

to maintain the property that edges are oriented toward some root vertex, so we
view the trees of the forests as unrooted, and their edges as unoriented. Given a
set S, write

(
S
k

)
for the set of k-element subsets of S.

The multiplicative coalescent. To obtain Fi+1 from Fi, choose an pair

{Ui, Vi} uniformly at random from the set of pairs {u, v} ∈
(
[n]
2

)
for

which u and v are different trees of Fi. Add an edge from Ui to Vi to
form the forest Fi+1.

This is known as the multiplicative coalescent, because the number of possible

choices of an edge joining trees T
(i)
j and T

(i)
k is |T (i)

j ||T (i)
k |. It follows that the
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number of possible edges that may be added to the forest Fi is∑
1≤j ̸=k≤n+1−i

|T (i)
j ||T (i)

k | = 1

2

(
n2 −

∑
T∈Fi

|T |2
)
.

The above expression is more complicated than for the additive coalescent or
Kingman’s coalescent: it depends on the forest Fi, for one.

In much of the remainder of these notes, we investigate an expression for
the partition function Zmc(n) of the multiplicative coalescent that arises from the
preceding formula. To obtain this expression, recall the definition of an n-chain
from Section 1, and that Pn is the set of n-chains.

Exercise 7. Show that |Pn| = (n!)2

n·2n−1 .

The multiplicative coalescent determines an n-chain in which the i’th parti-

tion is simply P (Fi) := {V (T
(i)
j ), 1 ≤ j ≤ n + 1 − i}. It is straightforward to see

that the number of possibilities for the multiplicative coalescent that give rise to
a particular n-chain P = (P1, . . . , Pn) is simply

n−1∏
i=1

|Ai(P )||Bi(P )| ,

where Ai(P ) and Bi(P ) are the parts of Pi that are combined in Pi+1. It follows
that

Zmc(n) =
∑

P=(P1,...,Pn)∈Pn

n−1∏
i=1

(|Ai(P )||Bi(P )|) .

This certainly looks more complicated than in the previous two cases. However,
there is an exact formula for Zmc(n) whose derivation is perhaps easier than for
either Zac(n) or Zkc(n) (though it does rely on Cayley’s formula).

Proposition 2.2. Zmc(n) = nn−2(n− 1)!

Proof. Let S be the set of pairs (t, ℓ) where t is an unrooted tree with V (t) = [n]
and ℓ : E(t) → [n − 1] is a bijection. By Cayley’s formula, the number of trees t
with V (t) = [n] is nn−2, so S = nn−2(n− 1)!.

For e ∈ E(T
(1)
n ), let L(e) = sup{i : e ̸∈ E(Fi)}. Then L : E(T

(1)
n ) → [n− 1] is

a bijection. Thus the pair (T
(1)
n , L) is an element of S. To see this map is bijective,

note that if (T
(1)
n , L) = (t, ℓ) then for each 1 ≤ i ≤ n, Fi is the forest on [n] with

edges {ℓ−1(j), 1 ≤ j < i}. The result follows. □

The above proposition yields that Zmc(n) = Zac(n)/n. If we were to ad-

ditionally choose a root for T
(1)
n , we would obtain identical partition functions.

This suggests that perhaps the additive and multiplicative coalescents have simi-
lar structures. One might even be tempted to believe that the trees built by the
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two coalescents are identically distributed; the following exercise (an observation
of Aldous [3]), will disabuse you of that notion.

Exercise 8. Let T be built by the multiplicative coalescent, and let T ′ be ob-
tained from the additive coalescent by unrooting the final tree. Show that if
n ≥ 4 then T and T ′ are not identically distributed.

Despite the preceding exercise, it is tempting to guess that the two trees are
still similar in structure; this was conjectured by Aldous [3], and only recently
disproved [2]. In the remainder of the section, we begin to argue for the difference
between the two coalescents, from the perspective of their partition functions. For
1 ≤ k ≤ n, write Zmc(n, k) for the partition function of the first k steps of the
multiplicative coalescent,

Zmc(n, k) =
∑

P=(P1,...,Pk)∈Pn,k

k−1∏
i=1

(|Ai(P )||Bi(P )|) ,

where Pn,k is the set of length-k initial segments of n-chains. We have, e.g.,
Zmc(n, 1) = 1, Zmc(n, 2) =

(
n
2

)
, and Zmc(n, n) = Zmc(n).

The argument of Proposition 2.2 shows that Zmc(n, k) = un,k · (k−1)!, where
un,k is the number of unrooted forests with vertices [n] and k− 1 total edges. The
identity

un,k =

(
n

n+ 1− k

)
nk−2

n+1−k∑
i=0

(
−1

2n

)i(
n+ 1− k

i

)
(n+ 1− k + i) · (k − 1)i,

was derived by Rényi [14], and I do not know of an exact formula that simplifies
the above expression. We begin to see that there is more to the multiplicative
coalescent than first meets the eye.

If we can’t have a nice, simple identity, what about bounds? Of course, there
is the trivial upper bound Zmc(n, k) ≤ (n(n−1)/2)k−1, since at each step there are
at most

(
n
2

)
pairs to choose from; similar bounds hold for the other two coalescents.

To improve this bound, and more generally to develop a deeper understanding of
the dynamics of the multiplicative coalescent, our starting point is the following
observation.

Given an n-chain P = (P1, . . . , Pn), for the multiplicative coalescent we have

P {(P (Fi), 1 ≤ i ≤ n) = P} =
n−1∏
i=1

2|Ai(P )||Bi(P )|
n2 −

∑
π∈Pi

|π|2
.

This holds since for 1 ≤ i ≤ n − 1, given that P (Fj) = Pj for 1 ≤ j ≤ i, there
are (n2 −

∑
π∈Pi

|π|2)/2 choices for which oriented edge to add to form Fi+1, and
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P (Fi+1) = Pi+1 for precisely |Ai(P )||Bi(P )| of these. It follows that

Zmc(n) =
∑

P=(P1,...,Pn)∈Pn

P {(P (Fi), 1 ≤ i ≤ n) = P} ·
n−1∏
i=1

n2 −
∑

π∈Pi
|π|2

2

=
∑

P=(P1,...,Pn)∈Pn

P {(P (Fi), 1 ≤ i ≤ n) = P} · 2−(n−1)

·E

{
n−1∏
i=1

(
n2 −

∑
T∈Fi

|T |2
) ∣∣∣∣∣ (P (Fi), 1 ≤ i ≤ n) = P

}

= 2−(n−1) ·E

[
n−1∏
i=1

(
n2 −

∑
T∈Fi

|T |2
)]

. (2.3)

A mechanical modification of the logic leading to (2.3) yields the following expres-
sion, valid for each 1 ≤ k ≤ n:

Zmc(n, k) = 2−(k−1)E

[
k−1∏
i=1

(
n2 −

∑
T∈Fi

|T |2
)]

. (2.4)

Write

Ẑ→
mc(n, k) =

k−1∏
i=1

(
n2 −

∑
T∈Fi

|T |2
)

,

let Ẑ→
mc(n) = Ẑ→

mc(n, 1), and let Ẑmc(n, k) = 2−(k−1)Ẑ→
mc(n, k) and Ẑmc(n) =

Ẑmc(n, n). With this notation, (2.3) and the subsequent equation state that

E
[
Ẑmc(n, k)

]
= Zmc(n, k) =

1

2k−1
E
[
Ẑ→
mc(n, k)

]
. (2.5)

The random variable Ẑmc(n) is a sort of empirical partition function of the multi-

plicative coalescent. The superscript arrow on Ẑ→
mc(n, k) is because the factor 2

k−1

may be viewed as corresponding to a choice of orientation for each edge of Fk.
The random variable Ẑmc(n) of course contains more information than simply its
expected value, so by studying it we might hope to gain a greater insight into the
behaviour of the coalescent. Much of the remainder of these notes is devoted to
showing that E

[
Ẑmc(n)

]
= Zmc(n) is a terrible predictor of the typical value of

Ẑmc(n). More precisely, there are unlikely execution paths along which the mul-
tiplicative coalescent has many more possibilities than along a typical path; such
paths swell the expected value of Ẑmc(n) to exponentially larger than its typical
size.

The logic leading to (2.3) and (2.4) may also be applied to the additive
coalescent; the result is boring but instructive. First note that

Zac(n, k) =
∑

P=(P1,...,Pk)∈Pn,k

k−1∏
i=1

(|Ai(P )|+ |Bi(P )|) .
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For the additive coalescent, the total number of choices at step i is n(n− i), and
given that P (Fi) = Pi, the number of choices which yield P (Fi+1) = Pi+1 is
Ai(P ) + Bi(P ). Writing Pac for probabilities under the additive coalescent, we
thus have

Pac {(P (Fi), 1 ≤ i ≤ k) = (P1, . . . , Pk)} =
k−1∏
i=1

|Ai(P )|+ |Bi(P )|
n(n− i)

Following the logic through yields

Zac(n, k) = Eac

[
k−1∏
i=1

n(n− i)

]
= Eac

[
nk−1(n− 1)k−1

]
.

Thus, the “empirical partition function” of the additive coalescent is a constant,
so contains no information beyond its expected value. (This fact is essentially the
key to Pitman’s proof of Cayley’s formula.)

The terms of the products (2.3) and (2.4), though random, turn out to behave
in a very regular manner (but proving this will take some work). Through a study

of these terms, we will obtain control of E
[
log Ẑmc(n)

]
, and thereby justify the

above assertion that Ẑmc(n) is typically very different from its mean.

2.3.1. The growth rate of Zmc(n, ⌊n/2⌋). As a warmup, and to introduce a key
tool, we approximate the value of Zmc(n, ⌊n/2⌋) using a connection between the
multiplicative coalescent and a process we call (once again with a very slight abuse
of terminology) the Erdős-Rényi coalescent. Write Kn for the complete graph, i.e.
the graph with vertices [n] and edges ({i, j}, 1 ≤ i < j ≤ n).

