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Abstract We shall present an algorithm for determining whether or not a given pla-
nar graph H can ever be a subgraph of a 4-regular planar graph. The algorithm has
running time O(|H |2.5) and can be used to find an explicit 4-regular planar graph
G ⊃ H if such a graph exists. It shall not matter whether we specify that H and G

must be simple graphs or allow them to be multigraphs.
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1 Introduction

The last four years have brought large developments in our understanding of random
planar graphs. Due to the work of a host of people (see for example [1, 6, 9]), but
in particular the landmark paper by Giménez and Noy [7], the generation of random
planar graphs and properties such as the number of edges, average degree, and the
number of components are all now well understood. One such result (from [9]) that
is related to the subject of this paper is the following: for any fixed planar graph H ,
the uniform random planar graph Pn on n vertices contains �(n) copies of H except
on a set of probability e−�(n).

More recently, Dowden [4] has considered random planar graphs with degree con-
straints. For example, fix d1, d2,D1 and D2 and take a graph Pn,d1,d2,D1,D2 uniformly
at random from the set of all planar graphs on {1,2, . . . , n} with minimum degree be-
tween d1 and d2, inclusive, and maximum degree between D1 and D2, inclusive. If
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D2 ≥ 3 (which is necessary for the planarity condition to have any impact), then it is
shown that for any fixed connected planar graph H with �(H) ≤ D2, Pn,d1,d2,D1,D2

also contains �(n) copies of H except on a set of probability e−�(n) (where we ig-
nore odd n if d1 = D2 ∈ {3,5}), apart from two special cases. The first is when H is
D2-regular, in which case the probability is bounded away from both 0 and 1, and
the second is when d1 = D2 = 4 and H happens to be a graph that can never be
contained within a 4-regular planar graph. This hence raises the question of which
graphs can ever be contained in a 4-regular planar graph (we will hereafter refer to
such graphs as 4-embeddable), and that is the topic of this paper. (We mention in
passing that there is a related body of work on finding minimal regular supergraphs
when the planarity restriction is removed; see [2] and the references therein.)

Note that the problem of determining whether or not a given planar graph H can
ever be a subgraph of a k-regular planar graph is very straightforward for k �= 4, since
the answer is always ‘yes’ if �(H) ≤ k. This is clear for k ∈ {1,2}, and can easily
be proven for k ∈ {3,5} (note that we must have k < 6 for planarity) by showing
that in these cases there exist planar graphs that are k-regular except for exactly one
vertex with degree k − 1, and that we can hence extend H into a k-regular planar
graph simply by attaching an appropriate number of these graphs to any vertices of
H that have degree less than k. This trick does not work for k = 4, however, since
clearly a graph that is 4-regular except for exactly one vertex of degree 3 would have
to have an odd sum of degrees! In fact, there do actually exist some planar graphs
with maximum degree at most 4 that are not 4-embeddable (see Example 1), and so
the matter of determining 4-embeddability is non-trivial.

We shall shortly see (in Lemma 2) that a given simple planar graph H is actually
4-embeddable in the world of simple graphs if and only if it is 4-embeddable in the
world of multigraphs. Clearly, this second interpretation is just a special case of the
more general problem of determining whether or not a given planar multigraph H

is 4-embeddable. Hence, in this paper we will actually aim to produce an efficient
algorithm for the latter problem.

We shall give the details of the algorithm in Sect. 3. Before this, in Sect. 2, we
will prove three lemmas that shall play important roles. In the first (Lemma 3), we
shall observe that if we can extend our multigraph H into a 4-regular planar multi-
graph, then we can actually do so without introducing any new vertices. In the others
(Lemmas 4 and 7), we will show that our problem is straightforward for graphs with
a special structure. In Sect. 3, we shall then give the algorithm itself, which will es-
sentially consist of breaking H up into more and more highly connected pieces until
we can apply Lemma 7.

We start with our aforementioned example of a graph with maximum degree 4 that
is not 4-embeddable:

Example 1 No 4-regular planar graph contains a copy of the graph K5 minus an edge.

Proof The graph K5 − uw is drawn with its unique planar embedding (see [10]) in
Fig. 1. Consider any planar graph G ⊃ K5 − uw with �(G) = 4. Since we already
have degH (v) = degH (x) = degH (y) = 4, any new edge with at least one endpoint
inside the triangle given by vxy must have both endpoints inside. Hence, the sum of
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Fig. 1 The unique planar
embedding of K5 − uw

Fig. 2 Constructing a 4-regular
simple planar graph from a
4-regular planar multigraph

degrees inside this triangle must remain odd, and so this region must still contain a
vertex of odd degree. Thus, G is not 4-regular. �

Note that it did not matter whether we took the graph G to be a simple graph or
a multigraph. We shall now conclude this introductory section by seeing that this is
indeed always the case:

Lemma 2 Given a simple planar graph H , there exists a 4-regular simple planar
graph G ⊃ H if and only if there exists a 4-regular planar multigraph G′ ⊃ H .

Proof The forward implication is trivial. To see the reverse implication, replace every
edge e = uv of E(G′) \ E(H) by a copy of the graph shown in Fig. 2. The resulting
graph G will be a 4-regular simple planar graph with H ⊂ G. �

2 Lemmas and Definitions

In this section, we shall do the groundwork for our algorithm by proving three
easy but important lemmas, as well as introducing several helpful definitions. For
v ∈ V (G), e ∈ E(G), we write G − v for the graph (V (G) \ {v}, {e ∈ E(G) : v �∈ e}),
and define G + v,G − e, and G + e similarly.

We start by showing that if there exists a 4-regular planar multigraph G ⊃ H , then
we may assume that V (G) = V (H):

Lemma 3 Given a planar multigraph H , there exists a 4-regular planar multi-
graph G ⊃ H if and only if there exists a 4-regular planar multigraph G′ ⊃ H with
V (G′) = V (H).

