LECTURE NOTES

CRM-PIMS PROBABILITY
SUMMER SCHOOL 2021
“BEAUTY WAS NOT SIMPLY SOMETHING TO BEHOLD; IT WAS SOMETHING ONE COULD DO.”
TONI MORRISON, THE BLUEST EYE

ONLY DEAD MATHEMATICS CAN BE TAUGHT WHERE THE ATTITUDE OF COMPETITION PREVAILS: LIVING MATHEMATICS MUST ALWAYS BE A COMMUNAL POSSESSION.
MARY EVEREST BOOLE

“THE IDEA HOVERED AND SHIMMERED DELICATELY, LIKE A SOAP BUBBLE, AND SHE DARED NOT EVEN LOOK AT IT DIRECTLY IN CASE IT BURST. BUT SHE WAS FAMILIAR WITH THE WAY OF IDEAS, AND SHE LET IT SHIMMER, LOOKING AWAY, THINKING ABOUT SOMETHING ELSE.”
PHILIP PULLMAN, THE GOLDEN COMPASS
Contents

1 Deterministic and random combinatorial trees 15
2 Bienaymé trees 37
3 Random graphs 55

Martingale limits and changes of measure 63
List of Figures

1.1 A tree t and the sequence $v(t)$. 17
1.2 Top: a tree t. Bottom: shape(t) with edges labeled by their lengths. 24

3.1 An example of the first steps of the Erdős-Rényi coalescent. The edges which join distinct connected components are represented by thicker, blue lines. 56
List of Tables
Thanks to the CRM, PIMS, and MSRI for their support of this summer school.
Introduction

Lecture notes to accompany my lectures at the 2021 CRM-PIMS probability summer school.
1

Deterministic and random combinatorial trees

1.1 Preliminaries: graph notation

An undirected graph is an ordered pair \(G = (V, E) \) where \(V \) is the set of vertices and \(E \subset (V)^2 \) is the set of edges. Here we write \((V)^2\) for the set of unordered pairs of elements of \(V \); more generally, for a set \(S \) and a positive integer \(k \) we write

\[
\binom{S}{k} = \{U \subset S : |U| = k\}
\]

for the set of all subsets of \(S \) of size \(k \). We often write \(uv \) for an edge of a graph \(G \), rather than the more correct but more cumbersome notation \{\(u, v \}\).

A path in a graph \(G = (V, E) \) is a finite sequence \(u_0, u_1, \ldots, u_k \) of distinct vertices of \(G \) such that for all \(0 \leq i < k \), \(u_iu_{i+1} \) is an edge of \(G \). Two vertices \(u, v \) are in the same connected component of \(G \) if there is a path connecting \(u \) and \(v \).

Exercise 1.1.1. Write \(u \overset{G}{\leftrightarrow} v \) if there is a path between \(u \) and \(v \) in \(G \). Show that \(\overset{G}{\leftrightarrow} \) is an equivalence relation.

We say \(G \) is connected if it has a single connected component; otherwise it is disconnected.

We write \(\mathcal{G}_n \) for the set of graphs \(G = (V, E) \) with vertex set \(V = [n] := \{1, 2, \ldots, n\} \). For a finite set \(\mathcal{I} \) we write \(X \in_u \mathcal{I} \) to mean that \(X \) is a uniformly random element of \(\mathcal{I} \).

Exercise 1.1.2. Fix a random graph \(G \in_u \mathcal{G}_n \). Show that

\[
P\{G \text{ is not connected}\} = (1 + o(1))n \cdot 2^{-(n-1)}.
\]

A cycle in a graph \(G = (V, E) \) is a finite sequence \(u_0, u_1, \ldots, u_{k+1} \) of vertices such that \(u_0, \ldots, u_k \) is a path (so in particular \(u_0, u_1, \ldots, u_k \) are all distinct), and \(u_{k+1} = u_0 \). A graph is a tree if it contains no cycles.
Exercise 1.1.3. Let $G = (V, E)$ be a finite connected graph. Show that G is a tree if and only if $|E| = |V| - 1$.

Exercise 1.1.4.

Let $T = (V, E)$ be a graph. Prove that the following are equivalent.

1. T is a tree.
2. Any two vertices of T are linked by a unique path in T.
3. T is minimally connected, meaning that T is connected but removing any edge of T disconnects the graph.
4. T is maximally acyclic, meaning T contains no cycle but for any two non-adjacent vertices $x, y \in T$, the graph $(V, E \cup \{xy\})$ contains a cycle.

Given a graph $G = (V, E)$, for $u, v \in V$ write $\text{dist}(u, v) = \text{dist}_G(u, v)$ for the graph distance between u and v in G; that is, $\text{dist}(u, v)$ is the smallest number of edges in a path connecting u and v. (If u, v are in different connected components of G then $\text{dist}(u, v) = \infty$. For $u \in V$ and $S \subset V$, we also write

$$\text{dist}(u, S) = \text{dist}_G(u, S) = \inf(\text{dist}(u, v) : v \in S)$$

for the distance from u to S in G.

1.2 Random combinatorial trees and forests

In this section, and in much of the rest of the paper, we consider trees that are **rooted**: formally a rooted tree is a triple $t = (V, E, \rho)$ where (V, E) is a tree and $\rho \in V$.\(^1\) We write

$$\mathcal{T}_n^{\text{unrooted}} = \{ t = (V, E) : t \text{ is a tree, } V = [n] \}$$

for the set of trees with vertex set $[n]$, and

$$\mathcal{T}_n = \{(V, E, \rho) : (V, E) \in \mathcal{T}_n \text{ and } \rho \in V \}.$$

Any tree in \mathcal{T}_n can be rooted in n different ways, which implies that $|\mathcal{T}_n| = n |\mathcal{T}_n^{\text{unrooted}}|$. Cayley’s formula (which to the best of knowledge of contemporary academics was first established by Borchardt\(^2\)) provides a very simple formula for $|\mathcal{T}_n^{\text{unrooted}}|$, or equivalently for $|\mathcal{T}_n|$.

Theorem 1.2.1 (Cayley’s formula). $|\mathcal{T}_n| = n^{n-1}$.

There are several proofs of Cayley’s formula in the literature: one using so called Prüfer codes; one discovered by Joyal which considers doubly-rooted trees (called *vertebrates*); one discovered by Pitman which analyzes a coalescent process for building random trees; and the one we present, which is new and is due to Addario-Berry and Donderwinkel.

\(^1\) It’s sometimes useful to write $\rho(t)$ rather than ρ, and we will do this when we wish, without further comment.