The Erdős-Rényi coalescent. Choose a uniformly random permutation

e1, . . . , e(n2)
of E(Kn). For 0 ≤ i ≤

(
n
2

)
, let G

(n)
i have vertices [n] and

edges {e1, . . . , ei}.

Our indexing here starts at zero, unlike in the multiplicative coalescent; this is
slightly unfortunate, but it is standard for the Erdős-Rényi graph process to index

so that G
(n)
i has i edges. This process is different from the previous coalescent

processes, most notably because it creates graphs with cycles.
Note that we can recover the multiplicative coalescent from the Erdős-Rényi

coalescent in the following way. Informally, simply ignore any edges added by the
Erdős-Rényi coalescent that fail to join distinct components. More precisely, for
each 0 ≤ m ≤

(
n
2

)
, let τm be the number of edges {Ui, Vi}, 0 < i ≤ m such that Ui

and Vi lie in different components of G
(n)
i−1. (See Figure 4 for an example.) Observe

that

τm + 1 =

{
τm if G

(n)
m+1 and G

(n)
m have the same number of components

τm + 1 if G
(n)
m+1 has one fewer component than G

(n)
m .
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G
(4)
0

τ0 = 0

G
(4)
1

τ1 = 1

G
(4)
2

τ2 = 2

G
(4)
3

τ3 = 2

G
(4)
4

τ4 = 3

Figure 4. An example of the first steps of the Erdős-Rényi coa-
lescent. The multiplicative coalescent is obtained by keeping only
the thicker, blue edges.

In other words, τm increases precisely when the the endpoints of the edge added

to G
(n)
m are in different components. Further, the set

{em : m ≥ 1, τm > τm−1}

contains n − 1 edges, since G
(n)
0 has n components and G

(n)

(n2)
almost surely has

only one component.
Set I1 = 0 and for 1 < k ≤ n let

Ik = inf{m ≥ 1 : τm = k − 1} .

Then for 1 < k ≤ n, the edge eIk joins distinct components of G
(n)
Ik−1, and by

symmetry is equally likely to be any such edge. Thus, letting Fk be the graph
with edges {eIj : 1 ≤ j ≤ k} for 1 ≤ k ≤ n, the process {Fk, 1 ≤ k ≤ n} is
precisely distributed as the multiplicative coalescent. This is a coupling between
the Erdős-Rényi graph process and the multiplicative coalescent; its key property
is that for all 1 ≤ k ≤ n, the vertex sets of the trees of Fk are the same as those

of the components of G
(n)
Ik

.
Having found the multiplicative coalescent within the Erdős-Rényi coalescent,

we can now use known results about the latter process to study the former. For a
graph G, and v ∈ V (G), we write N(v) = NG(v) for the set of nodes adjacent to
v (the neighbours of v), and write C(v) = CG(v) for the connected component of
G containing v. We will use the results of the following exercise.3

Exercise 9. ⊛
(a) Show that in the Erdős-Rényi coalescent, if all components have size at

most s then the probability a uniformly random edge from among the
remaining edges has both endpoints in the same component is at most
(s− 1)/(n− 1).

(b) Show that for all 0 ≤ m ≤ n/2, in G
(n)
m , E|N(v)| ≤ 2m/n.

3Until further notice, we omit ceilings and floors for readability.
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(c) Prove by induction that for all 0 ≤ m < n/2, in G
(n)
m , E [|C(1)|] ≤ n/(n−

2m).
(Hint. First condition on N(1), then average.)

(d) Prove that for all ϵ > 0,

lim sup
n→∞

P
(
G

(n)
(1−ϵ)n/2 has a component of size > ϵn

)
= 0 .

(Hint. Given that the largest component of G
(n)
m has size s, with proba-

bility at least s/n vertex 1 is in such a component.)

Using the above exercise, we now fairly easily prove a lower bound on the
partition function of the first half of the multiplicative coalescent.

Proposition 2.3. For all β > 0,

P
{
Ẑ→
mc(n, ⌊n/2⌋) ≥ n(1−β)n

}
→ 1 as n → ∞ .

We begin by showing that typically It = (1 + o(1))t until t ≥ n/2.

Lemma 2.4. For all ϵ > 0, lim supn→∞ P
(
I(1−ϵ)n/2 ≥ n/2

)
= 0.

Proof. Fix ϵ > 0, let δ = ϵ/3, and let E be the event that all components of

G(1−δ)n/2 have size at most δn. For m ≥ 0, conditional on G
(n)
m , by Exercise 9 (a),

τm+1−τm stochastically dominates a Bernoulli(1−(s−1)/(n−1)) random variable,

where s is the size of the largest component of G
(n)
m .

For n large and s ≤ δn we have 1− (s− 1)/(n− 1) ≥ 1− ϵ/2. Therefore, on
E and for large n the sequence (τm+1 − τm, 0 ≤ m < (1 − δ)n/2) stochastically
dominates a sequence (Bm, 0 ≤ m < (1− δ)n/2) of iid Bernoulli(1− ϵ/2) random
variables. It follows that

P
{
τ(1−δ)n/2 ≤ (1− ϵ)n/2

}
≤ P {Ec}+P

{
τ(1−δ)n/2 ≤ (1− ϵ)n/2 | E

}
≤ P {Ec}+P {Bin((1− δ)n/2, 1− ϵ/2) < (1− ϵ)n/2}
= o(1) ,

the last line Exercise 9 (d) and Chebyshev’s inequality (note that (1 − δ)(1 −
ϵ/2)n/2 > (1 − 5ϵ/6)n/2). On the other hand, if τ(1−δ)n/2 > (1 − ϵ)n/2 then
I(1−ϵ)n/2 ≤ (1− δ)n/2 < n/2. □

Proof of Proposition 2.3. View (F1, . . . , Fn) as coupled with the Erdős-Rényi coa-

lescent as above, so that Fk and G
(n)
Ik

have the same components. Fix δ ∈ (0, 1/4)

and let k = k(n) = n/2 − 2δn. Let E1 be the event that In/2−δn < n/2.4 Since
Im+1 ≥ Im + 1 for all m, we have

Ik ≤ In/2−δn − ((n/2− δn)− k) = In/2−δn − δn .

Thus, on E1 we have Ik ≤ (1− 2δ)n/2.

4We omit the dependence on n in the notation for E1; similar infractions occur later in the proof.
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Next let E2 be the event that all component sizes in G
(n)
(1−2δ)n/2 are at most

δn. The components of Fk are precisely the components of G
(n)
Ik

, so if E1 ∩ E2

occurs then since on E1 we have Ik ≤ (1− 2δ)n/2, all components of Fk have size
at most δn. In this case, for all i ≤ k the components of Fi clearly also have size
at most δn.

It follows5 that on E1 ∩ E2, for all i ≤ k,∑
T∈Fi

|T |2 ≤ δn2

so on E1 ∩ E2,

Ẑ→
mc(n, k + 1) =

k∏
i=1

(
n2 −

∑
T∈Fi

|T |2
)

≥ n2k(1− δ)k (2.6)

= nn(1−4δ) · (1− δ)n/2 > nn(1−5δ) ,

the last inequality holding for n large. By Exercise 9 (d) and Lemma 2.4, P (E1 ∩ E2) →
1 as n → ∞. Since Ẑ→

mc(n, ⌊n/2⌋) ≥ Ẑ→
mc(n, k+1) for n large, the result follows. □

The following exercise is to test whether you are awake.

Exercise 10. Prove that

logZmc(n, ⌊n/2⌋)
n log n

→ 1 ,

as n → ∞.

We next use Proposition 2.3 (more precisely, the inequality (2.6) obtained in
the course of its proof) to obtain a first lower bound on Zmc(n).

Corollary 2.5. It holds that

Zmc(n, ⌊n/2⌋)
Zac(n, ⌊n/2⌋)

=
(e
4

)(1+o(1))n/2

.

Proof. By Proposition 2.3 and (2.5), we have

Zmc(n, ⌊n/2⌋) ≥ 2−(⌊n/2⌋−1)n(1+o(1))n,

so by Exercise 3,

Zmc(n, ⌊n/2⌋)
Zac(n, ⌊n/2⌋)

=
n(1+o(1))n

2⌊n/2⌋−1n⌊n/2⌋−1(n− 1)⌊n/2⌋−1

=
n(1+o(1))n(n/2)!

2n/2nn/2n!
.

5To maximize
∑

j x
2
j subject to the conditions that

∑
j xj = 1 and that maxj xj ≤ δ, take xj = δ

for 1 ≤ j ≤ δ−1.
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Using Stirling’s approximation6, it follows easily that

Zmc(n, ⌊n/2⌋)
Zac(n, ⌊n/2⌋)

≥
(e
4

)(1+o(1))n/2

.

The corresponding upper bound follows similarly, using that Zmc(n, ⌊n/2⌋) ≤
(n(n− 1)/2)⌊n/2⌋−1 = nn(1+o(1))/2n/2. □

Exercise 11. Perform the omitted calculation using Stirling’s formula from the
proof of Corollary 2.5.

The preceding corollary is evidence that despite the similarity of the partition
functions Zmc(n) and Zac(n), the fine structure of the multiplicative coalescent is
may be interestingly different from that of the additive coalescent.

2.3.2. The multiplicative coalescent and Kruskal’s algorithm. There is a pleasing
interpretation of “Version 2” of the multiplicative coalescent, which is driven by
exchangeable distinct edge weights W = {W{j,k}, 1 ≤ j < k ≤ n} = {We, e ∈
E(Kn)}. (A special case is that the elements of W are iid continuous random
variables.). The symmetry of the model makes it straightforward to verify that this
results in a sequence (F1, . . . , Fn) with the same distribution as the multiplicative
coalescent.

Multiplicative Coalescent Version 2: Kruskal’s algorithm.
Let F1 be a forest of n isolated vertices 1, . . . , n.
For 1 ≤ i < n:
⋆ Let {j, k} ∈ E(Kn) minimize {W{j,k} : j, k in distinct trees of Fi}.
⋆ Form Fi+1 from Fi by adding {j, k}.

Exercise 12. ⊛ Prove that any exchangeable, distinct edge weights W =
{We, e ∈ E(Kn)} again yield a process with the law of the multiplicative coa-
lescent.