Proof The ‘if’ direction is trivial, so it will suffice to show the ‘only if’ direction.
Suppose there exists a 4-regular planar multigraph G ⊃ H , and let G′ be a minimal

such graph, in the sense that |V (G′) \ V (H)| is as small as possible.
Suppose |V (G′) \ V (H)| �= 0 (hoping to obtain a contradiction) and let

v ∈ V (G′) \ V (H). We shall show that we can obtain a 4-regular planar multigraph
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Fig. 3 Constructing a smaller
4-regular planar multigraph in
case (c)

G∗ such that H ⊂ G∗ and V (G∗) = V (G′) \ v, thus obtaining our desired contradic-
tion.

Case (a): If v has two loops to itself, then we may simply take G∗ to be G′ − v.
Case (b): If v has exactly one loop to itself and its other two neighbours are v1

and v2 (where we allow the possibility that v1 = v2), then we may take G∗ to be
(G′ − v) + v1v2.

Case (c): If v has no loops to itself, then fix a plane drawing of G′ and let e1, e2, e3
and e4 be the edges incident to v in clockwise order in this plane drawing. Let
v1, v2, v3 and v4, respectively, denote the other endpoints of e1, e2, e3 and e4 (al-
lowing the possibility that vi = vj for some i and j ). Then we may take G∗ to be
(G′ − v) + v1v2 + v3v4, since this can also be drawn in the plane (see Fig. 3). �

Note that Lemma 3 itself provides a way to determine algorithmically whether
or not a given planar multigraph H can ever be a subgraph of a 4-regular planar
multigraph, since it will suffice just to check all 4-regular planar multigraphs with
the same vertex set as H . However, we shall produce a much faster algorithm in
Sect. 3. The following lemma is a step in that direction, establishing a polynomial
time algorithm for the case when H is 3-vertex-connected:

Lemma 4 Given any 3-vertex-connected planar multigraph H , we can determine in
O(|H |2.5) operations whether or not H is 4-embeddable.

Proof Without loss of generality, �(H) ≤ 4. Thus, 3-vertex-connectivity implies that
H has no loops. By a result of Whitney [10] on 3-vertex-connected simple graphs,
it then follows that H has a unique planar embedding1, and this can be obtained in
O(|H |) operations (see [3]). We shall use this embedding to reduce the problem of
4-embeddability to finding a perfect matching in a suitably defined ‘auxiliary’ graph.

Let f (v) = 4−degH (v) ∀v ∈ V (H). Then we define our auxiliary graph A (which
will not necessarily be planar) to consist of f (v) copies, v1, v2, . . . , vf (v), of each
vertex v, with an edge between vi and wj precisely if v and w are on a common face
in H (here we allow v = w, but not vi = wj ). We claim that H is 4-embeddable if
and only if A has a perfect matching.

First, suppose H is 4-embeddable, i.e. H ⊂ G for some 4-regular planar multi-
graph G. By Lemma 3, we may assume that V (G) = V (H), in which case the edges
E(G) \ E(H) form a perfect matching in A (where we choose which copy of v to
use for a given edge in some arbitrary consistent manner). Conversely, if we can find
a perfect matching in A, then inserting the edges of this matching into our embed-
ding of H will give us a (not necessarily plane) 4-regular multigraph, which can then

1By “unique” we mean “unique up to automorphisms of plane graphs”. In particular, the presence of
parallel edges cannot affect the uniqueness of the embedding.
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Fig. 4 Separating crossing
edges of our matching

be made into a plane 4-regular multigraph simply by separating any new edges that
cross, as in Fig. 4.

Note that we can obtain the auxiliary graph in O(|H |2) time, since there are
O(|H |2) possible edges. This graph will have at most 4|H | vertices, and so we can
then determine whether or not it has a perfect matching in O(|H |2.5) time (see [5]). �

We remark that the only place in the preceding proof where we used 3-vertex-
connectivity was to ensure that H had a unique planar embedding. Thus, an identical
proof gives a polynomially testable necessary and sufficient condition for any given
plane graph to be a subgraph of a 4-regular planar graph. However, note that this
condition does not yield an efficient algorithm for an arbitrary planar graph H , as in
general H may have exponentially many planar embeddings.

Returning to our main thrust, recall that in the proof of Lemma 4 we introduced
the function f , which encoded the discrepancy between a vertex’s degree in H and
its target degree (in this case, there was a target degree of 4 for all vertices). Such
functions will play an important role in our algorithm, and so we will now take the
time to set up a more general framework for them:

Definition 5 Given a planar multigraph H with maximum degree at most 4, fH :
V (H) → N is a discrepancy function on H if (a) fH (v) ≤ 4 − degH (v) ∀v ∈ V (H)

(we call this the discrepancy inequality) and (b)
∑

v∈V (H) fH (v) is even (we call
this discrepancy parity). If it is also the case that fH (v) + degH (v) is even for all
v ∈ V (H), we call fH an even discrepancy function on H .

We say that a plane multigraph G satisfies (H,fH ) if V (G) = V (H),E(G) ⊃
E(H) and degG(v) = degH (v) + fH (v) ∀v. If such a plane multigraph G exists, we
say that fH can be satisfied on H , or that (H,fH ) can be satisfied.

We next also introduce ‘augmentations’, a graph operation we will use repeatedly
during the algorithm:

Definition 6 Given a multigraph B , we define the operation of placing a diamond on
an edge uv ∈ E(B) to mean that we subdivide the edge with three vertices and then
also add two other new vertices so that they are both adjacent to precisely these three
vertices. We define the operation of placing a vertex on an edge xy ∈ E(B) to mean
that we subdivide the edge with a single vertex.

Given multigraphs B and R and a discrepancy function fR , we say that (R,fR) is
an augmentation of B if R can be formed from B by placing vertices and diamonds
on some of the edges of B (in such a way that there is at most one vertex or diamond
on each original edge) and if fR = 4 − degR for all vertices in the new diamonds and
fR ∈ {1,2} for the other new vertices.
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Fig. 5 A planar multigraph and
an augmentation of it

An example of an augmentation is given in Fig. 5. When we break H up into
pieces in our algorithm, the augmentation of a piece will capture the key information
about how it interacted with the rest of H .