\(^2\)
Proof of Cayley’s formula. The right-hand side naturally counts sequences of integers $v = (v_1, \ldots, v_{n-1}) \in [n]^{n-1}$. We prove the theorem by showing how to associate a rooted tree $t \in \mathcal{T}_n$ to each such sequence.

Say that v_i is a repeated entry if there is $1 \leq j < i$ with $v_i = v_j$. List the repeated entries in increasing order of index as $v_{i(1)}, \ldots, v_{i(r)}$; so $r = r(v)$ is the number of repeated entries v. (If v_1, \ldots, v_{n-1} are all distinct then $r = 0$.) Set $i(r+1) = n$.

Since v has length $n-1$, there are exactly $r + 1$ integers from $[n]$ which do not appear in v; list them in increasing order as $\ell_1, \ldots, \ell_{r+1}$.

Now form a tree $t = t(v)$ with vertices $[n]$, edges

\[\{v_iv_{i+1} : 1 \leq i \leq n-1, i+1 \notin \{i(1), \ldots, i(r+1)\}\} \cup \{v_{i(j)}\ell_j , 1 \leq j \leq r+1\} \]

and root $\rho = v_1$.

Visually, the tree is constructed as follows. Think of v as a path graph, and remove all edges v_iv_{i+1} where v_{i+1} is a repeated entry; if v_{i+1} is the jth repeated entry then instead attach v_i to ℓ_j. This breaks the path up into pieces. To connect these pieces, glue each repeated entry to the location where it first appears in v.

The graph $t(v)$ has n vertices and $n-1$ edges, so to prove $t(v)$ is a tree and therefore an element of \mathcal{T}_n, by Exercise 1.1.3 it suffices to show that it is connected. To see this, fix $i \in [n-1]$ with $i > 1$. If v_i is not a repeated entry then $v_{i-1}v_i$ is an edge of $t(v)$. If v_i is a repeated entry then let j be minimal so that $v_j = v_i$; then $v_{i-1}v_i$ is an edge of $t(v)$. In either case, there is an edge from v_i to v_k for some $k < i$, which implies by induction that for all $i \in [n-1]$ there is a path from v_i to v_1. Since ℓ_j is attached by an edge to $v_{i(j)}$, it also follows that there is a path from ℓ_j to v_1 for all $1 \leq j \leq r+1$. Thus all vertices are in the same connected component as v_1 and so $t(v)$ is connected.

To show that the above construction is a bijection, we describe its inverse. Given a rooted tree $t = (V, E, \rho) \in \mathcal{T}_n$, define a sequence $v(t) = (v_1, \ldots, v_{n-1})$ as follows. List the leaves of t in increasing order of label as $\ell_1, \ldots, \ell_{r+1}$. Let t_0 be the one-vertex rooted tree containing only the root ρ of t. For $1 \leq i \leq r+1$, let $p_i = (p_i(1), \ldots, p_i(h_i))$ be the vertices on the path from t_{i-1} to ℓ_i, so $p_i(1)$ is a vertex of t_{i-1} and $p_i(h_i) = \ell_i$. Let t_i be the forest obtained from t_{i-1} by attaching the path p_i. Then let

\[v = (v_1, \ldots, v_{n-1}) = (p_1(1), \ldots, p_1(h_1-1), p_2(1), \ldots, p_1(h_2-1), \ldots, p_{r+1}(1), \ldots, p_{r+1}(h_{r+1}-1)) \]

Note that $\rho = v_1$. Also, $h_i - 1$ is the number of edges on the path from t_{i-1} to ℓ_i, so v has

\[\sum_{i=1}^{r+1} h_i - 1 = |E| = n-1 \]
entries. Moreover, \(v_i v_{i+1} \) is an edge of \(t \) with \(v_i = \text{par}(v_{i+1}) \) if and only if
\[
v_i v_{i+1} \notin \{ p_j (h_j - 1) p_{j+1}(1), 1 \leq j \leq r \},
\]
and the repeated entries of \(v \) are precisely \(p_2(1), \ldots, p_{r+1}(1) \), so \(v_i v_{i+1} \) is an edge of \(t \) if and only if \(v_{i+1} \) is not a repeated entry of \(v \). The remaining edges of \(t \) are the elements of the set
\[
\{ p_j (h_j - 1) \ell_j, 1 \leq j \leq r + 1 \};
\]
they precisely join the predecessors of repeated entries of \(v \) to the leaves \(\ell_1, \ldots, \ell_{r+1} \), in increasing order. Thus \(v(t(v)) = v \); these two constructions are indeed inverses. Since we have exhibited a bijection between \(\mathcal{T}_n \) and \([n]^{n-1} \), it follows that
\[
|\mathcal{T}_n| = |[n]^{n-1}| = n^{n-1}.
\]
\[\qed \]

The above bijection has nice consequences for random trees. In what follows, for a tree \(t = (V, E, \rho) \) and vertices \(u, v \in V \), write \([u, v] = [u, v]_t \) for the unique path from \(u \) to \(v \) in \(t \).\(^3\) For \(v \in V \), write \(|v| \) for the graph distance from \(\rho \) to \(v \), which equals the number of edges of the path \([\rho, v] \).

Proposition 1.2.2. Let \(T \in_u \mathcal{T}_n \) and let \(L \) be a uniformly random leaf of \(T \). Also, let \((V_i, i \geq 1)\) be a sequence of independent uniformly random elements of \([n]\) and let \(I = \min(i \geq 1 : V_i \in \{ V_1, \ldots, V_{i-1} \}) \) be the index of the first repeated element of the sequence. Then \(|L| + 1 \overset{d}{=} I \).

Proof. Write \(V = (V_1, \ldots, V_{n-1}) \in_u [n]^{n-1} \). Then \(T = T(V) \in_u \mathcal{T}_n \). Moreover, recalling that the repeated entries of \((V_1, \ldots, V_{n-1})\) are \(i(1), \ldots, i(r) \) and that \(i(r + 1) = n \), we have \(I = i(1) \). The first leaf \(\ell_1(T) \) is a child of \(V_{i(1) - 1} \), so
\[
|\ell_1(T)| = |V_{i(1) - 1}| + 1 = i(1) - 1 = I - 1.
\]
But since \(T \) is a uniformly random tree, randomly permuting its leaf labels does not change its distribution, so \(|\ell_1(T)| \) has the same distribution as \(|L| \) for \(L \) a uniformly random leaf of \(T \). \[\qed \]

Exercise 1.2.1. Let \(T \in_u \mathcal{T}_n \) and let \(L \) be a uniformly random leaf of \(T \). Show that for all \(1 \leq k < n - 1 \),
\[
P \{ |L| > k \} = \prod_{i=1}^k \left(1 - \frac{i}{n} \right)
\]

Exercise 1.2.2. Say that rooted tree \(t \) is binary if every non-leaf node has exactly two children. Say that a sequence \(v = (v_1, \ldots, v_{n-1}) \in [n]^{n-1} \) is binary if every integer \(u \in [n] \) which appears in \(v \) appears exactly twice.