At step i, the edge-weight driven multiplicative coalescent simply adds the
smallest weight edge whose endpoints lie in distinct components of Fi. In other
words, it adds the smallest weight edge whose addition will not create a cycle in the
growing graph. This is simplyKruskal’s algorithm for building the minimum weight
spanning tree. When the weights W{j,k} are all non-negative, the tree obtained at

the end of the Version 2 multiplicative coalescent, T
(n)
1 , is the minimum weight

spanning tree of Kn with weights W. We denote it MST(Kn,W), and refer to it
as the random MST of Kn.

Order E(Kn) by increasing order of W-weight as e1, . . . , e(n2)
. The exchange-

ability of W implies this is a uniformly random permutation of E(Kn). Letting

6Stirling’s approximation says that m!/(
√
2πm(m/e)m) → 1 as m → ∞; in fact the (much less

precise) fact that log(m!) = m logm−m+ o(m) is enough for the current situation.
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G
(n)
k have edges e1, . . . , ek thus yields an important instantiation of our coupling

of the Erdős-Rényi coalescent and the multiplicative coalescent; we return to this
in Section 5.

2.3.3. Other features of the multiplicative coalescent. The remainder of the sec-
tion is not essential to the main development. The following exercise was inspired
by a discussion with Remco van der Hofstad.

Exercise 13 (First-passage percolation). Consider the multiplicative coalescent
driven by exchangeable, distinct edge weights W and for 1 ≤ i < j ≤ n, let
d(i, j) = min

∑
e∈γ We, the minimum taken over paths from i to j in Kn. Show

that the minimum is attained by a unique path γi,j . Find exchangeable edge
weights {We, e ∈ E(Kn)} for which, for each for each 1 ≤ i < j ≤ n, γi,j is a

path of T
(n)
1 .

Finally, we turn to Version 3 of the process, in which we view arbitrary iid
non-negative weights X = {Xi,j , 1 ≤ i < j ≤ n} as rates for edge addition. In view
of the preceding paragraph, this gives a process that results in a tree with the same
distribution as the random MST of Kn, but which is not necessarily equal to the
MST. In particular, the tree is not a deterministic function of the edge weights; for
example, we may take X to be a deterministic vector such as the all-ones vector,
whereas the resulting tree always is random.

Exercise 14. Find (iid random) rates X for which, in version 3 of the process,

the resulting tree T
(n)
1 is equal to the random MST of Kn with weights X, with

probability tending to one as n → ∞.

3. Intermezzo: The heights of the three coalescent trees

To date we have been primarily studying the partition functions of the coalescent
processes. The processes have many other interesting features, however. In this
section we discuss differences between the structures of the trees formed by the
three coalescents.

Write T
(n)
kc , T

(n)
ac , and T

(n)
mc , respectively, for the trees formed by Kingman’s

coalescent, the additive coalescent, and the multiplicative coalescent. In each case
the coalescent starts from n isolated vertices {1, . . . , n}, so each of these trees
has vertices {1, . . . , n}. If T is any of these trees and e is an edge of T , we write
L(e) = i if e was the i’th edge added during the execution of the coalescent. Above,
we established the following facts about the distributions of these random trees.

1. Ignoring vertex labels, (T
(n)
kc , L) is uniformly distributed over pairs (t, ℓ),

where t is a rooted tree with n vertices and ℓ is a decreasing edge labelling
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of t. (We simply refer to such pairs as decreasing trees with n vertices, for
short.)

2. T
(n)
ac is uniformly distributed over the set of rooted trees with vertices {1, . . . , n}.

(We refer to such trees as rooted labeled trees with n vertices.)

3. T
(n)
mc is distributed as the minimum weight spanning tree of the complete

graph Kn, with iid continuous edge weights W = {Wi,j , 1 ≤ i < j ≤ n}.

What is known about these three distributions? To illustrate the difference
between them, we consider a fundamental tree parameter, the height: this is simply
the greatest number of edges in any path starting from the root.7 The third tree,

T
(n)
mc is not naturally rooted, but one may check that any choice of root will yield

the same height up to a multiplicative factor of two; we root T
(n)
mc at vertex 1 by

convention. Given a rooted tree t, we write r(t) for its root and h(t) for its height.
The following exercise develops a fairly straightforward route to upper bounds on

h(T
(n)
kc ) that are tight, at least to first order.

Exercise 15. LetDi be the number of edges on the path from vertex i to r(T
(n)
kc ).

(a) Show that {D1, . . . , Dn} are exchangeable random variables.
(b) (i) Show that D1 can be written as a sum of independent Bernoulli

random variables.
(ii) For α > 0, find λ such that Bernoulli(α) ⪯st Poisson(λ).
(iii) Show thatD1 is stochastically dominated by a Poisson(logn) random

variable.
(c) Show that for X a Poisson(µ) random variable, for integer x > µ,

P {X > x} ≤ e−µµx

(x− µ)(x− 1)!
.

(d) Show that P {max1≤i≤n Di ≥ e log n} → 0 as n → ∞.
(e) Show that lim supn→∞(max1≤i≤n Di − e log n) → −∞ in probability.

We next turn to T
(n)
ac . I am not aware of an easy way to directly use the

additive coalescent to analyze the height of T
(n)
ac . However, one can use the additive

coalescent to derive combinatorial results which, together with exchangeability,
yields lower bounds of the correct order of magnitude, and upper bounds that
are tight up to poly-logarithmic corrections; such bounds are the content of the
following exercise. A non-negative random variable R has the standard Rayleigh

distribution if it has density f(x) = xe−x2/2 on [0,∞).

Exercise 16. LetDi be the number of edges on the path from vertex i to r(T
(n)
ac ).

(a) Show that {D1, . . . , Dn} are exchangeable random variables.
(b) Show that the number of pairs (t, i), where t is a rooted labeled tree with

V (t) = [n] and i ∈ V (t) has d(r(t), i) = k − 1, is k · (n)k · nn−k−1.

7A glance back at Figures 1, 2 and 3 gives a hint as to the relative heights of the three trees.
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(c) Show that for 1 ≤ k ≤ n, P {D1 = k − 1} = k
n

∏k−1
i=1

(
1− i

n

)
. Conclude

that D1/
√
n converges in distribution to a standard Rayleigh.

(d) Using (c) and a union bound, show that if (cn, n ≥ 1) are constants with
cn → ∞ then P

{
max1≤i≤n Di > cn

√
n log n

}
→ 0.

(e) Use the exchangeability of the trees in a uniformly random ordered labeled
forest to prove that P {|{i : Di ≥ k/2}| ≥ n/2 | D1 = k} ≥ 1/2 for all 1 ≤
k ≤ n.

(f) Use (c) and (e) to show that if (cn, n ≥ 1) are constants with cn → ∞
then P {max1≤i≤n Di > cn

√
n} → 0, strengthening the result from (d).

From the preceding exercise, we see immediately that T
(n)
ac has a very dif-

ferent structure from T
(n)
kc , which had logarithmic height. Moreover, the heights

of the two trees are qualitatively different. The height of T
(n)
kc is concentrated:

h(T
(n)
kc )/ logn → e in probability. On the other hand, h(T

(n)
ac ) is diffuse: h(T

(n)
ac )/n1/2

converges in distribution to a non-negative random variable with a density.8 9

What about the tree T
(n)
mc built by the multiplicative coalescent? Probabilis-

tically, this is the most challenging of the three to study. For T
(n)
kc and T

(n)
ac , Exer-

cises 15 and 16 yielded exact or nearly exact expressions for the distance between
the root and a fixed vertex (by exchangeability, this is equivalent to the distance
between the root and a uniformly random vertex). The partition function Zmc(n)
seems too complex for such a direct argument to be feasible.

The coalescent procedure can be used to obtain lower bounds on the height,
but with greater effort than in the two preceding cases. Our approach is elucidated
by the following somewhat challenging exercise. Let Kn have iid Exponential[0, 1]
edge weights, and let H be the subgraph of Kn with the same vertices, but con-
taining only edges of weight at most 1/n. A tree component of H is a connected
component of H that is a tree.

Exercise 17.
(a) Let N be the number of vertices in tree components of H of size at most
⌊n1/4⌋. Using Chebyshev’s inequality, show that P {N = 0} → 0 as n → ∞.
(b) Fix S ⊂ {1, . . . , n}. Show that, given that H contains a tree component
whose vertices are precisely S, then such a component is uniformly distributed
over labeled trees with vertices S.
(c) Use Kruskal’s algorithm to show that any tree component of H is a subtree

of the minimum weight spanning tree of T
(n)
mc .

8Neither of these convergence statements follows from the exercises, and both require some work

to prove. The fact that h(T
(n)
kc )/ logn → e in probability was first shown by Devroye [8]. The

distributional convergence of h(T
(n)
ac )/n1/2 is a result of Rényi and Szekeres [15].

9In fact, if edge lengths in T
(n)
ac are multiplied by n−1/2 then the resulting object converges in

distribution to a random compact metric space called the Brownian continuum random tree (or

CRT), and h(Tac)/n1/2 converges in distribution to the height of the CRT. For more on this

important result, we refer the reader to [4, 10]
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(d) Use Exercise 16 (c) to conclude that, as n → ∞,

P

{
T

(n)
mc has height at most

n1/8

log2 n

}
→ 0 .

This shows that T
(n)
mc is quite different from T

(n)
kc .10 It is not as straightfor-

ward to bound the height of T
(n)
mc away from n1/2 using the tools currently at

our disposal. It turns out that T
(n)
mc has height of order n1/3 (and has non-trivial

fluctuations on this scale), but proving this takes a fair amount of work [1] and is
beyond the scope of these notes.

Exercise 18 (Open problem – two point function of random MSTs). Let Dn be

the distance from vertex n to vertex 1 in T
(n)
mc . Obtain an explicit expression

for the distributional limit of Dn/n
1/3.