Note that in performing such an augmentation, we may differently augment two
parallel edges (as in Fig. 5). This causes an asymmetry in the graph, and so R may not
have a unique planar embedding even if B does. However, augmenting two parallel
edges in the same way will not affect the uniqueness of the embedding. We will use
this fact in Lemma 7, below, which extends Lemma 4 to cover augmentations of
3-vertex-connected multigraphs:

Lemma 7 Let B be a planar multigraph of maximum degree at most 4 that contains
no 2-vertex-cuts (so |B| ≤ 3 or B is 3-vertex-connected), and let (R,fR) be an aug-
mentation of B . Suppose we know which parts of R correspond to which edges of B .
Then ∃λ, independent of B and R, such that we can determine in at most λ|B|2.5

operations whether or not (R,fR) can be satisfied.

Proof Without loss of generality, we may assume that |B| > 3 (since if B is bounded
then there are only a finite number of possibilities for (R,fR), and the satisfiability of
these can be determined in finite time). Thus, as in Lemma 4, B has no loops and so
has a unique planar embedding. Hence, R will also have a unique planar embedding,
apart from possibly at places where B has multi-edges.

Note that all vertices in B must have at least 3 distinct neighbours, since B does
not contain any 2-vertex-cuts. Hence (since degB(x) = degR(x) ≤ 4 − fR(x) ∀x ∈
V (B)), if vertices u and v have a multi-edge between them in B , then it must be
only a double-edge and it must be that fR(u) = fR(v) = 0. We shall now use this
information to find a pair (R′, fR′) such that R′ has a unique planar embedding and
(R,fR) can be satisfied if and only if we can satisfy (R′, fR′).

Let Type A, Type B, Type C and Type D denote the four possible ‘augmented ver-
sions’ of an edge, as shown in Fig. 6, and recall that R will have a unique embedding
apart from at any places where B has a double-edge. More strongly, the only possible
non-uniqueness arises when B has a double-edge and these edges are of distinct types
in the augmentation. (This is explained in the paragraph just before the statement of
the lemma.) We now explain how to deal with such situations. If there exist vertices
u and v with a Type A-Type D double-edge between them, then it can be seen that it

Fig. 6 Augmented versions of
an edge
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Fig. 7 A Type A-Type D
double edge

is impossible to satisfy (R,fR), since f (u) = f (v) = 0 (see Fig. 7). If we have no
Type A-Type D double-edges, then let R′ be formed from R as follows:

(i) If the augmented versions of a double-edge are Type A and Type B, then delete
the Type A part;

(ii) If A and C, delete C;
(iii) If B and C, delete C;
(iv) If B and D, delete D;
(v) If C and D, delete C.

Let fR′(v) = fR(v) ∀v ∈ V (R′).
Using the fact that the two ends of any double-edge must have fR = 0, it is easy

to see that (R,fR) can be satisfied if and only if (R′, fR′) can be satisfied. It is also
clear that R′ will have a unique embedding (if we consider the vertices as unlabelled
apart from the discrepancy function). Thus, to determine whether or not (R′, fR′) can
be satisfied, it suffices to see if we can satisfy (R′, fR′) in this embedding.

Note that R′ can be generated from R in O(|B|) time, since there are O(|B|) edges
in B and we know which parts of R correspond to which edges of B . Since |R′| =
O(|B|), the planar embedding of R′ can then be found in O(|B|) time (see [3]),
and the satisfiability of (R′, fR′) can then be determined in O(|B|2.5) operations by
looking for a perfect matching in the corresponding auxiliary graph, as in the proof
of Lemma 4. �

It is worth remarking that, apart from obtaining the auxiliary graph and looking
for a perfect matching, all the procedures involved in the previous proof actually only
take O(|B|) time.

3 The Algorithm

We will now present our algorithm. We shall first provide a short sketch, before then
giving the details in full. Afterwards, we will investigate the running time.

3.1 Sketch of Algorithm

The algorithm shall consist of four stages, each of which will involve breaking H up
into more highly connected pieces, until we can eventually apply Lemma 7 to all of
these.

We will start, in Stages 1 and 2, by straightforwardly showing that H is
4-embeddable if and only if all its 2-edge-connected components are. This part of
our argument will not require the use of either Lemma 3 or Lemma 7.
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In Stage 3, we will break our 2-edge-connected components into 2-vertex-
connected blocks, and show that the discrepancy function f = 4 − deg can be satis-
fied on our 2-edge-connected components if and only if certain specified discrepancy
functions can be satisfied on all the 2-vertex-connected blocks. We shall use Lemma 3
to simplify our arguments here.

Stage 4 is where we will use the notion of augmentations. We shall split our
2-vertex-connected blocks into 3-vertex-connected multigraphs and define aug-
mented versions of each of these. There will be different cases depending on exactly
how the 2-vertex-cuts break up the graph, and we will show that the discrepancy
functions defined on our 2-vertex-connected blocks can be satisfied if and only if all
these augmentations can be satisfied. This can then be determined using Lemma 7.

3.2 Full Algorithm

3.2.1 Stage 1

Clearly, there exists a 4-regular planar multigraph G ⊃ H if and only if there exist
4-regular planar multigraphs Gi ⊃ Hi for all components Hi of H (the ‘if’ direction
follows by taking G to be the graph whose components are the Gi ’s and the ‘only if’
direction follows by taking Gi = G ∀i).

Thus, the first stage of our algorithm will be to split H into its components.

3.2.2 Stage 2

Let H1 be a component of H and suppose that H1 has a cut-edge e = uv. Let Hu and
Hv denote the components of H1 − e containing u and v, respectively. Clearly, there
exists a 4-regular planar multigraph G1 ⊃ H1 only if there exist 4-regular planar
multigraphs Gu ⊃ Hu and Gv ⊃ Hv (this follows by taking Gu = Gv = G1). We
shall now see that the converse is also true:

Suppose there exist 4-regular planar multigraphs Gu ⊃ Hu and Gv ⊃ Hv . Note
that degHu

(u) = degH1
(u)− 1 ≤ 3, since v /∈ V (Hu), so ∃w ∈ V (Gu) such that uw ∈

E(Gu) \ E(Hu). (It is possible that w = u.) Similarly, ∃x ∈ V (Gv) such that vx ∈
E(Gv) \ E(Hv). Since Gu and Gv are both planar, they can be drawn with the edges
uw and vx, respectively, in the outside face. Thus, the graph G1 formed by deleting
these two edges and inserting edges uv and wx will also be planar, as well as being
a 4-regular multigraph containing H1 (see Fig. 8).