Note that here it’s important to require that \(v_i = \text{par}(v_{i+1}) \), i.e., to think of \(v_i v_{i+1} \) as a directed edge directed away from the root. To see this, consider the sequence \(v = (1, 2, 3, 2, 5, 6) \); for this sequence \(p_1(h_1 - 1) = p_1(3) = 3 \) and \(p_2(1) = 2 \), so \(v_3 v_4 = p_1(3)p_2(1) = 32 \) is an edge of the corresponding tree.
(a) Fix an odd positive integer \(n = 2m + 1 \). Show that the set \(\mathcal{B}_n \) of rooted binary trees with vertex set \([n]\) is in bijective correspondence with the set of binary sequences
\[
\{ v \in [n]^{n-1} : v \text{ is binary} \}.
\]

(b) Let \(T \in \mathcal{B}_n \) and let \(L \) be a uniformly random leaf of \(T \). Show that for all \(1 \leq k < m \),
\[
P\{|L| > k\} = \prod_{i=1}^{k} \left(1 - \frac{i}{2m - i}\right)
\]

Exercise 1.2.3. (a) Let \(T_n \in \mathcal{T}_n \) and let \(C_n \) be the number of children of vertex 1 in \(T_n \). Show that \(C_n \) converges in distribution to a Poisson(1) random variable.

(b) Write \(\pi_n \) for the empirical child distribution of \(T_n \); that is,
\[
\pi_n = \frac{1}{n} \sum_{c=0}^{n-1} \delta_c \cdot |\{v \in [n] : v \text{ has } c \text{ children in } T_n\}|.
\]

Show that \(\pi_n \) converges in probability to the Poisson(1) distribution with respect to the Prokhorov distance between probability measures.
(Suggestion: it suffices to show that for any fixed \(k \in \mathbb{N} \), \(\pi_n(\{k\}) \to P\{\text{Poisson}(1) = k\} \) in probability.)

Exercise 1.2.4. I would like to write an exercise using the fact that the smallest-labeled and second-smallest-labeled leaves have the same height (in distribution) to formulate a distributional identity involving the first and second repeated elements in a sequence \(V = (V_i, i \geq 1) \) be independent uniformly random elements of \([n]\). But I’m not sure how, since the “second-smallest-labeled leaf” may not exist - the tree may have only one leaf.

We conclude the section by extending Cayley’s formula to a formula for forests with a fixed vertex set. A forest is a set of rooted trees with pairwise disjoint vertex sets. Given a forest \(F = \{t_i, i \in I\} \), the root set of \(F \) is the set \(\rho(F) := \{\rho(t_i), i \in I\} \) of roots of its constituent trees.

Given a set \(S \subset [n] \), write \(\mathcal{F}_n^S \) for the set of forests \(F \) with vertex set \([n]\) and root set \(S \).

\(^4\) Add citations for the next proposition.

Proposition 1.2.3. For any integers \(1 \leq k \leq n \) and any set \(S \subset [n] \) with \(|S| = k \),
\[
|\mathcal{F}_n^S| = kn^{n-k-1}
\]

Proof. Fix any sequence \(v = (v_1, \ldots, v_{n-k}) \) of integers in \([n]\) such that \(v_1 \in S \). Say that \(v_i \) is a repeated entry if \(i > 1 \) and either \(v_i \in S \) or there is \(1 \leq j < i \) such that \(v_i = v_j \).
List the repeated entries of v in increasing order of index as $v_{i(1)}, \ldots, v_{i(r)}$, set $i(r + 1) = n - k + 1$, and list the integers from $[n] \setminus S$ which do not appear in v as $\ell_1, \ldots, \ell_{r+1}$ in increasing order.

Form a graph $F_S = F_S(v)$ with vertices $[n]$, root set S, and edge set
\[
\{v_iv_{i+1} : i \in [n-k], i+1 \notin \{i(1), \ldots, i(r+1)\} \cup S \} \cup \{v_{i(j)} - \ell_j, 1 \leq j \leq r+1\}.
\]

Essentially the same argument as in the proof of Cayley’s formula shows that the connected components of F_S are trees and that there are k components of F_S, each containing exactly one vertex of S.

Thus, rooting each component of F_S at its unique element of S turns F_S into an element of \mathcal{F}_n^S.

The inverse of this construction is also very similar to the one in the proof of Cayley’s formula: given $F \in \mathcal{F}_n^S$, list the leaves of F in increasing order of label as $\ell_1, \ldots, \ell_{r+1}$. Let F_0 be the k-vertex forest containing only the root vertices S. For $1 \leq i \leq r+1$, let $p_i = (p_i(1), \ldots, p_i(h_i))$ be the path from F_{i-1} to ℓ_i, so $p_i(1)$ is a vertex of F_{i-1} and $p_i(h_i) = \ell_i$. Let F_i be the forest obtained from F_{i-1} by attaching the path p_i. Then let
\[
v(F) = (v_1, \ldots, v_{n-1}) = (p_1(1), \ldots, p_1(h_1-1), p_2(1), \ldots, p_1(h_2-1), \ldots, p_{r+1}(1), \ldots, p_{r+1}(h_{r+1}-1)).
\]

It is straightforward to see that $v(F_S(v)) = v$, so the construction is bijective. It follows that
\[
|\mathcal{F}_n^S| = |\{v = (v_1, \ldots, v_{n-k}) \in [n]^{n-k} : v_1 \in S\}| = kn^{n-k-1}.
\]

1.3 Global structure: The line-breaking construction

In this section, the construction of the sequence of trees t_0, \ldots, t_{r+1} arising in the bijection from Theorem 1.2.1 is important, and it’s useful to give ourselves a bit more notation.

For a tree $t = (V, E)$ and a set $S \subset V$, write $t(S)$ for the smallest subtree of t containing the root and all elements of S; equivalently, this tree is the union $\bigcup_{u \in S} [p, u]$.

Then the sequence of trees from Theorem 1.2.1 can be expressed as $t_i = t(\{\ell_1, \ldots, \ell_i\})$. Also, for $v \in t$ write $a(v, S)$ for the node w of S which minimizes $\text{dist}(v, w)$; this node is unique since t is a tree.

In what follows, we use the “falling factorial” notation $(m)_i = m(m-1) \cdots (m-i+1)$.