4. The susceptibility process.

The remainder of the paper focusses exclusively on the multiplicative coalescent,

which we continue to denote (F1, . . . , Fn). Recall that Ẑ
→
mc(n, k) =

∏k−1
i=1

(
n2 −

∑
T∈Fi

|T |2
)
.

The terms in the preceding product are not independent; linearity of expectation
makes the “empirical entropy” log Ẑ→

mc(n) easier to study.

E
[
log Ẑ→

mc(n)
]
=

n−1∑
k=1

E

[
log(n2 −

∑
T∈Fk

|T |2)

]
. (4.1)

The expectation in the latter sum is closely related to the susceptibility of the
forest Fi. More precisely, given a finite graph G, write C(G) for the set of connected
components of G. The susceptibility of G is the quantity

χ(G) =
1

|G|
∑

C∈C(G)

|C|2.

Recalling that C(v) = CG(v) is the component of G containing v, we may also
write χ(G) = |G|−1

∑
v∈V (G) |C(v)|, so χ(G) is the expected size of the component

containing a uniformly random vertex from G.

Exercise 19. Let G be any graph, write L and S for the number of vertices in
the largest and second-largest components of G, respectively. Then

L2

|G|
≤ χ(G) ≤ L2

|G|
+ S.

10With more care, one can show that with high probability H contains tree components contain-

ing around n2/3 vertices and with height around n1/3, which yields that with high probability

T
(n)
mc has height of order at least n1/3.
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Viewing Fi as a graph with vertices {1, . . . , n}, (4.1) becomes

E
[
log Ẑ→

mc(n)
]
= 2(n− 1) log n+E

[
n−1∑
k=1

log

(
1− χ(Fk)

n

)]
. (4.2)

In order to analyze this expression, we use the connection with the Erdős-Rényi

coalescent (G
(n)
m , 0 ≤ m ≤

(
n
2

)
), which we described in Section 2.3.1; in brief, we

coupled to (Fk, 1 ≤ k ≤ n) by letting Fk have edges {eIj , 1 ≤ j ≤ k}, where Ik

was the first time m that G
(n)
m had n+1− k components. In the next proposition

and throughout the remainder of the paper, we interpret x log x as 0 when x = 1.

Proposition 4.1.

E
[
log Ẑ→

mc(n)
]
= 2(n− 1) log n+

(n2)−1∑
m=0

(
1− n+ 2m

n2

)−1

E

[
log

(
1− χ(G

(n)
m )

n

)
·

(
1− χ(G

(n)
m )

n

)]
.

Proof. In the coupling with the Erdős-Rényi coalescent, Fk and G
(n)
Ik

have the

same connected components, so χ(Fk) = χ(G
(n)
Ik

). We obtain the identity

n−1∑
k=1

log

(
1− χ(Fk)

n

)
=

n−1∑
k=1

log

(
1−

χ(G
(n)
Ik

)

n

)

=

(n2)−1∑
m=0

log

(
1− χ(G

(n)
m )

n

)
1
[χ(G

(n)
m+1)>χ(G

(n)
m )]

Using the tower law for conditional expectations, we thus have

E

[
n−1∑
k=1

log

(
1− χ(Fk)

n

)]

=

(n2)−1∑
m=0

E

[
log

(
1− χ(G

(n)
m )

n

)
1
[χ(G

(n)
m+1)>χ(G

(n)
m )]

]
.

=

(n2)−1∑
m=0

E

[
E

[
log

(
1− χ(G

(n)
m )

n

)
1
[χ(G

(n)
m+1)>χ(G

(n)
m )]

| G(n)
m

]]

=

(n2)−1∑
m=0

E

[
log

(
1− χ(G

(n)
m )

n

)
·P
{
χ(G

(n)
m+1) > χ(G(n)

m ) | G(n)
m

}]
For any finite graph G, the quantity χ(G)/|G| =

∑
C∈C(G) |C|2/|G|2 is simply the

probability that a pair (U, V ) of independent, uniformly random vertices of G lie in
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the same component of G. Let (U, V ) be independent, uniformly random elements

of [n] = V (G
(n)
m−1). Then

P
{
U ̸= V, {U, V } ̸∈ E(G(n)

m ) | G(n)
m

}
= 1− 1

n
− 2|E(G

(n)
m )|

n2
= 1− n+ 2m

n2

Conditionally given that U ̸= V and {U, V } ̸∈ E(G
(n)
m ), the pair {U, V } has the

same law as em+1. It follows that

P
{
χ(G

(n)
m+1) > χ(G(n)

m ) | G(n)
m

}
=P

{
C

G
(n)
m

(U) ̸= C
G

(n)
m

(V ) | G(n)
m , U ̸= V, {U, V } ̸∈ E(G(n)

m )
}

=

(
1−

χ(G
(n)
m−1)

n

)(
1− n+ 2m

n2

)−1

, (4.3)

so

E

[
n−1∑
k=1

log

(
1− χ(Fk)

n

)]

=

(n2)−1∑
m=0

(
1− n+ 2m

n2

)−1

E

[
log

(
1− χ(G

(n)
m )

n

)
·

(
1− χ(G

(n)
m )

n

)]
. (4.4)

The proposition now follows from (4.2). □

It turns out that there is a deterministic, increasing function f : [0,∞) →
[0, 1] such that sup0≤m<(n2)

|χ(G(n)
m )/n − f(m/n)| → 0 in probability, as n → ∞.

Much of the rest of the paper is devoted to explaining this fact in more detail.
However, imagine for the moment that such a function f exists and, moreover, that
terms in the sum with m ≫ n have an insignificant total contribution. With these
assumptions, the sum in (4.4) looks like a Riemann approximation for

∫∞
0

(1 −
f(x)) log(1− f(x))dx with mesh 1/n. We should then expect that

E
[
log Ẑ→

mc(n)
]
= 2(n− 1) log n− (1 + o(1))n ·

∫ ∞

0

(1− f(x)) log(1− f(x))dx .

This is indeed the case. Furthermore, enough is known about f that explicit eval-
uation of the integral is possible, and we obtain the following theorem.

Theorem 4.2. Let
ζmc = ζ(2)− 3 + log 2− log2 2 . (4.5)

Then

E
[
log Ẑmc(n)

]
= n · (2 log n+ ζmc + o(1)).

Numerically, ζmc is around −1.14237.

Corollary 4.3. There is c > 0 such that P
{
Ẑmc(n)/EẐmc(n) < e−cn

}
→ 1 as

n → ∞.
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Proof. Fix c ∈ R and suppose that P
{
Ẑmc(n) ≥ n2necn

}
> ϵ > 0. Then

E
[
log Ẑmc(n)− 2n log n− cn+ 1

]
≥ϵE

[
log Ẑmc(n)− 2n log n+ cn+ 1 | Ẑmc(n) ≥ n2ne−cn

]
≥ϵ.

Thus, if lim infn→∞ P
{
Ẑmc(n) ≥ n2necn

}
> 0 then for all n large enough,

E
[
log Ẑmc(n)

]
> 2n log n+ cn− 1 .

It thus follows from Theorem 4.2 that for all ϵ > 0,

P
{
Ẑ→
mc(n) ≥ n2ne(ζ

→
mc+ϵ)n

}
→ 0

as n → ∞. On the other hand,

EẐ→
mc(n) = nn−2(n− 1)! = n2ne−n(1+o(1)) .

Since ζmc < −1, the result follows. □

The form of the constant ζmc is unimportant, though intriguing. What is
clear from the above is that information about the susceptibility process of the
multiplicative coalescent yields bounds for Ẑmc(n). The aim of the next section is
thus to understand the susceptibility process in more detail.

4.1. Bounding χ using a graph exploration

The coupling between the “Version 2” multiplicative coalescent (Kruskal’s algo-
rithm) and the Erdős-Rényi coalescent from Section 2.3.2 applied to arbitrary
exchangeable, distinct edge weights W. In this coupling, for m ∈ [

(
n
2

)
], we took

G
(n)
m to be the subgraph of Kn consisting of the m edges of smallest W-weight.

In the current section, it is useful to be more specific. We suppose the entries
of W are iid Uniform[0, 1] random variables. Write G(n, p) for the graph with
vertices [n] and edges {ej : Wej ≤ p}. In G(n, p), each edge of Kn is independently

present with probability p. Furthermore, we have G(n, p) = G
(n)
mp , where mp =

max{i : Wei ≤ p}, so this also couples the Erdős-Rényi coalescent with the process
(G(n, p), 0 ≤ p ≤ 1). The next exercise is standard, but important.

Exercise 20. ⊛ Show that for any p ∈ (0, 1) and m ∈
(
n
2

)
, given that

|E(G(n, p))| = m, the conditional distribution of G(n, p) is the same as that of

G
(n)
m .

For c > 0, let α = α(c) be the largest real solution of e−cx = 1− x. The aim
of this section is to prove the following result.
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Theorem 4.4. For all n ≥ 1 and 0 ≤ p ≤ n−19/20,

P
{
|χ(G(n, p))− α(np)2n| > 22n4/5

}
< 6ne−12n1/10

The coupling with the Erdős-Rényi coalescent will allow us to derive cor-

responding results for G
(n)
m . While the ingredients for the proof are all in the

literature, and closely related results have certainly appeared in many places, we
were unable to find a reference for the form we require. Some of the basic calcu-
lations required for the proof appear as exercises; the first such exercise relates to
properties of the function α.

Exercise 21. ⊛
(a) Show that α is continuous and that α is concave and strictly positive on

(1,∞).
(b) Show that for 0 < c ≤ 1, α(c) = 0, and for c ≥ 2, 1−2e−c ≤ α(c) ≤ 1−e−c.
(c) Show that α(c) is increasing and c(1− α(c)) is decreasing.
(d) Show that α′(c) < 2 for all c > 1 and that d

dcα(c) ↑ 2 as c ↓ 1. Conclude
that 2ϵ(1− o(1)) ≤ α(1 + ϵ) ≤ 2ϵ, the first inequality holding as ϵ ↓ 0.

(e) Show that α(c) is the survival probability of a Poisson(c) branching pro-
cess. (This exercise is not used directly.)