We have shown that H1 is 4-embeddable if and only if Hu and Hv both are. Thus,
by repeated use of this result, we find that H1 is 4-embeddable if and only if all its
2-edge-connected components are (counting an isolated vertex as 2-edge-connected).

Fig. 8 Constructing a 4-regular planar multigraph G1 from 4-regular planar multigraphs Gu and Gv



Algorithmica

Therefore, the second stage of our algorithm will be to split the components of H

into their 2-edge-connected components.

3.2.3 Stage 3

Let A be one of our 2-edge-connected components. We wish to determine whether
or not there exists a 4-regular planar multigraph GA ⊃ A. By Lemma 3, it suffices
to discover whether or not there exists a 4-regular planar multigraph G′ ⊃ A with
V (G′) = V (A), i.e. to determine whether or not we can satisfy the even discrepancy
function on A defined by setting fA(v) = 4 − degA(v) ∀v ∈ V (A).

Suppose that A has a cut-vertex v. Since A contains no cut-edges, it must be that
A − v consists of exactly two components, A1 and A2, with exactly two edges from
v to each of these components. Thus, degA(v) = 4 and fA(v) = 0.

Let A∗
1 denote the planar multigraph induced by V (A1)∪ v and let fA∗

1
denote the

even discrepancy function on A∗
1 defined by setting fA∗

1
(x) = fA(x) ∀x ∈ V (A∗

1) (we
have fA∗

1
(x)+ degA∗

1
(x) = 4 ∀x �= v and fA∗

1
(v)+ degA∗

1
(v) = 2, so fA∗

1
is indeed an

even discrepancy function). Let A∗
2 and fA∗

2
be defined similarly (see Fig. 9).

Clearly, we can satisfy (A,fA) if we can satisfy both (A∗
1, fA∗

1
) and (A∗

2, fA∗
2
)

(since if there exist plane multigraphs G∗
1 and G∗

2 satisfying (A∗
1, fA∗

1
) and (A∗

2, fA∗
2
),

respectively, then we may assume that v is in the outside face of both of these, and so
we can then ‘glue’ these two drawings together at v to obtain a plane multigraph that
satisfies (A,fA)). We shall now see that the converse is also true:

Suppose (A,fA) can be satisfied, i.e. there exists a plane multigraph G′ ⊃ A with
V (G′) = V (A) and degG′(x) = 4 ∀x. Let us consider the induced plane drawing of A.
Since A2 is connected, it must lie in a single face of A∗

1. Thus, we may assume that
our plane drawing of A is as shown in Fig. 10, where without loss of generality we
have drawn A2 in the outside face of A∗

1. Note that the set of edges in E(G′) \ E(A)

between A1 and A2 must all lie in a single face of our plane drawing and that there
must be an even number of such edges, since fA is an even discrepancy function

Fig. 9 The planar multigraphs A,A∗
1 and A∗

2

Fig. 10 Constructing the graph G∗ from G′
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and fA(v) = 0. Thus, we may ‘pair up’ these edges, as in Fig. 10, to obtain a plane
multigraph G∗ satisfying (fA,A) that has no edges from A1 to A2. It is then clear that
G∗

1 = G∗ \ A2 and G∗
2 = G∗ \ A1 will satisfy (A∗

1, fA∗
1
) and (A∗

2, fA∗
2
), respectively.

Thus, we have shown that the even discrepancy function fA can be satisfied on A

if and only if the even discrepancy functions fA∗
1

and fA∗
2

can be satisfied on A∗
1 and

A∗
2, respectively. By repeatedly using this result, we may obtain a set of discrepancy

functions defined on 2-vertex-connected planar multigraphs such that (A,fA) can be
satisfied if and only if all these can be satisfied.

Therefore, the third stage of our algorithm will be to split our 2-edge-connected
components into 2-vertex-connected blocks (the decomposition is, in fact, unique),
and give each the appropriate discrepancy function.

3.2.4 Stage 4

Let C be one of our 2-vertex-connected blocks. We wish to determine whether or not
(C,fC) can be satisfied. Analogously to Stages 1–3, we shall split C up into pieces
at 2-vertex-cuts. However, unlike with these earlier stages, this time if there exists a
graph M satisfying (C,fC) there may be several different possibilities for how the
edges of M could interact with these pieces. To keep track of this, we shall define
augmentations of the pieces in such a way that (C,fC) can be satisfied if and only if
these augmentations can all be satisfied.

We will proceed iteratively. At the start of each iteration, we shall have a ‘blue’
graph (which will initially be C) and an augmentation of it (initially (C,fC)) for
which we want to determine satisfiability (we shall refer to this augmentation as a
‘red’ graph with a discrepancy function). We will split our blue graph in two at a
2-vertex-cut by breaking off a 3-vertex-connected piece, and we shall define augmen-
tations of these two pieces in such a way that the augmentation of the blue graph can
be satisfied if and only if the augmentations of the pieces can. Lemma 7 can then be
used to determine satisfiability of the augmentation of the 3-vertex-connected piece,
while the other piece and its augmentation can be used as the inputs for the next iter-
ation. The iterative loop terminates when the blue graph is itself 3-vertex-connected.

We shall now give the full details:

Initialising

Let us define our initial ‘blue graph’, B , to be C, let us also define our initial ‘red
graph’, R, to be C, and let R have discrepancy function fR = fC . Note that (R,fR)

is an augmentation of B . At the start of each iteration, we will always have a blue
planar multigraph with no cut-vertex, and an augmentation of this consisting of a red
graph and a discrepancy function.