Proposition 1.3.1. Let $T_n \in \mathcal{T}_n$, and list the leaves of T_n in increasing order of label as $\ell_1, \ldots, \ell_{r+1}$ and set $\ell_m = \rho(T_n)$ for $m > r+1$. For $i \geq 1$ write $D_{n,i}$ for the graph distance from ℓ_i to $T_n(\ell_1, \ldots, \ell_i-1)$. Then for any positive integers $k \in [n-1]$ and g_1, \ldots, g_k,

\[
P \{D_{n,i} = g_i, 1 \leq i \leq k\} = \frac{(n)_{g_1 + \cdots + g_k - (k-1)}}{n^{g_1 + \cdots + g_k}} \prod_{j=1}^{k} (g_1 + \cdots + g_j - (j-1)).
\]

Falling factorial notation.

Implicit in the next probability is the requirement that T has at least k leaves, though our convention about the value of ℓ_m for $m > r+1$ makes the formula hold for all values of k, even $k > r+1$.

\[\text{Proposition 1.3.1.} \quad \text{Let } T_n \in \mathcal{T}_n, \text{ and list the leaves of } T_n \text{ in increasing order of label as } \ell_1, \ldots, \ell_{r+1} \text{ and set } \ell_m = \rho(T_n) \text{ for } m > r+1. \text{ For } i \geq 1 \text{ write } D_{n,i} \text{ for the graph distance from } \ell_i \text{ to } T_n(\ell_1, \ldots, \ell_{i-1}). \text{ Then for any positive integers } k \in [n-1] \text{ and } g_1, \ldots, g_k,^5
\]

\[
P \{D_{n,i} = g_i, 1 \leq i \leq k\} = \frac{(n)_{g_1 + \cdots + g_k - (k-1)}}{n^{g_1 + \cdots + g_k}} \prod_{j=1}^{k} (g_1 + \cdots + g_j - (j-1)).
\]

\[\text{Falling factorial notation.}\]

\[^5\text{t}(S): \text{ the subtree of } t \text{ spanned by the root and the vertices in } S\]
Moreover, for each $1 \leq i \leq r + 1$, the node $\alpha(\ell, T_n(\ell_1, \ldots, \ell_{i-1}))$ is a uniformly random non-leaf vertex of $T_n(\ell_1, \ldots, \ell_{i-1})$.

Proof. Let $V = (V_1, \ldots, V_{n-1}) = v(T)$, so that $V \in_u [n]^{n-1}$ and $T = T(V) \in_u \mathcal{B}_n$. Then in order to have $D_{n,j} = g_j$ for each $1 \leq j \leq k$, it must be that $i(j) = 1 + g_1 + \ldots + g_j$ for each $1 \leq j \leq k$. In turn, for this to occur, it must be that

$$V_1, \ldots, V_{g_1}, V_{g_1+2}, \ldots, V_{g_1+g_2}, V_{g_1+g_2+2}, \ldots, V_{g_1+g_2+g_3}, \ldots, V_{g_1+\ldots+g_{k-1}+2}, \ldots, V_{g_1+\ldots+g_k}$$

are all distinct (call this event A), and that

$$V_{g_1+1} \in \{V_1, \ldots, V_{g_1}\}, V_{g_1+g_2+1} \in \{V_1, \ldots, V_{g_1+g_2}\}, \ldots, V_{g_1+\ldots+g_k+1} \in \{V_1, \ldots, V_{g_1+\ldots+g_k}\};$$

call this event B.

The event A is that $g_1 + g_2 + \ldots + g_k - (k - 1)$ independent random variables, uniformly distributed on $[n]$, are all distinct, so has probability

$$P \{A\} = \prod_{j=1}^{g_1+\ldots+g_k-(k-1)} \frac{n - (j - 1)}{n} = \frac{(n)_{g_1+\ldots+g_k-(k-1)}}{n^{g_1+\ldots+g_k-(k-1)}}.$$

To work out the probability of the second event we need to split into sub-events. For $1 \leq j \leq k$ write B_j for the event that

$$V_{g_1+\ldots+g_j+1} \in \{V_1, \ldots, V_{g_1+\ldots+g_j}\}.$$

Given that A occurs and that B_1, \ldots, B_{j-1} occur, there are $j - 1$ repetitions in the set

$$\{V_1, \ldots, V_{g_1+\ldots+g_j}\},$$

and so $g_1 + \ldots + g_j - (j - 1)$ distinct values in that set. It follows that

$$P \{B_j \mid A \cap B_1 \cap \ldots \cap B_{j-1}\} = \frac{g_1 + \ldots + g_j - (j - 1)}{n}.$$

Since $B = \bigcap_{j=1}^{k} B_j$, it follows that

$$P \{B \mid A\} = \prod_{j=1}^{k} P \{B_j \mid A \cap B_1 \cap \ldots \cap B_{j-1}\}$$

$$= \prod_{j=1}^{k} \frac{g_1 + \ldots + g_j - (j - 1)}{n}.$$
Combining the formulas for $P\{A\}$ and $P\{B \mid A\}$ gives the identity in the proposition.

Moreover, given that A and B occur, $a(\ell, T_n(\ell_1, \ldots, \ell_{i-1})) = V_{g^1+\ldots+g^{i-1}}$, and the conditioning precisely tells us that $V_{g^1+\ldots+g^{i-1}}$ is an element of $\{V_1, \ldots, V_{g^1+\ldots+g^{i-1}}\}$, which is the set of non-leaf vertices of the tree $T_n(\ell_1, \ldots, \ell_{i-1})$. A uniform random variable conditioned to lie in a particular set is uniform on that set, so $a(\ell, T_n(\ell_1, \ldots, \ell_{i-1}))$ is uniformly distributed over $T_n(\ell_1, \ldots, \ell_{i-1})$. \hfill \square

Proposition 1.3.1 yields a distributional limit theorem for the vector of distances $(D_{n,i}, i \geq 1)$.

Corollary 1.3.2. Fix $k \geq 1$ and let $D = (D_1, \ldots, D_k)$ be a random vector with density

$$f_D(c_1, \ldots, c_k) = \exp\left(-\frac{(c_1 + \ldots + c_k)^2}{2}\right) \prod_{j=1}^{k}(c_1 + \ldots + c_j).$$

Then $(n^{-1/2}D_{n,1}, \ldots, n^{-1/2}D_{n,k}) \xrightarrow{d} D$, as $n \to \infty$.