Our proof of Theorem 4.4 hinges on a variant of the well-known and well-
used depth-first search exploration procedure. In depth-first search, at each step
one vertex is “explored”: its neighbours are revealed, and those neighbours lying in
the undiscovered region of the graph are added to the “depth-first search queue”
for later exploration. In our variant, if the queue is ever empty, in the next step
we add each undiscovered vertex to the queue independently with probability p.
(It is more standard to add a single undiscovered vertex, but adding randomness
turns out to simplify the formula for the expected number of unexplored vertices.)

We now formally state our search procedure for G(n, p). At step i the vertex
set [n] is partitioned into sets Ei, Di and Ui, respectively containing explored,
discovered, and undiscovered vertices. We always begin with E0 = ∅, D0 = {1},
and U0 = [n] \ {1}. For a set S, we write Bin(S, p) to denote a random subset of
S which contains each element of S independently with probability p. For v ∈ [n]
we write N(v) for the neighbours of v in G(n, p). Finally, we define the priority of
a vertex v ∈ [n] to be its time of discovery inf{j : v ∈ Dj}, so vertices that are
discovered later have higher priority.

Search process for G(n, p).
Step i:
⋆ If Di ̸= ∅ then choose v ∈ Di with highest priority (if there is a
tie, pick the vertex with smallest label among highest-priority vertices).
Let Ei+1 = Ei ∪ {v}, let Di+1 = (Di ∪ (N(v) ∩ Ui)) \ {v} and let
Ui+1 = Ui \ (N(v) ∩ Ui).
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⋆ If Di = ∅ then let Di+1 = Bin(Ui, p), independently of all previous
steps. Let Ei+1 = Ei and let Ui+1 = Ui \Di+1.

Observe that the sequence ((Di, Ei, Ui), i ≥ 0) describing the process may be
recovered from either (Di, i ≥ 0) or (Ui, i ≥ 0). The order of exploration yields
the following property of the search process. Suppose Di = ∅ for a given i. Then
Di+1 may contain several nodes, all of which have priority (i+1). Starting at step
(i+1), the search process will fully explore the component containing the smallest
labelled vertex of Di+1 before exploring any vertex in any other component. More
strongly, the search process will explore the components that intersect Di+1 in
order of their smallest labeled vertices.

For i > 0 such that Ei ̸= Ei−1, write vi for the unique element of Ei \ Ei−1.
Say that a component exploration concludes at time t if vt+1 and vt are in distinct
components of G(n, p). The observation of the preceding paragraph implies the
following fact about the search process. Set D0 = ∅ for convenience.

Fact 4.5. Fix t > 0 and let i = i(t) = max{j < t : Dj = ∅}. If a component
exploration concludes at time t then |Di+1| ≥ n− t− |Ut|.

Proof. Since a component exploration concludes at time t we have Dt ⊂ Di+1.
Furthermore, |Et| ≤ t because |E0| = ∅ and |Ej+1 \ Ej | ≤ 1 for all j ≥ 0. As Dt,
Et and Ut partition [n], we thus have

|Ut| = n− |Et| − |Dt| ≥ n− t− |Di+1|. □

In proving Theorem 4.4 we use a concentration inequality due to McDiarmid
[11]. Let X = (Xi, 1 ≤ i ≤ m) be independent Bernoulli(q) random variables.
Suppose that f : {0, 1}m is such that for all 1 ≤ k ≤ m, for all (x1, . . . , xk) ∈
{0, 1}k,

|E [f(x1, . . . , xk, Xk+1, . . . , Xm)]−E [f(x1, . . . , 1− xk, Xk+1, . . . , Xm)] | ≤ 1.

In other words, given the values of the first k − 1 variables, knowledge of the k’th
variable changes the conditional expectation by at most one.

Theorem 4.6 (McDiarmid’s inequality). Let X and f be as above. Write µ =
E [f(X)]. Then for x > 0,

P {f(X) ≥ µ+ x} ≤ e−x2/(2mq+2x/3), P {f(X) ≤ µ− x} ≤ e−x2/(2mq+2x/3) .

Our probabilistic analysis of the search process begins with the following
observation. For each i ≥ 0, the set Ui \ Ui+1 = Di+1 \Di of vertices discovered
at step i has law Bin(Ui, p). This observation also allows us to couple the search
process with a family B = (Bi,j , i ≥ 1, j ≥ 1) of iid Bernoulli(p) random variables,
by inductively letting Ui \ Ui+1 = Di+1 \ Di equal {j ∈ Ui : Bi,j = 1}, for each
i ≥ 1. The coupling shows that for all i ≥ 1, |Ui| satisfies the hypotheses of
Theorem 4.6, with m = ni and q = p. Also, using the preceding coupling, the next
exercise is an easy calculation.
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Exercise 22. ⊛ Show that for i ≥ 0, E [|Ui+1| | (Uj , j ≤ i)] = |Ui|(1 − p); con-
clude that E|Ui| = (n− 1)(1− p)i for all i ≥ 0.

The exploration of the component C(1) is completed precisely at the first
time j that Dj = ∅; this is also the first time j that |Uj | = n − j, and for earlier
times k we have |Uk| < n − k. If we had |Ui| = E|Ui| for all i then the above
exercise would imply that |C(1)| = min{t ∈ N : (n−1)(1−p)t ≥ n− t}. Of course,
|Ui| does not equal E|Ui| for all i. However, |Ui| does track its expectation closely
enough that a consideration of the expectation yields an accurate prediction of
the first-order behaviour of χ(G(n, p)). We next explain this in more detail, then
proceed to the proof of Theorem 4.4. Write t(n, p) for the largest real solution of
n(1 − p)x = n − x. We will use the next exercise, the first part of which which
gives an idea of how t(n, p) behaves when p is moderately small.

Exercise 23. ⊛
(a) Show that t(n, p) = n · α(n log(1/(1 − p))). Conclude that if p ≤ n−3/4

then with µ = np, we have

α(µ)n ≤ t(n, p) ≤ α(µ)n+
2n1/2

1− p
.

(Hint. Use Exercise 21 (d).)
(b) Show that

n(1− p)s ≥ (n− s) + (s− t)(1 + (n− t) log(1− p)) for s > t

Write L and S for the sizes of the largest and second largest components of
G(n, p), respectively. From time 0 to time t = t(n, p), the search process essentially
explores a single component. We thus expect that L ≥ t. Next, since n(1−p)t+1 >
n−(t+1) and n(1−p)t = n− t, by the convexity of (1−p)s we have n(1−p)s+1 ≥
n(1− p)s − 1 for all s ≥ t. Exercise 22 then implies that E|Us+1| ≥ E|Us| − 1 for
all integer s ≥ t. In other words, when exploring a component after time t, the
search process on average discovers less than one new vertex in each step. Such
an exploration should quickly die out and, indeed, after time t the components
uncovered by the search process typically all have size o(n). Together with the
first point, this suggests that L ≤ t + o(n) and S = o(n). Using the bounds on
t from Exercise 23 (a) and the bounds on χ(G) from Exercise 19, we are led to
predict that

α(np)2n+ o(n) =
L2

n
≤ χ(G(n, p)) ≤ L2

n
+ S = α(np)2n+ o(n).

Theorem 4.4 formalizes and sharpens this prediction, and we now proceed to its
proof.

Proof of Theorem 4.4. Throughout the proof we assume n is large (which is re-
quired for some of the inequalities), and write t = t(n, p), α = α(np).
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Case 1: p ≤ 1/n+ 6/n6/5 (“subcritical p”).

Recall that exploration of C(1) concludes the first time i that |Ui| ≥ n − i.

Letting t+ = 21n4/5, we have (1 − p)t
+ ≥ 1 − t+p + (t+p)2/2 − (t+p)3/6 >

1− t+p+ (t+p)2/3, and it follows straightforwardly that

E|Ut+ | = n(1− p)t
+

≥ n(1− t+p+ (t+p)2/3) ≥ n− t+ + 3n3/5.

Applying the bound for the lower tail from Theorem 4.6 to |Ut|, it follows that

P
{
|Ut+ | ≤ n− t+

}
≤ P

{
|Ut+ | ≤ E|Ut+ | − 3n3/5

}
≤ e−(9/2)n1/5

.

At all times i before exploration of the first component concludes we have |Ui| <
n− i, so the preceding bound yields

P
{
|C(1)| ≥ 21n4/5

}
≤ e−(9/2)n1/5

,

We always have χ(G(n, p)) ≤ maxi∈[n] |C(i)| so, by a union bound,

P
{
χ(G(n, p)) ≥ 21n4/5

}
≤ P

{
max
i∈[n]

|C(i)| ≥ 21n4/5

}
≤ ne−(9/2)n1/5

.

For this range of p, by Exercise 21 (d) we also have nα(np)2 ≤ 17n3/5, and so the
bound in Theorem 4.4 follows.

Case 2: 1/n+ 6/n6/5 < p ≤ 1/n19/20 (“supercritical p”).

We begin by explaining the steps of the proof. (I) First, logic similar to that
in case 1 shows that the largest component of G(n, p) is unlikely to have size much
larger than t. (II) Next, we need a corresponding lower tail bound on the size of
the largest component; the proof of this relies on Fact 4.5. (III) Finally, we need
to know that with high probability there is only one component of large size; after
ruling out one or two potential pathologies, this follows from the subcritical case.
We treat the three steps in this order. Write ∆ = n3/4 and t± = t(n, p)±∆.

(I) We claim that

n(1− p)t
+

≥ n− t+ + 5n11/20. (4.6)

To see this, first use Exercise 23 (b) to obtain

n(1− p)t
+

≥ n− t+ +∆(1 + (n− t) log(1− p)) .

Let c = n log(1/(1− p)). By Exercise 23 (a),

1 + (n− t) log(1− p) = 1− c(1− α(c)) .