The Iterative Loop

Check if B has any 2-vertex-cuts. If not, then we are done, since we can simply
use Lemma 7. Otherwise, let us find a minimal 2-vertex-cut {u,v}, where we use
‘minimal’ to mean that the component of smallest order in B −u− v is minimal over
all possible 2-vertex-cuts.
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Fig. 11 The planar multigraphs defined in the iterative loop of Stage 4

We shall now proceed to define several graphs based on the pieces of B − u − v

(these definitions are illustrated in Fig. 11). Let B1 denote a component of smallest
order in B − u − v, let B∗

1 denote the graph induced by V (B1) ∪ {u,v} and let B
†
1

denote the graph obtained from B∗
1 by deleting any edges from u to v. Let B2 =

B \ B∗
1 , let B∗

2 = B \ B1 and let B
†
2 denote the graph obtained from B∗

2 by deleting

any edges from u to v. Let R∗
1 ,R∗

2 ,R
†
1 and R

†
2 , respectively, denote the red versions

of B∗
1 ,B∗

2 ,B
†
1 and B

†
2 that follow ‘naturally’ from R, and let R1 = R \ R∗

2 and R2 =
R \ R∗

1 .
Let u1 denote the statement

‘fR(u) = 0 or there is only one edge in B from u to B1’

(note that the latter clause of u1 implies |B1| = 1, by the minimality of {u,v}, but
that it is not equivalent to this, as we may have multi-edges). It is important to note
that the number of edges in B from u or v to B1 is exactly the same as the number
of edges in R from u or v, respectively, to R1 (and similarly for B2 and R2). Thus,
u1 is equivalent to the statement ‘fR(u) = 0 or there is only one edge in R from u

to R1’. Let v1 denote the analogous statement to u1 for v, and let u2 and v2 denote
the analogous statements for B2. Let u1, v1, u2 and v2 denote the complements of
u1, v1, u2 and v2.

Recall that we wish to split our graph in two at each iteration. Note that if we have
u2, for example, then fR(u) ≥ 1 and there are at least two edges in R from u to R2,
so there may be several possibilities for where a graph satisfying (R,fR) could have
a new u − R2 edge. This could complicate matters, causing an exponential blow-up
in the running time, unless we choose to split the graph in such a way that only the
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Fig. 12 The planar multigraph
R

edges from u to R1 are important to the analysis. Thus, our choice of how best to
split the graph depends on which of the statements u1, v1, u2 and v2 are true, and
hence our next step is to divide our iterative loop into different cases based on this
information.

Case (a): u1 ∧ v1

We shall first establish a couple of important facts, before then splitting into two
further subcases arising from parity issues.

Note that, by definition, B1 is connected. Thus, R1 must also be connected, and
so has to lie in a single face of R∗

2 . Hence, in any planar embedding R must look as
in Fig. 12, where broken lines represent edges that may or may not exist and where,
without loss of generality, we have drawn R1 in the outside face of R∗

2 . Therefore, if a
plane multigraph M satisfies (R,fR) then all edges in E(M)\ E(R) between V (R1)

and V (R∗
2) must lie within only two faces of the induced embedding of R (since, by

the definition of u1, u can have more than one edge to R1 only if f (u) = 0, and
similarly for v).

Secondly, since fR satisfies discrepancy parity, note that
∑

x∈V (R1)
fR(x) and∑

x∈V (R∗
2 ) fR(x) must either both be odd or both be even.

Case (a)(i):
∑

x∈V (R1)
fR(x) and

∑
x∈V (R∗

2 ) fR(x) Both Odd

Let B ′
1 = B

†
1 + uv and let B ′

2 = B∗
2 + uv (so uv will now be a multi-edge in B ′

2 if
uv ∈ E(B)). We shall now define an augmentation (R′

1, fR′
1
) of B ′

1 and an augmen-
tation (R′

2, fR′
2
) of B ′

2 such that (R,fR) can be satisfied if and only if (R′
1, fR′

1
) and

(R′
2, fR′

2
) can both be satisfied (these new augmentations are illustrated in Fig. 13).

Let R′
1 be the graph formed from R

†
1 by relabelling u and v as u1 and v1, respec-

tively, and introducing a new vertex w1 with edges to both u1 and v1. Similarly, let
R′

2 be the graph formed from R∗
2 by relabelling u and v as u2 and v2, respectively,

and introducing a new vertex w2 with edges to both u2 and v2. Let fR′
1

be the dis-
crepancy function on R′

1 defined by setting fR′
1
(u1) = fR′

1
(v1) = 0, fR′

1
(w1) = 1, and

fR′
1
(x) = fR(x) ∀x ∈ V (R1). Let fR′

2
be the discrepancy function on R′

2 defined by

Fig. 13 The planar multigraphs R′
1 and R′

2, with their discrepancy functions
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setting fR′
2
(u2) = fR(u), fR′

2
(v2) = fR(v), fR′

2
(w2) = 1, and fR′

2
(x) = fR(x) ∀x ∈

V (R2). (Note that fR′
1

and fR′
2

are both valid discrepancy functions, since the dis-
crepancy inequality is clearly satisfied by both and discrepancy parity follows from
the facts that

∑
x∈V (R′

1)
fR′

1
(x) = ∑

x∈V (R1)
fR(x) + 1, that

∑
x∈V (R′

2)
fR′

2
(x) =

∑
x∈V (R∗

2 ) fR(x) + 1 and that
∑

x∈V (R1)
fR(x) and

∑
x∈V (R∗

2 ) fR(x) are both odd).

Claim 8 (R,fR) can be satisfied if and only if (R′
1, fR′

1
) and (R′

2, fR′
2
) can both be

satisfied.

Proof Suppose first that a plane multigraph M satisfies (R,fR). Since∑
x∈V (R1)

fR(x) and
∑

x∈V (R∗
2 ) fR(x) are both odd, there must be an odd number

of edges in E(M) \ E(R) between V (R1) and V (R∗
2). As already noted, these edges

must all lie within two faces of the embedding of R induced from M . Thus, one of
these faces must have an odd number of new edges and the other must have an even
number. By pairing edges up, as in the second half of Stage 3, we can hence obtain a
planar multigraph satisfying (R,fR) that has exactly one new edge between V (R1)

and V (R∗
2). It is then easy to see that we can satisfy both (R′

1, fR′
1
) and (R′

2, fR′
2
).