Proof. Fix any positive integer k and any positive real values c_1, \ldots, c_k, and write $c = c_1 + \ldots + c_k$. Then

$$\frac{n}{c^{1/2}} = \left[\frac{cn^{1/2}}{c^{1/2}}\right] = \prod_{j=1}^{k}\left(1 - \frac{j-1}{n}\right) = (1 + o(1)) \exp\left(-\frac{c^2}{2n}\right)$$

The formula from Proposition 1.3.1 then gives that

$$P\left\{D_{n,i} = \left[c_i n^{1/2}\right], 1 \leq i \leq k\right\} = (1 + o(1)) \exp\left(-\frac{c^2}{2}\right) \frac{1}{n^{k/2}} \prod_{j=1}^{k}(c_1 + \ldots + c_j)
= (1 + o(1)) \exp\left(-\frac{(c_1 + \ldots + c_k)^2}{2}\right) \frac{1}{n^{k/2}} \prod_{j=1}^{k}(c_1 + \ldots + c_j)
= \frac{1 + o(1)}{n^{k/2}} f_D(c_1, \ldots, c_k).$$

It follows that for any rectangle $R = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_k, b_k]$,

$$P\left\{\left(n^{-1/2}D_{n,1}, \ldots, n^{-1/2}D_{n,k}\right) \in R\right\} = (1 + o(1)) \int_R f_D(c_1, \ldots, c_k),$$

which implies convergence in distribution. \hfill \square

Corollary 1.3.3. For $i \geq 1$ let $J_{n,i}$ be the index of $a(\ell, T_n(\ell_1, \ldots, \ell_{i-1}))$ in $V(T)$, so $a(\ell, T_n(\ell_1, \ldots, \ell_{i-1})) = V_{J_{n,i}}$. Then jointly with the convergence in Corollary 1.3.2, we have

$$(n^{-1/2}J_{n,i}, 1 \leq i \leq k) \xrightarrow{d} ((D_1 + \ldots + D_{i-1})U_i, 1 \leq i \leq k),$$

where $(U_i, i \geq 1)$ are independent Uniform[0,1], independent of D.

7 Exercise: if $k = k(n) = O(n^{1/2})$ then $\prod_{j=1}^{k}(1 - (j-1)/n) = (1 + o(1))e^{-k^2/2}$.
The non-leaf vertices of $T_n(\ell_1, \ldots, \ell_{i-1})$ are
\[\{V_i, 1 \leq i \leq D_{n,1} + \ldots + D_{n,i-1} - (i-2) \} \setminus \{V_{D_{n,1}+1}, V_{D_{n,1}+D_{n,2}+1}, \ldots, V_{D_{n,1}+\ldots+D_{n,i-2}+1} \} . \]

There are thus $D_{n,1} + \ldots + D_{n,i-1} - (i-2)$ vertices in $T_n(\ell_1, \ldots, \ell_{i-1})$, and by the theorem, J_n is uniformly distributed among their indices. The claimed convergence in distribution then follows from that in Corollary 1.3.2. \hfill \Box

The preceding corollaries can be beautifully recast using the language of Poisson point processes. Let P be a Poisson process on $[0, \infty)$ with rate $\lambda(x) = x$. List the points of P in increasing order as $(P_i, i \geq 1)$. Set $P_0 = 0$ and for $i \geq 1$ let $D_i = P_i - P_{i-1}$. Then the function
\[f(p_1, \ldots, p_k)(p_1, \ldots, p_k) = \begin{cases} 1_{[p_1 < p_2 < \ldots < p_k]} \cdot \exp \left(-\frac{p_k^2}{2} \right) \prod_{i=1}^k p_i, & \text{is a joint density for } P_1, \ldots, P_k. \end{cases} \]

Considering the change of variables $D_i = P_i - P_{i-1}$, writing $c_i = p_i - p_{i-1}$, we have
\[f(D_1, \ldots, D_k) (c_1, \ldots, c_k) = f(p_1, \ldots, p_k)(p_1, \ldots, p_k) \]
\[= 1_{[p_1 < p_2 < \ldots < p_k]} \cdot \exp \left(-\frac{p_k^2}{2} \right) \prod_{i=1}^k p_i \]
\[= 1_{[c_1, \ldots, c_k > 0]} \exp -\frac{(c_1 + \ldots + c_k)^2}{2} \prod_{i=1}^k (c_1 + \ldots + c_i) . \]

In view of this calculation, Corollary 1.3.2 states that the branch lengths in the bijective construction of T_n given by the proof of Cayley’s formula are asymptotically distributed like the inter-arrival times in a Poisson process on $[0, \infty)$ with rate $\lambda(x) = x$.

Since Corollary 1.3.3 adds that the attachment location of the i’th branch is asymptotically uniform over the tree $T_n(\ell_1, \ldots, \ell_{i-1})$, this means we can construct a tree which is the “distributional limit” of $T_n(\ell_1, \ldots, \ell_k)$ from the Poisson point process as follows. Let $(U_i, i \geq 1)$ be independent Uniform$[0, 1]$ random variables, independent of the Poisson process P. Then, starting from the line segments $([P_{i-1}, P_i], 1 \leq i \leq k)$ identify the left endpoint P_{i-1} of the segment $[P_{i-1}, P_i]$ with the point $P_{i-1}U_i$.

It is a bit ambiguous what we mean by the “distributional limit” of $T_n(\ell_1, \ldots, \ell_k)$. One way to give sense to this is to simply consider matrices of pairwise distances between leaves; this perspective is developed in the next exercise.

Exercise 1.3.1. Fix $k \geq 1$. For $n \geq 1$ let $T_n \subset \mathcal{T}_n$, and for $i, j \geq 1$ let $d_n(\ell_i, \ell_j)$ be the distance between ℓ_i and ℓ_j in T_n.

\[A \text{ Poisson process on } \mathbb{R}^d \text{ with rate function } \lambda : \mathbb{R} \rightarrow [0, \infty) \text{ is characterized by two facts. First, for any rectangle } R \subset \mathbb{R}^d, \text{ the number of points } N(R) \text{ of } P \text{ falling in } R \text{ is Poisson}(\int_R f(x)dx)\text{-distributed. Second, for any } k \in \mathbb{N} \text{ and any disjoint rectangles } R_1, \ldots, R_k, \text{ the random variables } (N(R_i), 1 \leq i \leq k) \text{ are mutually independent.} \]
(a) Show that the matrix \((n^{-1/2}d_n(\ell_i, \ell_j), 1 \leq i, j \leq k)\) converges in distribution, and describe the limit in terms of the Poisson process \(P\) and the uniform random variables \((U_i, 1 \leq i \leq k)\) given above.

(b) Show that the same convergence in distribution holds if \(\ell_1, \ldots, \ell_k\) are replaced by a sequence \(L_1, \ldots, L_k\) of independent uniformly random samples from the leaf set of \(T_n\). (Suggestion: since randomly permuting the leaf labels does not change the distribution of \(T_n\), the main step is to show that with high probability \(L_1, \ldots, L_k\) are all distinct.)