Next, as p ≥ 1/n + 6/n6/5 we have n log(1/(1 − p)) ≥ np ≥ 1 + 6/n1/5 =: c∗. By
Exercise 21 (c) and (d), it follows that

c(1− α(c)) ≤ c∗(1− α(c∗)) =

(
1 +

6

n1/5
)

)(
1− (2 + o(1))6

n1/5

)
≤ 1− 5

n1/5
,
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so 1 + (n − t) log(1 − p) ≥ 5/n1/5. (Similar bounds using Exercise 21 (c) and (d)
crop up again later in the proof). Since ∆/n1/5 = n11/20, (4.6) follows. Having
established (4.6), essentially the same logic as in Case 1 yields

P

{
max
i∈[n]

|C(i)| ≥ t+
}

≤ nP
{
|C(1)| ≥ t+

}
≤ ne−(25/2)n1/10

. (4.7)

(II) We now turn to the lower tail of maxi∈[n] |C(i)|. The calculations are similar

but slightly more involved. Since p = o(1) and p∆ ≤ n−1/5 = o(1), for n large
(1− p)−∆ ≤ 1 + p∆+ (p∆)2, so

n(1− p)t− = (n− t)(1− p)−∆ ≤ (n− t)(1 + p∆+ (p∆)2). (4.8)

Since t ≥ nα(n, p), it follows easily from Exercises 21 (c) and (d) that p(n− t) ≤
1− 5

n1/5 . Using (4.8) and the bound p∆ ≤ n−1/5, we thus have

n(1− p)t
−
≤ (n− t) + ∆

(
1− 5

n1/5

)
(1 + p∆)

≤ n− t− − 4∆

n1/5

= n− t− − 4n3/5. (4.9)

Next, basic arithmetic shows that if m ≥ (n + p−1)/2 then m(1 − p) ≤
m − 1 − (np − 1)/2 ≤ m − (1 + 6n−1/5). Furthermore, for p in the range under
consideration, (n+ p−1)/2 ≤ n− 2n4/5, so

n(1− p)∆ ≤ max(n− 2n4/5, n−∆− 6∆n−1/5) = n−∆− 6n11/20 .

Since n(1− p)t is concave as a function of t, this bound and (4.9) together imply
that n(1 − p)x ≤ n − x − 6n11/20 for all x ∈ [∆, t−]. Applying Theorem 4.6 for
t ∈ [∆, t−], and a union bound, yields

P
{
∃t ∈ [∆, t−] : |Ut| ≥ n− t− n11/20

}
≤ (t− −∆)e−(25/2)n1/10

.

Now suppose that |Ut| < n − t − n11/20 for all t ∈ [∆, t−]. In this case, if a
component exploration concludes at some time t ∈ [∆, t−] then by Fact 4.5 there
is i < t such that Di = ∅ and |Di+1| > n− t− |Ut| > n11/20. On the other hand,
for all i ≥ 0, |Di+1 \ Di| is stochastically dominated by Bin(n, p), so by a union
bound followed by a Chernoff bound (or an application of Theorem 4.6),

P
{
∃i < t− : Di = ∅, |Di+1| > n11/20

}
≤ t−P

{
Bin(n, p) > n11/20

}
≤ t−e−n11/20

.

It follows that

P {A component exploration concludes between times ∆ and t−}

≤ (t− −∆)e−(25/2)n1/10

+ t−e−n11/20

≤ 2ne−(25/2)n1/10

. (4.10)
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(III) Let N be the number of vertices which remain undiscovered the first time
after time t− that the search process finishes exploring a component, and write B
for the event that some component whose exploration starts after time t− has size
greater than 21n4/5. Then

P {B} = P
{
B,N > n− (t− −∆)

}
+

∑
m≤n−(t−−∆)

P {B,N = m}

≤P
{
N > n− (t− −∆)

}
+ sup

m≤n−(t−−∆)

P {B | N = m} .

The first probability is at most 2ne−(25/2)n1/10

by (4.10). To bound the second,
note that

n− (t− −∆) ≤ n+ 2n3/4 − t ≤ n+ 3n3/4 − nα(np) = n(1− α(np) + 3n−1/4).

By Exercise 21 (c) and (d), and since p ≤ n−19/20, for m ≤ n − (t− − ∆) we
therefore have

mp ≤ np(1− α(np)) + 3n3/4p < 1.

For such m, the bound for “subcritical p” from Case 1 thus yields

P {B | N = m} ≤ me−(9/2)m1/5

.

This is less than ne−(9/2)n4/25

for m ≥ n4/5. If m ≤ n4/5 then the largest com-
ponent explored after time m also has size ≤ n4/5, so P {B | N = m} = 0. We
conclude that

P {B} ≤ 2ne−(25/2)n1/10

+ ne−(9/2)n4/25

≤ 3ne−(25/2)n1/10

. (4.11)

(IV) Now to put the the pieces together. The lower bound is easier: by the first in-
equality from Exercise 19, we have χ(G(n, p)) ≥ n−1 maxi∈[n] |C(i)|2. From (4.10)
it then follows that

P

{
χ(G(n, p)) <

(t− −∆)2

n

}
≤ P

{
max
i∈[n]

|C(i)| < ∆− t−
}

≤ 2ne−(25/2)n1/10

.

(4.12)
By Exercise 23 (a),

(t− −∆)2

n
=

(t− 2n3/4)2

n
≥ (nα− 3n3/4)2

n
≥ nα2 − 9n1/2 ,

and the lower bound then follows from (4.12).
For the upper bound, any component of G(n, p) whose exploration concludes

before step n3/4 of the search process has size at most n3/4. Write S for the number
of vertices of the second-largest component of G(n, p). By (4.11), we then have

P
{
S ≥ 21n4/5

}
≤ 3ne−(25/2)n1/10

.

Combined with the second inequality from Exercise 19 and with (4.7), we obtain

P

{
χ(G(n, p)) ≥ (t+ n3/4)2

n
+ 21n4/5

}
≤ 4ne−(25/2)n1/10

. (4.13)
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An easy calculation using Exercise 23 (a) shows that (t + n3/4)2/n + 21n4/5 ≤
nα2 + 22n4/5, and the theorem then follows from (4.12) and (4.13). □

To conclude the section, we use Theorem 4.4 to show that E
[
χ(G

(n)
m )
]
is

well-approximated by α(2m/n) in a range which covers the most important values
of m. (Exercise 24, below, extends this to all 0 ≤ m ≤

(
n
2

)
.)

Lemma 4.7. For n large, for all m ≤ n22/21,∣∣∣E [χ(G(n)
m )
]
− α2(2m/n)n

∣∣∣ ≤ 23n4/5.

Proof. Write xm = inf{p : |E(G(n, p))| = m}. Since E|E(G(n, p))| = p
(
n
2

)
, we

expect xm to be near pm := m/
(
n
2

)
. Write α̂ = α(2m/(n − 1)) = α(npm), let

δ = n−4/3, and let p±m = pm ± δ.

In the coupling of (G(n, p), 0 ≤ p ≤ 1) and (G
(n)
m , 0 ≤ m ≤

(
n
2

)
), if xm > p−m

then G(n, p−m) is a subgraph of G
(n)
m and so χ(G

(n)
m ) ≥ χ(G(n, p−m)). Likewise, if

xm < p+m then χ(G
(n)
m ) ≤ χ(G(n, p+m)) We thus have

χ(G(n)
m ) ≥ χ(G(n, p−m))1[xm>p−

m]

≥ χ(G(n, p−m))− n1[xm≤p−
m], and

χ(G(n)
m ) ≤ χ(G(n, p+m))1[xm<p+

m] + n1[xm≥p+
m]

≤ χ(G(n, p+m)) + n1[xm≥p+
m].

Since α is 2-Lipschitz, α̂− 2/n1/3 ≤ α(np−m) ≤ α(np+m) ≤ α̂+ 2/n1/3, from which
it follows that both α(np−m)2n and α(np+m)2n are within 5n2/3 of α̂2n. By the

preceding lower bound on χ(G
(n)
m ) and Theorem 4.4 we thus have

E
[
χ(G(n)

m )
]
≥ E

[
χ(G(n, p−m))

]
− nP

{
xm ≤ p−m

}
≥ α̂2n− 5n2/3 − 22n4/5 − nP

{
Bin

((
n

2

)
, p−m

)
≥ m

}
≥ α̂2n− 5n2/3 − 22n4/5 − 1

the last inequality holding straightforwardly by a Chernoff bound (note that(
n
2

)
p−m = m− (n− 1)/(2n1/3) ≤ m−m3/5/3). We likewise have

E
[
χ(G(n)

m )
]
≤ α̂2n+ 5n2/3 + 22n4/5 + 1.

Finally, 2m/(n−1)−2m/n = 2m/(n(n−1)) = O(n−8/9), so since α is 2-Lipschitz
we have α(2m/n)2 = α̂2 +O(n−8/9), and the result follows. □
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5. Frieze’s ζ(3) limit for the MST weight

Before proving Theorem 4.2, we warm up by using the same approach to study the
total weight of random MSTs. Throughout the section, W = (We, e ∈ E(Kn)) are
exchangeable, distinct, non-negative edge weights. Recall from Section 2.3.2 that
“Version 2” of the multiplicative coalescent (aka Kruskal’s algorithm) considers
edges one-by-one in increasing order of weight, adding only edges which connect
distinct trees in the forest, and that the result is the minimum spanning tree
T = MST(Kn,W).

Write w(T ) =
∑

e∈E(T ) We for the total weight of T . We use susceptibility

bounds to approximate w(T ) and derive a version of Frieze’s famous ζ(3) limit.

Theorem 5.1 (Frieze [9]). Write X1, . . . , X(n2)
for the increasing ordering of W. If

EXm = (1 + o(1))m, then 2Ew(MST (Kn,W))/n2 → ζ(3) as n → ∞.

By EXm = (1+ o(1))m we mean that limn→∞ supm∈[(n2)]
|1−EXm/m| = 0.

This condition can be relaxed, and the proof can be modified to obtain convergence
in probability under suitable hypotheses, but for expository reasons we have opted
for simplicity over full generality. Before beginning the proof, we first note a special
case. Suppose that the weightsWe are independent Uniform[0, 1] random variables.
Then E [Xk] = k/(

(
n
2

)
+1), E

[
Xk · n2/2

]
= (1+o(1))k. The theorem thus implies

that for such uniform edge weights, the total weight of the random MST of Kn

converges to ζ(3) without renormalization. This is the most often quoted special
case of Frieze’s result.