Suppose next that (R′
1, fR′

1
) and (R′

2, fR′
2
) can both be satisfied, by plane multi-

graphs MR′
1

and MR′
2

respectively, and let the edges adjacent to w1 in E(MR′
1
) \

E(R′
1) and w2 in E(MR′

2
) \ E(R) be denoted by e1 = z1w1 and e2 = z2w2 respec-

tively. We may assume that e1 is in the outside face of MR′
1
. Note that the edges u1w1

and v1w1 must then be in the outside face of MR′
1
− e1, since these are the only edges

incident to w1 in MR′
1
− e1. Hence, by turning our drawing upside-down if necessary,

we may assume that u1,w1 and v1 are in clockwise order around this outer face of
MR′

1
− e1, and so MR′

1
is as shown in Fig. 14 (where, without loss of generality, we

have drawn e1 so that v1 is also in the outside face of MR′
1
). Similarly, we may as-

sume that MR′
2

is also as shown in Fig. 14. It is then clear that we can delete w1 and
w2, ‘glue’ u1 to u2 and v1 to v2 (i.e. identify u1 and u2 and, separately, v1 and v2),
and insert the edge z1z2 to obtain a plane multigraph MR that will satisfy (R,fR)

(note that it doesn’t matter whether or not z2 ∈ {u2, v2}). �

Recall that B ′
1 = B

†
1 + uv and note that B ′

1 must not contain any 2-vertex-cuts,
by the minimality of B1. Thus, by Lemma 7, in O(|B ′

1|2.5) time we can determine
whether or not (R′

1, fR′
1
) can be satisfied. If it cannot, we terminate the algorithm. If

it can, we return to the start of the iterative loop with B ′
2 as our new blue graph, R′

2
as our new red graph and fR′

2
as our new discrepancy function (note that, as required,

Fig. 14 Constructing a planar multigraph MR satisfying (R,fR)
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Fig. 15 The planar multigraphs
R′

1,R′′
1 ,R′

2,R′′
2 and R′′′

2 , with
their discrepancy functions

B ′
2 does not contain a cut-vertex since otherwise this would also be a cut-vertex in

B—this property will be required for case (b)).

Case (a)(ii):
∑

x∈V (R1)
fR(x) and

∑
x∈V (R∗

2 ) fR(x) Both Even

Again, we let B ′
1 = B

†
1 + uv and B ′

2 = B∗
2 + uv. This time, we shall define augmen-

tations (R′
1, fR′

1
) and (R′′

1 , fR′′
1
) of B ′

1 and augmentations (R′
2, fR′

2
), (R′′

2 , fR′′
2
) and

(R′′′
2 , fR′′′

2
) of B ′

2 (see Fig. 15) such that (R,fR) can be satisfied if and only if:

(1) (R′
1, fR′

1
) and (R′

2, fR′
2
) can both be satisfied, but (R′′

1 , fR′′
1
) can’t;

(2) (R′′
1 , fR′′

1
) and (R′′

2 , fR′′
2
) can both be satisfied, but (R′

1, fR′
1
) can’t; or

(3) (R′
1, fR′

1
), (R′′

1 , fR′′
1
) and (R′′′

2 , fR′′′
2
) can all be satisfied.

Let R′
1 be the graph formed from R

†
1 by relabelling u and v as u1 and v1, respec-

tively, and inserting an edge between u1 and v1. Let fR′
1

be the discrepancy function
on R′

1 defined by setting fR′
1
(u1) = fR′

1
(v1) = 0 and fR′

1
(x) = fR(x) ∀x ∈ V (R1).

Let R′′
1 be the graph formed from R′

1 by placing a diamond on the u1v1 edge, and
let fR′′

1
be defined by setting fR′′

1
(x) = fR′

1
(x) ∀x ∈ V (R′

1) and fR′′
1
(x) = 4 −

degR′′
1
(x) ∀x /∈ V (R′

1).

Let R′
2 be the graph formed from R∗

2 by relabelling u and v as u2 and v2, re-
spectively, and inserting a new edge between u1 and v1 (so u1v1 will now be a
multi-edge if uv ∈ E(R)). Let fR′

2
= fR∗

2
. Let R′′

2 be the graph formed from R′
2

by placing a diamond on the new u2v2 edge, and let fR′′
2

be defined by setting
fR′′

2
(x) = fR′

2
(x) ∀x ∈ V (R′

2) and fR′′
2

= 4 − degR′′
2
(x) ∀x /∈ V (R′

2). Let R′′′
2 be the

graph formed from R′
2 by instead subdividing the new u2v2 edge with a vertex w,

and let f ′′′
2 be defined by f ′′′

2 (w) = 2 and f ′′′
2 (x) = f ′

2(x) ∀x ∈ V (R′
2).

Claim 9 (R,fR) can be satisfied if and only if one of (1), (2) or (3) holds.
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Proof The ‘if’ direction follows from a similar ‘gluing’ argument as with case (a)(i),
since we can again assume that the appropriate parts of our graphs are drawn in the
outside face, so we shall now proceed with proving the ‘only if’ direction:

Suppose that a plane multigraph M satisfies (R,fR). Since
∑

x∈V (R1)
fR(x) and∑

x∈V (R∗
2 ) fR(x) are both even, there must be an even number of edges in E(M) \

E(R) between V (R1) and V (R∗
2). As in case (a)(i), these edges must all lie in two

faces, so we must either have an even number in both of these faces or an odd number
in both. By the same argument as with (a)(i), we may in fact without loss of generality
assume that there are either no new edges in both faces or exactly one in both. In
the former, it is clear that we can satisfy both (R′

1, fR′
1
) and (R′

2, fR′
2
), and in the

latter it is clear that we can satisfy both (R′′
1 , fR′′

1
) and (R′′

2 , fR′′
2
). Note that we can

satisfy (R′′′
2 , fR′′′

2
) if we can satisfy (R′

2, fR′
2
) or (R′′

2 , fR′′
2
). Thus, we can either satisfy

(R′
1, fR′

1
), (R′

2, fR′
2
) and (R′′′

2 , fR′′′
2
), or (R′′

1 , fR′′
1
), (R′′

2 , fR′′
2
) and (R′′′

2 , fR′′′
2
). In the

first case, either (1) or (3) must hold, and in the second case either (2) or (3) must
hold. �

We have now shown that (R,fR) can be satisfied if and only if (1), (2) or (3)
hold. As in case (a)(i), we can use Lemma 7 to determine in O(|B ′

1|2.5) time whether
(R′

1, fR′
1
) and (R′′

1 , fR′′
1
) can be satisfied. If neither can be satisfied, we terminate the

algorithm. If at least one can be satisfied, then we return to the start of the iterative
loop with B ′

2 as our new blue graph and either (R′′′
2 , fR′′′

2
), (R′

2, fR′
2
) or (R′′

2 , fR′′
2
) as

our augmentation, according to whether both (R′
1, fR′

1
) and (R′′

1 , fR′′
1
), just (R′

1, fR′
1
),

or just (R′′
1 , fR′′

1
) can be satisfied, respectively.