For the next exercises, we need the notion of the shape of a tree. First, by a leaf-labeled tree we mean a rooted tree \(t\) whose leaves are labeled by \(\{1, \ldots, k\}\), where \(k\) is the total number of leaves, and internal nodes are unlabeled.

Given a labeled rooted tree \(t\) with leaves \(\ell_1, \ldots, \ell_k\), the shape of \(t\) is the leaf-labeled rooted tree shape \((t)\) obtained from \(t\) as follows.

1. replace each maximal path containing no internal branch points by an edge.
2. relabel leaves \(\ell_1, \ldots, \ell_k\) as \(1, \ldots, k\).
3. remove the labels of all non-leaf vertices.

For each edge \(e\) of shape\((t)\), we define the length \(\text{len}(e) = \text{len}(e; t)\) to be the number of edges of the path in \(t\) which gives rise to edge \(e\) in shape\((t)\).

Exercise 1.3.2. A leaf-labeled tree is binary if the root has exactly one child and all other non-leaf vertices have exactly two children. Show that the number of binary leaf-labeled trees with \(k\) leaves is

\[
(2k - 3)!! := (2k - 3) \cdot (2k - 5) \cdot \ldots \cdot 3 \cdot 1 = \frac{(2k - 2)!}{(k - 1)!2^{k-1}}.
\]

Let

\[
\Delta_n = \left\{ x = (x_1, x_2, \ldots, x_n) : \sum_{j=1}^n x_j = 1, x_j > 0, 1 \leq j \leq n \right\}
\]

be the \((n - 1)\)-dimensional simplex. For \((a_1, \ldots, a_n) \in \Delta_n\), the Dirichlet\((a_1, a_2, \ldots, a_n)\) distribution on \(\Delta_n\) has density

\[
\frac{\Gamma(a_1 + a_2 + \cdots + a_n)}{\Gamma(a_1)\Gamma(a_2)\cdots\Gamma(a_n)} \prod_{j=1}^n x_j^{a_j - 1},
\]

with respect to \((n - 1)\)-dimensional Lebesgue measure \(\Lambda_{n-1}\), where

\[
\Gamma(a) = \int_0^\infty s^{a-1}e^{-s}ds.
\]
Exercise 1.3.3.

(a) Show that if G_1, \ldots, G_m are independent and G_i is Gamma$(\alpha_i, 1)$-distributed for $1 \leq i \leq m$, and $G = E_1 + \ldots + E_m$, then $(\frac{G_i}{G}, 1 \leq G \leq m)$ is Dirichlet$(\alpha_1, \ldots, \alpha_m)$-distributed and is independent of G.

(b) Show that if (X_1, \ldots, X_m) is Dirichlet$(\alpha_1, \ldots, \alpha_m)$-distributed then $(X_1, \ldots, X_{m-2}, X_{m-1} + X_m)$ is Dirichlet$(\alpha_1, \ldots, \alpha_{m-2}, \alpha_{m-1} + \alpha_m)$-distributed.

(c) Let (Y_1, \ldots, Y_m) be a Dirichlet$(1,1,\ldots,1)$ vector, and let I be the index of a size-biased pick from Y_1, \ldots, Y_m, so

$$P\{I = i \mid Y_1, \ldots, Y_m\} = \frac{Y_i}{Y_1 + \ldots + Y_m}.$$

Relabel $(Y_i, i \in [m] \setminus \{I\})$ as $(Y^*_1, \ldots, Y^*_{m-1})$. Then $(Y^*_1, \ldots, Y^*_{m-1}, Y_I) \overset{d}{=} \text{Dirichlet}(1,1,\ldots,1,2)$.

(d) Let U be Uniform$[0,1]$ be independent of Y_1, \ldots, Y_m and of I. Show that

$$(Y_1, \ldots, Y_{m-1}, U Y_I, (1-U) Y_I)$$

is Dirichlet$(1,1,\ldots,1)$-distributed.

Write $\mathcal{S}(k)$ for the set of pairs $(t, (x(e), e \in E(t)))$, where t is a binary leaf-labeled tree with k leaves and $(x(e), e \in E(t)) \in [0,\infty)^{E(t)}$ assigns non-negative lengths to the $2k-1$ edges of t.

Exercise 1.3.4.

(a) Show that for any $k \geq 1$, $(\frac{P_k}{P_{k+1}}, \frac{P_{k+1}-P_k}{P_{k+1}})$ is Dirichlet$(2k,1)$-distributed and is independent of P_{k+1}.

(b) Let $T_n \in \mathcal{T}_n$. Show that for any $k \geq 1$, writing $T_{n,k} = T_n(\ell_1, \ldots, \ell_k)$ for the subtree of T_n spanned by the root and the k smallest-labeled vertices, then

$$(\text{shape}(T_{n,k}), (\text{len}(e), e \in \text{shape}(T_{n,k}))) \overset{d}{=} (T_k, (X(e), e \in E(T_k))),$$

where $(T_k, (X(e), e \in E(T_k)))$ is a random element of $\mathcal{S}(k)$ with density

$$f(t, (x(e), e \in E(T))) = \sum_{e \in E(T)} x(e) \exp \left(-\left(\sum_{e \in E(T)} x(e) \right)^2 / 2 \right).$$

In part (b) of the exercise, the description of $(T_k, (X(e), e \in E(T_k)))$ can be rephrased as follows. Fix any ordering (X_1, \ldots, X_{2k-1}) of $(X(e), e \in E(T_k))$. Then T_k is independent of (X_1, \ldots, X_{2k-1}), and

$$(X_1, \ldots, X_{2k-1}) \overset{d}{=} G \cdot (Y_1, \ldots, Y_{2k-1}),$$

where G has density

$$\frac{1}{2^{k-1}(k-1)!} x^{2k-1} e^{-x^2/2} 1_{[x \geq 0]},$$

(1.3.1)
and (Y_1, \ldots, Y_{2k-1}) is Dirichlet$(1, 1, \ldots, 1)$-distributed and is independent of G.

Exercise 1.3.5. Show that for $\ell \geq 0$, if H is Gamma$((\ell + 1)/2, 1/2)$-distributed then $G = \sqrt{H}$ has density

$$
\frac{1}{2^{(\ell-1)/2} \Gamma((\ell+1)/2)} x^{\ell} e^{-x^2/2} \mathbf{1}_{[x \geq 0]}.
$$

1.4 Local structure

For a node v in a rooted tree $t = (V, E, \rho)$, write t^\uparrow_v for the subtree of t rooted at v. The nodes of t^\uparrow_v are precisely the nodes w for which $v \in [\rho, w]$.

The next proposition describes the distribution of the subtree rooted at a typical node in a uniformly random tree.