Our proof is based on the following identity for E [w(T )].

Proposition 5.2. Write X1, . . . , X(n2)
for the increasing ordering of W. Then

E [w(T )] =

(n2)−1∑
m=0

E [Xm+1] ·P
{
χ(G

(n)
m+1) > χ(G(n)

m )
}
. (5.1)

Proof. Let e1, . . . , e(n2)
be the ordering of E(Kn) by increasing weight, so em has

weight Xm. In the coupling with the Erdős-Rényi coalescent, Kruskal’s algorithm

adds edge ek precisely if ek joins distinct components of G
(n)
k−1, which occurs if and

only if χ(G
(n)
k ) > χ(G

(n)
k−1). For this coupling we thus have

w(T ) =

(n2)−1∑
m=0

Xm+1 · 1[χ(G
(n)
m+1)>χ(G

(n)
m )]

.

By the exchangeability of W, the vector (X1, . . . , X(n2)
) is independent of the

ordering of E(Kn). The event that χ(G
(n)
m+1) > χ(G

(n)
m ) is measurable with respect

to the ordering of E(Kn), so is independent of (X1, . . . , X(n2)
). The proposition

follows on taking expectations. □
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We use the result of the following exercise to deduce that terms with m ≥
5n log n play an unimportant role in the summation (5.1). Fix 1 ≤ k ≤ ⌊n/2⌋ and

let Nk be the number of sets A ⊂ [n] of size k such that, in G
(n)
m , there are no

edges from A to [n] \ A. Note that G
(n)
m is connected precisely if Nk = 0 for all

1 ≤ k ≤ ⌊n/2⌋.

Exercise 24. ⊛
(a) Let Ek be the event that there are no edges from [k] to [n] \ [k] in G

(n)
m .

With p = m/
(
n
2

)
, show that P {Ek} ≤ (1− p)k(n−k). Deduce that

P {Nk > 0} ≤ nk(1− p)k(n−k) ≤ (ne−p(n−k))k .

(b) Show that P
{
G

(n)
⌈5n logn⌉ is not connected

}
≤ n−4.

(c) Show that the bound in Lemma 4.7 in fact holds for all m ∈ [
(
n
2

)
].

Corollary 5.3. With the notation of Proposition 5.2, we have

E [w(T )] ≥
5n logn∑
m=0

E [Xm+1]

(
1− Eχ(G

(n)
m )

n

)
and

E [w(T )] ≤
(
1 +

12 log n

n

) 5n logn∑
m=0

EXm+1

(
1− Eχ(G

(n)
m )

n

)
+

1

2n2
E
[
X(n2)

]
.

Proof. Write

P
{
χ(G

(n)
m+1) > χ(G(n)

m )
}
= E

[
P
{
χ(G

(n)
m+1) > χ(G(n)

m ) | G(n)
m

}]
.

We derived an identity for the inner conditional probability in (4.3); using that
identity and linearity of expectation, we obtain

P
{
χ(G

(n)
m+1) > χ(G(n)

m )
}
=

(
1− Eχ(G

(n)
m )

n

)(
1− n+ 2m

n2

)−1

. (5.2)

The latter is always at least 1 − Eχ(G
(n)
m )/n, and the lower bound then follows

from Proposition 5.2 by truncating the sum at m = 5n log n.

For the upper bound, note that if G
(n)
m is connected then χ(G

(n)
m ) = n, so

P
{
χ(G

(n)
m+1) > χ(G(n)

m )
}
≤ P

{
G(n)

m ) is not connected
}
.
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Using Exercise 24 (b) and the fact that the Xi are increasing, it follows that

E [w(T )] ≤
5n logn∑
m=0

EXm+1 ·P
{
χ(G

(n)
m+1) > χ(G(n)

m )
}

+

(n2)−1∑
m=5n logn+1

EXm+1 ·P
{
G(n)

m is not connected
}

≤
5n logn∑
m=0

EXm+1 ·P
{
χ(G

(n)
m+1) > χ(G(n)

m )
}
+

(
n

2

)
·E
[
X(n2)

]
· 1

n4
.

For m ≤ 5n log n, (1 − n+2m
n2 )−1 ≤ 1 + 12 log n/n, and the result follows from

(5.2). □
To prove Theorem 5.1, we use Lemma 4.7 and Corollary 5.3 to show that

after appropriate rescaling, the sum in Proposition 5.2 is essentially a Riemann
sum approximating an appropriate integral. The value of that integral is derived
in the following lemma.

Lemma 5.4. ∫ ∞

0

λ · (1− α2(λ))dλ = 2ζ(3) .

Proof. Aldous and Steele [5] write that “calculation of this integral is quite a
pleasing experience”; though the calculation appears in that work, why should we
deprive ourselves of the pleasure? Anyway, the proof is short. First, use integration
by parts to write∫ ∞

0

λ · (1− α2(λ))dλ =

∫ ∞

0

α(λ)α′(λ)λ2dλ =

∫ ∞

1

α(λ)α′(λ)λ2dλ ,

the second equality since α(λ) = 0 for λ < 1. The identity 1−α(c) = e−cα(c) (this
is how we defined α) implies that λ2 = (α(λ)−1 log(1−α(λ)))2, so we may rewrite
the latter integral as∫ ∞

1

log2(1− α(λ))

α(λ)
· α′(λ)dλ =

∫ 1

0

log2(1− α)

α
dα ,

where we used the obvious change of variables α = α(λ). Now a final change of
variables: u = − log(1− α) transforms this into∫ ∞

0

u2 e−u

1− e−u
du =

∫ ∞

0

u2
∞∑
k=1

e−kudu .

Since
∫∞
0

u2e−ku = 2/k3, the final expression equals
∑∞

k=1 2/k
3 = 2ζ(3). □

Our final step before the proof is to show that the integrand is well-behaved
on the region of integration; the straightforward bound we require is stated in the
following exercise. Recall that α is continuous on [0,∞) and is differentiable except
at x = 1.
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Exercise 25. ⊛ Let f(x) = x(1−α2(x)), where α is as above. Show there exists
C < ∞ such that |f ′(x)| ≤ C for all x ̸= 1. (In fact we can take C = 2.)

Proof of Theorem 5.1. By the preceding exercise, for all 0 < ϵ ≤ x,∣∣∣∣∫ x

x−ϵ

λ(1− α2(λ))dλ− ϵx(1− α2(x))

∣∣∣∣ ≤ Cϵ2 .

Taking ϵ = 2/n, x = 2m/n and summing over m ∈ {1, . . . , 5n log n} we obtain in
particular that

5n logn∑
m=1

4m

n2
(1− α2(2m/n)) =

∫ 10 logn

0

λ(1− α2(λ))dλ+O

(
log n

n2

)
= 2ζ(3)− o(1) ,

the second equality by Lemma 5.4. If E [Xm] = (1+ o(1))m then by the preceding
equation, Lemma 4.7, and the lower bound in Corollary 5.3, we have

E [w(T )] ≥ (1 + o(1))
n2

2
· ζ(3) ,

and likewise (this time using the upper bound in Corollary 5.3)

E [w(T )] ≤ (1 + o(1))
n2

2
· ζ(3) + 1

2n2
E
[
X(n2)

]
= (1 + o(1))

n2

2
· ζ(3) +O(1) ,

which completes the proof. □

6. Estimating the empirical entropy

We already know the broad strokes of the argument, since they are the same as for

our proof of Theorem 5.1. Recall that we are trying to approximateE
[
log Ẑmc(n)

]
=

E
[
log Ẑ→

mc(n)
]
− (n−1) log 2. Proposition 4.1 reduces this to the study of the sum

Ξ =

(n2)−1∑
m=0

(
1− n+ 2m

n2

)−1

E

[(
1− χ(G

(n)
m )

n

)
log

(
1− χ(G

(n)
m )

n

)]
. (6.1)

We use Theorem 4.4 and Exercise 24 to approximate this sum by an integral.
Before proceeding to the ϵ’s and δ’s, we evaluate the integral.

Proposition 6.1. We have∫ ∞

0

(1− α2(λ)) · log(1− α2(λ))dλ = 2(ζmc + log 2) . (6.2)
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Proof. A similar calculation to that of Lemma 5.4, though decidedly less pleasing.
Since α(λ) = 0 for λ ≤ 1, we may change the domain of integration to [1,∞).
Then use the identity

α′(λ) =
α(λ)2(1− α(λ))

α(λ) + (1− α(λ)) log(1− α(λ))
,

which follows from the fact that 1−α(λ) = e−λα(λ) by differentiation. The integral
under consideration thus equals∫ ∞

1

(1− α2(λ)) log(1− α2(λ)) · α(λ) + (1− α(λ)) log(1− α(λ))

α(λ)2(1− α(λ))
· α′(λ)dλ ,

from which the substitution α = α(λ) gives∫ 1

0

(1 + α) log(1− α2)(α+ (1− α) log(1− α))

α2
dα .

Substituting u = − log(1 − α), we have 1 − α = e−u, 1 + α = 2 − e−u and
log(1− α2) = log(2− e−u)− u, and the above integral becomes∫ 1

0

(2− e−u)(log(2− e−u)− u) · (1− e−u − ue−u)

(1− e−u)2
· e−udu .

This integral can be calculated with a little effort (or easily, for those who accept
computer assisted proofs), and equals

π2

3
− 6 + 4 log 2− 2 log2(2)

Comparing with (4.5) completes the proof (recall that ζ(2) = π2/6). □
The next lemma generalizes Lemma 4.7, at the cost of obtaining a non-explicit

error bound. We use a slightly different proof technique than for Lemma 4.7; this
time we exploit that a binomial random variable is reasonably likely to take values
close to its mean (see the following exercise).

Exercise 26. ⊛ Show that

P

{
Bin

((
n

2

)
,
2m

n2

)
= m

}
= Ω

(
1

n

)
uniformly in 0 ≤ m ≤ n2/4, in that

lim inf
n→∞

inf
m∈{0,1,...,⌊n2/4⌋}

n ·P
{
Bin

((
n

2

)
,
2m

n2

)
= m

}
> 0.