Case (b): (u1 ∨ v1) ∧ u2 ∧ v2

We shall again start with some groundwork on the structure of R, analogously to case
(a), before splitting into subcases.

Since u1 ∨ v1 holds, we can’t have f (u) = f (v) = 0. Thus, since u2 ∧ v2 also
holds, it must be that either u or v has only one edge to B2. Hence, since B contains
no cut-vertices, it must be that B2 is connected. Therefore, R2 must also be connected
and so must lie in a single face of R∗

1 . Hence, we may proceed in a similar way to
case (a), but this time we will split into subcases depending on the parity of R∗

1 and
R2, rather than R1 and R∗

2 .

Case (b)(i):
∑

x∈V (R∗
1 ) fR(x) and

∑
x∈V (R2)

fR(x) Both Odd

This time, we let B ′
1 = B∗

1 + uv (so uv will be a multi-edge in B ′
1 if uv ∈ E(B)) and

let B ′
2 = B

†
2 +uv. We will define augmentations (R′

1, fR′
1
) of B ′

1 and (R′
2, fR′

2
) of B ′

2
(see Fig. 16) such that (R,fR) can be satisfied if and only if (R′

1, fR′
1
) and (R′

2, fR′
2
)

can both be satisfied.
Let R′

1 be the graph formed from R∗
1 by relabelling u and v as u1 and v1, respec-

tively, and introducing a new vertex w1 with edges to both u1 and v1. Similarly, let R′
2

be the graph formed from R
†
2 by relabelling u and v as u2 and v2, respectively, and

introducing a new vertex w2 with edges to both u2 and v2. Let fR′
1

be the discrepancy



Algorithmica

Fig. 16 The planar multigraphs R′
1 and R′

2, with their discrepancy functions

function on R′
1 defined by setting fR′

1
(u1) = fR(u), fR′

1
(v1) = fR(v), fR′

1
(w1) = 1,

and fR′
1
(x) = fR(x) ∀x ∈ V (R1). Let fR′

2
be the discrepancy function on R′

2 defined
by setting fR′

2
(u2) = fR′

2
(v2) = 0, fR′

2
(w2) = 1, and fR′

2
(x) = fR(x) ∀x ∈ V (R2).

The proof that (R,fR) may be satisfied if and only if both (R′
1, fR′

1
) and (R′

2, fR′
2
)

may be satisfied is as with case (a)(i). Again, we can determine in O(|B ′
1|2.5) time

whether or not (R′
1, fR′

1
) can be satisfied, and if so we return to the start of the iterative

loop with B ′
2 as our new blue graph, R′

2 as our new red graph and fR′
2

as our new
discrepancy function. Otherwise, we terminate the algorithm.

Case (b)(ii):
∑

x∈V (R∗
1 ) fR(x) and

∑
x∈V (R2)

fR(x) Both Even

Again, we let B ′
1 = B∗

1 + uv and B ′
2 = B

†
2 + uv. This time, as with case (a)(ii),

we shall define augmentations (R′
1, fR′

1
) and (R′′

1 , fR′′
1
) of B ′

1 and augmentations
(R′

2, fR′
2
), (R′′

2 , fR′′
2
) and (R′′′

2 , fR′′′
2
) of B ′

2 (see Fig. 17) such that (R,fR) can be
satisfied if and only if:

(1) (R′
1, fR′

1
) and (R′

2, fR′
2
) can both be satisfied, but (R′′

1 , fR′′
1
) can’t;

(2) (R′′
1 , fR′′

1
) and (R′′

2 , fR′′
2
) can both be satisfied, but (R′

1, fR′
1
) can’t; or

(3) (R′
1, fR′

1
), (R′′

1 , fR′′
1
) and (R′′′

2 , fR′′′
2
) can all be satisfied.

Let R′
1 be the graph formed from R∗

1 by relabelling u and v as u1 and v1, respec-
tively, and inserting an edge between u1 and v1 (so u1v1 will now be a multi-edge
if uv ∈ E(R)). Let fR′

1
be defined by setting fR′

1
(x) = fR(x) ∀x ∈ V (R′

1). Let R′′
1

Fig. 17 The planar multigraphs
R′

1,R′′
1 ,R′

2,R′′
2 and R′′′

2 , with
their discrepancy functions



Algorithmica

be the graph formed from R′
1 by placing a diamond on the u1v1 edge, and let fR′′

1
be

defined by setting fR′′
1
(x) = fR′

1
(x) ∀x ∈ V (R′

1) and fR′′
1
(x) = 4 − degR′′

1
(x) ∀x /∈

V (R′
1).

Let R′
2 be the graph formed from R

†
2 by relabelling u and v as u2 and v2, re-

spectively, and inserting a new edge between u2 and v2. Let fR′
2

be the discrepancy
function on R′

2 defined by setting fR′
2
(u2) = fR′

2
(v2) = 0 and fR′

2
(x) = fR(x) ∀x ∈

V (R2). Let R′′
2 be the graph formed from R′

2 by placing a diamond on the new
u2v2 edge, and let fR′′

2
be defined by setting fR′′

2
(x) = fR′

2
(x) ∀x ∈ V (R′

2) and
fR′′

2
(x) = 4 − degR′′

2
(x) ∀x /∈ V (R′

2). Let R′′′
2 be the graph formed from R′

2 by in-
stead subdividing the new u2v2 edge with a vertex w, and let f ′′′

R2
be defined by

f ′′′
R2

(w) = 2 and f ′′′
R2

(x) = f ′
R2

(x) ∀x ∈ V (R′
2).