Proposition 1.4.1. Let $T \in_u T_n$. Then for any $v \in [n]$ and any $1 \leq k \leq n$,

$$
P \left\{ |T^\uparrow_v| = k \right\} = \frac{k^{k-1}}{k!} \binom{n-k}{n} \frac{(n-1)^{k-1}}{n^{k-1}}.
$$

Moreover, the vertex set of T^\uparrow_v, excluding v, is a uniformly random subset of $[n] \setminus \{v\}$ conditional on its size, and T^\uparrow_v is a uniformly random tree rooted at v conditional on its vertex set.

Proof. Let

$$
\mathcal{T}_n(v, k) = \{ t \in \mathcal{T}_n : |t^\uparrow_v| = k \}.
$$

We may describe a tree t in $\mathcal{T}_n(v, k)$ in four steps.

1. Specify the vertex set of t^\uparrow_v.
2. Specify the tree t^\uparrow_v.
3. Specify the tree $t - t^\uparrow_v$ obtained by removing t^\uparrow_v from t.
4. Specify the parent of v in t^\uparrow_v.

In order to have $t \in \mathcal{T}_n(v, k)$, the vertex set of t^\uparrow_v must consist of v and $k - 1$ other vertices, so there are $\binom{n-1}{k-1}$ choices for the first step.

Having chosen the vertex set of t^\uparrow_v, there are then k^{k-2} possibilities for t^\uparrow_v by Cayley’s formula (note that the root of t^\uparrow_v is always v).

Finally, having chosen the vertex set of t^\uparrow_v, then there are $(n-k)^{k-1}$ choices for the tree $t - t^\uparrow_v$, and $(n-k)$ choices for the parent of v in $t - t^\uparrow_v$.

It follows that

$$
|\mathcal{T}_n(v, k)| = \binom{n-1}{k-1} k^{k-2} (n-k)^{n-k}.
$$
The first equality asserted in the proposition follows by Cayley’s formula since $P\left\{ |t_v^t| = k \right\} = |T_n(v,k)|/|T_n|$ and since

$$\frac{1}{n^{n-1}} (n-1) k^{k-2} (n-k)^{n-k} = \frac{k^{k-1}}{k!} \left(\frac{n-k}{n} \right)^{n-k} \frac{(n-1)_{k-1}}{n^{k-1}}.$$

For the remaining assertions of the proposition, if rather than requiring only that $|t_v^t| = k$, we require that $t_v^t = t$ for a specific tree t with k vertices and root v, then to fully describe t we need only specify $t - t_v^t$ and the parent of v in $t - t_v^t$. Thus, the number of trees $t \in T_n$ with $t_v^t = t$ is

$$|\{ t \in T_n : t_v^t = t \}| = (n-|t|) \cdot (n-|t|)^{n-|t|-1} = (n-k)^{n-k}.$$

The other assertions follow since this quantity depends on t only through its size.

Corollary 1.4.2. Let $T \in u T_n$. Then for fixed k, as $n \to \infty$, for any $v \in [n]$, \[P\left\{ |T_v^t| = k \right\} = (1 + o(1)) \frac{k^{k-1} e^{-k}}{k!}. \]

Proof. This is immediate from the proposition since $(n-k)^{n-k} = (1 + o(1)) e^{-k}$ and $(n-1)_{k-1}/n^{k-1} = 1 + o(1).$ \[\]

It is not obvious that

$$\sum_{k \geq 1} \frac{k^{k-1} e^{-k}}{k!} = 1,$$ \hspace{1cm} (1.4.1)

so that the expression on the right-hand side of the display in Corollary 1.4.2 defines a probability distribution, but this is in fact the case. The distribution is called the Borel distribution with parameter 1, or the Borel(1) distribution for short, so Corollary 1.4.2 says that $|T_v^t|$ converges in distribution to a Borel(1) random variable.

In fact, the Borel(1) distribution is the distribution of the total number of individuals in a Poisson(1) branching process, which is finite almost surely.\[\]

Exercise 1.4.1. Let $T \in u T_n$. Show that for any fixed $i \in \mathbb{N}$, as $n \to \infty$, the vector $\{ |T_j^t|, 1 \leq j \leq i \}$ converges in distribution to a vector of independent Borel(1) random variables. In other words, for any fixed positive integers n_1, \ldots, n_i

$$P\left\{ |T_j^t| = n_j, 1 \leq j \leq i \right\} \to \prod_{j=1}^{i} \frac{n_j^{n_j-1} e^{-n_j}}{n_j!}$$

as $n \to \infty.$

\[^{10} \text{Elaborate on this, here or later...} \]
Exercise 1.4.2. Fix \(n \in \mathbb{N} \), let \(T \in u \mathcal{T}_n \) and let \(L \) be the smallest-labeled leaf of \(T \). Let \(W \in u [n] \) be independent of \(T_n \). Write \(p(n) = P \{ L \in T^+_W \} \). Show that \(p(n) \to 0 \) as \(n \to \infty \).

We can use the distribution of a random subtree to understand the structure of the random tree \(T \in u \mathcal{T}_n \) close to the root.

Proposition 1.4.3. Fix any integer \(k \geq 1 \). Let \(V \in u [n]^{n-1} \) and let \(T = T(V) \). For \(1 \leq i < k \) let \(T^*_V \) be the subtree of \(T \) consisting of descendants of \(V_i \) which are not descendants of \(V_{i+1} \). Then as \(n \to \infty \), the trees \(\{ T^*_V, 1 \leq i < k \} \) are independent uniformly random trees conditional on their vertex sets and the labels of their roots. Moreover, their sizes \(\{ |T^*_V|, 1 \leq i < k \} \) are asymptotically independent and Borel(1)-distributed.

Proof. The fact that \(T^*_V, \ldots, T^*_V \) are independent uniformly random trees conditional on their vertex sets and the labels \(V_1, \ldots, V_k \) of their roots is immediate from the fact that \(T \) is a uniformly random tree.

We thus focus on proving that the sizes \(\{ |T^*_V|, 1 \leq i < k \} \) are asymptotically independent and Borel(1)-distributed.

Let \(\hat{T} \in u \mathcal{T}_n \), let \(W \in u [n] \) be independent of \(\hat{T} \), and let \(T \) be obtained from \(\hat{T} \) by rerooting at vertex \(W \); then \(T \in u \mathcal{T}_n \) as well.