For a continuous function f : [0, 1] → R, and ϵ ∈ [0, 1], write γf (ϵ) =
sup|x−y|≤ϵ |f(x)− f(y)|, and ∥f∥ = supx∈[0,1] |f(x)|.

Lemma 6.2. Let f : [0, 1] → R be continuous. Then

sup
m∈[(n2)]

∣∣∣E [f(χ(G(n)
m )/n)

]
− f(α(2m/n)2)

∣∣∣ = O(γf (n
−1/5))) +O(n−4).
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Proof. First suppose m ≥ n2/4. Then α(2m/n) ≥ α(n/2) ≥ 1 − 2e−n/2 by Exer-
cise 21 (b), so we have |f(α2(2m/n))− f(1)| ≤ γf (2e

−n/2) ≤ γf (n
−1/5), the latter

for n large. Next, since χ(G) = |G| whenever G is connected, by Exercise 24 (b)
we have

|E
[
f(χ(G(n)

m )/n)
]
− f(1)| ≤ ∥f∥P

{
χ(G(n)

m ) ̸= n
}
= O(n−4) .

This handles the case m ≥ n2/4, so we now assume 0 ≤ m ≤ n2/4.

Let p = 2m/n2, so np = 2m/n. By Exercise 20, we have

E
[
f(χ(G(n)

m )/n)
]
= E [f(χ(G(n, p))/n) | |E(G(n, p))| = m] .

By Exercise 26, there is C > 0 such that for all m ≤ n2/4,

P
{
|χ(G(n, p))− nα(2m/n)2| > 22n4/5 | |E(G(n, p))| = m

}
≤CnP

{
|χ(G(n, p))− nα(2m/n)2| > 22n4/5

}
=O(n2e−12n1/10

) ,

the last line by Theorem 4.4. It follows that

E
[
f(χ(G(n)

m )/n)
]

≥ inf
|a−nα(2m/n)2|≤22n4/5

f(a/n) ·P
{
|χ(G(n, p))− nα(2m/n)2| ≤ 22n4/5 | |E(G(n, p))| = m

}
− ∥f∥ ·P

{
|χ(G(n, p))− nα(2m/n)2| > 22n4/5 | |E(G(n, p))| = m

}
= inf

|a−nα(2m/n)2|≤22n4/5
f(a/n)−O(n2e−12n1/10

)

≥f(α(2m/n)2)− β(f, 22n−1/5)−O(n2e−12n1/10

) .

We likewise haveE
[
f(χ(G

(n)
m )/n)

]
≤ f(α(2m/n)2)+β(f, 22n−1/5)+O(n2e−12n1/10

).

Since γf (22n
−1/5) ≤ 22γf (n

−1/5) and n2e−12n1/10

= o(n−4), the result follows. □

In what follows we only apply the preceding lemma with m = o(
(
n
2

)
), but

it seems more satisfying to prove the estimate over the full range of possibilities;
handling larger m only added a few lines to the proof. We are now ready to wrap
things up. Define a function f : [0, 1] → R by f(x) = (1−x) log(1−x) for x ∈ [0, 1);
recalling the convention that 0 log 0 = 0, we see that f is a continuous function.
The next exercise, the last of the notes, asks the reader to establish two basic
properties of f .

Exercise 27. (a) Show that ∥f∥ = 1/e.
(b) Show that for all x, y ∈ [0, 1], |f(x)− f(y)| ≤ |x− y| log(1/|x− y|).



Discrete coalescents 39

Proof of Theorem 4.2. By Exercises 24 (b) and 27 (a), for m ≥ 5n log n we have

E

[(
1− χ(G

(n)
m )

n

)
log

(
1− χ(G

(n)
m )

n

)]
≤ ∥f∥·P

{
G(n)

m is not connected
}
≤ 1

en4
.

Summing in (6.1) over indices m ≥ 5n log n and using that 1 ≤ (1 − (n +
2m)/n2)−1 = 1 +O(log n/n) for m ≤ 5n log n, this implies that∣∣∣∣∣Ξ−

5n logn∑
m=0

E

[(
1− χ(G

(n)
m )

n

)
log

(
1− χ(G

(n)
m )

n

)]∣∣∣∣∣ = O
(
log2 n

)
.

By Lemma 6.2 we have

5n logn∑
m=0

E

[(
1− χ(G

(n)
m )

n

)
log

(
1− χ(G

(n)
m )

n

)]

=

5n logn∑
m=0

(
1− α2(2m/n)

)
log
(
1− α2(2m/n)

)
+O

(
n log n ·

(
γf (n

−1/5) + n−4
))

.

Exercise 27 (b) implies that γf (n
−1/5) ≤ (log n)/(5n1/5), so the preceding two

bounds yield∣∣∣∣∣Ξ−
5n logn∑
m=0

(
1− α2(2m/n)

)
log
(
1− α2(2m/n)

)∣∣∣∣∣ = O(n4/5 log2 n) . (6.3)

Next, by Exercise 21 (d) we know that α′(x) < 2 for x > 1. Also, α(x) = 0 for
x ≤ 1. It follows that for x, y ≥ 0 and ϵ ∈ (0, 1), if |x−y| < ϵ then α2(x)−α2(y) ≤
4ϵ(α(x)+ϵ) < 8ϵ. By Exercise 27 (b), this implies that for x ∈ [0,∞) and ϵ ∈ (0, 1),∣∣∣∣ϵ · f(α2(x))−

∫ x

x−ϵ

f(α2(λ))dλ

∣∣∣∣ ≤ 8ϵ2 log(1/8ϵ) .

We then have, as in Theorem 5.1, that

5n logn∑
m=1

(
1− α2 (2m/n)

)
log
(
1− α2 (2m/n)

)
=

n

2

∫ 10 logn

0

(1− α2(λ)) log(1− α2(λ))dλ+O

(
log2 n

n

)
=n(ζmc + log 2) + o(n) ,

The second equality holds since
∫∞
0

(1− α2(λ)) log(1− α2(λ))dλ = 2(ζmc + log 2)

and the integrand is negative, so limx→∞
∫∞
x

(1− α2(λ)) log(1− α2(λ))dλ = 0.
Combining this with (6.3) and Proposition 4.1, we obtain

E
[
log Ẑmc(n)

]
= E

[
log Ẑ→

mc(n)
]
− (n− 1) log 2 = n · (2 log n+ ζ→mc + o(1)) ,

which is the assertion of the theorem. □
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7. Unanswered questions

The partition function of the multiplicative coalescent provides an interesting av-
enue by which to approach the probabilistic study of the process. It connects up
nicely with other perspectives, and offers its own insights and challenges. We saw
above that the empirical partition function of the multiplicative coalescent is a sub-
tle and interesting random variable. Here are a few questions related to Ẑmc(n),
and more generally to the multiplicative coalescent, that occurred to me in the
course of writing these notes and which I believe deserve investigation.

• The large deviations of log Ẑmc(n) should be interestingly non-trivial. Can
a large deviations rate function be derived? This should be related to large
deviations for component sizes in the random graph process. Such results
exist for fixed p [7, 12], but not (so far as I am aware) for the process as
p varies. (Considering the following sort of problem would be a step in the
right direction. Let En be the event that the largest component of G(n, p)
has at least 0.1n fewer vertices than average, for all p ∈ [2/n, 3/n]. Find a
law of large numbers for logP {En}.)

• Relatedly, what partition chains are responsible for the large value ofE
[
Ẑmc(n)

]
?

It is not too hard to show the following: to maximize
∏n−1

i=1 n2(1−χ(Fi)
2/n)

one should keep the component sizes as small as possible. In particular, if
n = 2p then one maximizes this product by first pairing all singletons to form
trees of size two, then pairing these trees to form trees of size 4, etcetera. This
shows that for n = 2p,

ess sup Ẑmc(n) = 2−(n−1)

p=1∏
k=1

n/2k−1∏
j=0

(
n2 − 2k−1(n+ j · 2k)

)
.

which is within a factor 4 of 2−(n−1)n2(n−1)e− log2 n. On the other hand, a
straightforward calculation shows the probability of choosing two minimal
trees to pair at every step is around e−(1+o(1))2n, so the contribution to
EẐmc(n) from such paths is n2ne−(1+o(1))(2+log 2)n. This is exponentially small
compared to nn−2(n − 1)!, so the lion’s share of the expected value comes
from elsewhere.

• Suppose we condition Ẑmc(n) to be close to nn−2(n − 1)! = E
[
Ẑmc(n)

]
; we

know by Corollary 4.3 that this event has exponentially small probability. Per-

haps, under this conditioning, the tree T
(n)
1 built by the multiplicative coales-

cent might be similar to that built by the additive coalescent? At any rate, it

would certainly be interesting to study, e.g.,E
[
height(T

(n)
1 ) | Ẑmc(n) ≥ nn−2(n− 1)!

]
,

or more generally to study observables of T
(n)
1 under unlikely conditionings

of Ẑmc(n).

• Condition T
(n)
1 to have exactly k leaves. After rescaling distances appropri-

ately, T
(n)
1 should converge in the Gromov-Hausdorff sense. What is the limit?
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Write Ek for the coresponding conditional expectation; then we should have,

for example, Ek[diam(T
(n)
1 )/n] → f(k) for some function f(k). How does f

behave as k → ∞? It is known [1] that without conditioning,E
[
diam(T

(n)
1 )

]
=

Θ(n1/3).
• Pitman’s coalescent, Kingman’s coalescent, and the multiplicative coalescent

correspond to rate kernels κ(x, y) = x + y, κ(x, y) = 1, and κ(x, y) = xy,
respectively. Baur [6] has shown that for any integer k ≥ 3, the coalescent
with kernel κ(x1, ..., xk) = x1 + ... + xk + k/(k − 2) admits a representation
in terms of (k − 1)-ary forests. Are there further rate kernels that may be
naturally enriched to form interesting forest-valued coalescent processes?
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