The proof that (R,fR) can be satisfied if and only if (1), (2) or (3) hold is as with
case (a)(ii). Again, we can determine in O(|B ′

1|2.5) time whether or not (R′
1, fR′

1
)

and (R′′
1 , fR′′

1
) can be satisfied, and if at least one can then we return to the start of

the iterative loop with B ′
2 as our new blue graph and either (R′′′

2 , fR′′′
2
), (R′

2, fR′
2
) or

(R′′
2 , fR′′

2
) as our augmentation, according to whether both (R′

1, fR′
1
) and (R′′

1 , fR′′
1
),

just (R′
1, fR′

1
), or just (R′′

1 , fR′′
1
) can be satisfied, respectively. If neither (R′

1, fR′
1
) nor

(R′′
1 , fR′′

1
) can be satisfied, we terminate the algorithm.

Case (c): (u1 ∨ v1) ∧ (u2 ∨ v2)

We will now deal with the remaining case, which will follow from a detailed investi-
gated of the properties that are forced upon us if (u1 ∨ v1) ∧ (u2 ∨ v2) holds.

Recall that if we have u1, then by definition fR(u) ≥ 1 and u has at least two
edges to R1, so u must have only one edge to R2, and hence we have u2. Similarly,
v1 ⇒ v2, u2 ⇒ u1 and v2 ⇒ v1. Thus, the only possibilities are u1 ∧ u2 ∧ v1 ∧ v2
and u1 ∧ u2 ∧ v1 ∧ v2. By swapping u and v if necessary, we can without loss of
generality assume that we have the former.

Note that the only way to obtain u1 ∧ u2 is to have exactly one edge in B from
u to B1 (or, equivalently, exactly one edge in R from u to R1), exactly two edges
in B from u to B2, no edges in B from u to v, and fR(u) = 1. Similarly, we must
have exactly one edge in B from v to B2, exactly two edges in B from v to B1, and
fR(v) = 1. Note also that we must have |B1| = 1, since otherwise the minimality of
B1 would imply that u and v would both have to have at least two edges in B to B1,
which would in turn imply that we would have to have u2 ∧ v2. Thus, B must be as
shown in Fig. 18.

If |B2| = 1, then |R| is bounded by a constant and so we can determine the satis-
fiability of (R,fR) in O(1) time (simply by checking all graphs with |R| vertices to
see if any of these do satisfy (R,fR)).

Fig. 18 The structure of B in
case (c)
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Fig. 19 The 2-vertex-cut {u,x}

If |B2| > 1, then let x denote the neighbour of v in B2, let B̂1 = B1 ∪ v and let
B̂2 = B2 \ x. Note that ux forms a 2-vertex-cut where u and x both have just one
edge to B̂1 (see Fig. 19).

Hence, we can copy case (a) with B1 and B2 replaced by B̂1 and B̂2, respectively,
to again obtain graphs B ′

1 and B ′
2 and appropriate augmentations. It may be that the

graph B ′
1 will have a 2-vertex-cut, so this time we won’t be able to use Lemma 7

to determine the satisfiability of augmentations of it. However, we know that we
will have |B ′

1| = 4, so the number of vertices in any augmentation of B ′
1 will be

bounded by a constant, and hence we will be able to determine satisfiability of these
augmentations in O(1) time.

3.3 Running Time

We shall now show that the algorithm takes O(|H |2.5) time. It is fairly easy to see
that the first three stages can be accomplished within this limit (in fact, they take only
O(|H |2) time), so we will proceed straight to an examination of Stage 4.

We apply Stage 4 to each of the 2-vertex-connected blocks derived from Stage 3. It
is easy to see that the total number of vertices in all these blocks is at most 2|H |, since
each vertex of H will only appear in at most two of these, so it will actually suffice
just to deal with the case when H is itself a 2-vertex-connected block, i.e. when we
start Stage 4 with only one 2-vertex-connected block, and it has |H | vertices.

During each iteration of Stage 4, we take a graph B and use it to construct graphs
B ′

1 and B ′
2, where |B ′

1| + |B ′
2| = |B| + 2 and |B ′

2| < |B|, before replacing B with
B ′

2 and iterating again. Let B ′
1,1,B

′
1,2, . . . ,B

′
1,l , for some l, denote the various graphs

that take the role of B ′
1 during our algorithm. Since |B ′

2| < |B|, we can only have
at most |H | iterations, and so we must have

∑
i |B ′

1,i | ≤ 3|H | (by telescoping, since
we always have |B ′

1| + |B ′
2| = |B| + 2). We need to apply the algorithm given by

Lemma 7 to at most three augmentations of each B ′
1,i , so the total time taken by all

such applications will be at most 3λ
∑

i (|B ′
1,i |2.5) ≤ 3λ(

∑
i |B ′

1,i |)2.5 = O(|H |2.5).
At the start of each iteration, we wish to determine whether B has any 2-vertex-

cuts and, if so, find a minimal one. Using an algorithm from [8] for decomposing a
graph into its so-called ‘triconnected components’, this takes O(|B|) = O(|H |) time.
It is fairly clear that all other operations involved in an iteration of Stage 4, aside from
applications of Lemma 7, can also be accomplished within O(|H |) time, so (since we
recall that there are at most |H | iterations) this all takes O(|H |2) time in total (in fact,
by careful bookkeeping, this could be reduced to O(|H |)). Hence, it follows that the
whole algorithm takes O(|H |2.5) time.

3.4 Comments

By keeping track of all the operations, the algorithm can be used to find an explicit
4-regular planar multigraph G ⊃ H if such a graph exists, also in O(|H |2.5) time. If
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H is simple, then we can also obtain a 4-regular simple planar graph G′ ⊃ H without
affecting the order of the overall running time, using the proof of Lemma 2.

Aside from looking for a perfect matching during the applications of Lemma 7,
every part of the algorithm can be accomplished in O(|H |2) time. It would therefore
be interesting to know if the special structure of the graphs seen in Lemma 7 could
be exploited to obtain a faster perfect matching algorithm.
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