Now write \(V = (V_1, \ldots, V_{n-1}) = v(T) \), and note that \(W = V_1 \). Then \(T^*_V = T^*_W = \hat{T}^*_W \) unless the smallest labeled leaf \(\hat{L} \) of \(\hat{T} \) is in \(\hat{T}^*_W \). For any \(n_1 \geq 1 \) we have

\[
P \{ |T^*_V| = n_1 \} = P \{ |T^*_V| = n_1, \hat{L} \notin \hat{T}^*_W \} + P \{ |T^*_V| = n_1, \hat{L} \in \hat{T}^*_W \}
= P \{ |T^*_W| = n_1, \hat{L} \notin \hat{T}^*_W \} + P \{ |T^*_V| = n_1, \hat{L} \in \hat{T}^*_W \}
= P \{ |T^*_W| = n_1 \} - P \{ |T^*_W| = n_1, \hat{L} \in \hat{T}^*_W \} + P \{ |T^*_V| = n_1, \hat{L} \in \hat{T}^*_W \}
\]

so

\[
|P \{ |T^*_V| = n_1 \} - P \{ |T^*_W| = n_1 \}| \leq P \{ \hat{L} \in \hat{T}^*_W \}.
\]

It follows by Exercise 1.4.2 that

\[
|P \{ |T^*_V| = n_1 \} - P \{ |T^*_W| = k \}| \to 0
\]

as \(n \to \infty \); by Corollary 1.4.2 and since \(W \) is independent of \(\hat{T} \), it follows that \(|T^*_V| \) is asymptotically Borel(1)-distributed.

For \(k > 1 \), we argue by induction. Let \(n' = n - |T^*_V| \), let \(T' = T^*_{V_2} \) and let \(V' = (V_1', \ldots, V_{n'}') = v(T') \). If \(V_1, \ldots, V_k \) are all distinct, then \((V_1', \ldots, V_{k-1}') = (V_2, \ldots, V_k) \) and

\[
(T^*_{V_2}, \ldots, T^*_{V_k}) = (T^*_{V_1'}, \ldots, T^*_{V_{k-1}'})
\]
Writing E for the event that V_1, \ldots, V_k are all distinct, then for any integers $n_2, \ldots, n_k \geq 1$,
\[
\left| \Pr \left(\left| T_{V_2}^* \right|, \ldots, \left| T_{V_k}^* \right| = (n_2, \ldots, n_k) \mid \left| T_{V_1}^* \right| = n_1 \right) \right| - \Pr \left(\left| T_{V_1}^* \right|, \ldots, \left| T_{V_{k-1}}^* \right| = (n_2, \ldots, n_k) \mid \left| T_{V_1}^* \right| = n_1 \right) \\
\leq \Pr \left(E^c \mid \left| T_{V_1}^* \right| = n_1 \right) \to 0
\]
as $n \to \infty$, since $\Pr \{ E \} \to 0$ and $\Pr \{ \left| T_{V_1}^* \right| = n_1 \}$ is bounded away from zero.

Now, for any fixed integer $n_1 \geq 1$, conditionally given that $\left| T_{V_1}^* \right| = n_1$, we have $n' = n - \left| T_{V_1}^* \right| \to \infty$ as $n \to \infty$, so it follows by induction that under this conditioning, $(\left| T_{V_1'}^* \right|, \ldots, \left| T_{V_{k-1}}^* \right|)$ are asymptotically independent and Borel(1)-distributed:
\[
\Pr \left(\left| T_{V_1'}^* \right|, \ldots, \left| T_{V_{k-1}}^* \right| = (n_2, \ldots, n_k) \mid \left| T_{V_1}^* \right| = n_1 \right) \to \prod_{j=2}^{k} \frac{n_j^{n_j-1} e^{-n_j}}{n_j!}.
\]
This completes the inductive step and the proof. \hfill \Box

Exercise 1.4.3. Let $T \in u \mathcal{T}_n$ and let $(V_1, \ldots, V_n) = v(T)$. List the children of V_1 in increasing order of label as U_1, \ldots, U_C. Show that for any fixed integers $1 \leq b \leq c$,
\[
\Pr \{ C = c, V_2 = U_b \} \to \frac{1}{e c!}
\]
as $n \to \infty$. (Suggestion: use Proposition 1.2.3 to estimate the degree of V_1, and argue that V_2 is asymptotically a uniformly random child of V_1.)

The above proposition describes the local structure of a large, uniformly random tree near its root - it consists of a long path (an infinite path in the $n \to \infty$ limit) of independent uniformly random Borel(1)-sized trees. Exercise 1.4.3 additionally tells us that if we order the children of each node from left to right in increasing order of label, then for each node on the infinite path, the child through which the infinite path continues is uniformly random. This structure was described (in slightly different but essentially equivalent ways by Kennedy\footnote{https://doi.org/10.2307/3212730} and by Grimmett (1980)\footnote{https://tinyurl.com/grimmett1980}.)

1.5 Connected graphs beyond trees

The bijections developed above may also be used to understand the global structure of connected graphs which contain cycles. For this section it’s sometimes useful to allow multigraphs, which are graphs which may have multiple edges between vertices, and may also have
loop edges. For a multigraph $G = (V, E)$ and an edge $e \in E$, we write $\text{mult}(e) = \text{mult}(e; G)$ for the number of copies (the multiplicity) of e in G. However, “graph” means “simple graph”, unless otherwise stated.

The **surplus** of a connected multigraph $G = (V, E)$ is the integer $s(G) := 1 + |E| - |V|$, which is the number of edges more than a tree that G has. The goal of this section is to describe the global structure of random connected graphs with large size and with a fixed surplus.

We define a **core** to be a connected graph C with minimum degree 2. Given a connected graph G, the **core of G**, denoted $C(G)$, is the maximum induced subgraph of G with minimum degree 2.

Exercise 1.5.1. The core of a connected graph is unique.

Fix a core C with $V(C) \subseteq [n]$, and write $k = |V(C)|$. There is a natural bijection between the set of graphs G with $V(G) = [n]$ and $C(G) = C$, and the set of forests $|\mathcal{F}_n^{V(C)}|$: given such a graph G, form a forest in $\mathcal{F}_n^{V(C)}$ by removing all edges of C, and rooting each connected component of the resulting graph at its unique element of $V(C)$. Conversely, given a forest F in $\mathcal{F}_n^{V(C)}$, one may form a graph G with $V(G) = [n]$ and $C(G) = C$ by identifying the root of each tree of F with the vertex of C possessing the same label. It follows that

$$|\{\text{Graphs } G : V(G) = [n], C(G) = C\}| = kn^{n-k-1},$$

The **kernel** of a connected graph G is the multigraph $K(G)$ obtained from the core $C(G)$ by replacing all maximal length paths all of whose internal vertices have degree 2 by edges. Note that $K(G)$ can have multiple edges and loops (and multiple edges which are loops).

An important point is that for any graph G, the surplus of G, of $C(G)$ and of $K(G)$ are all equal. This can be seen as follows: $C(G)$ can be obtained from G by repeatedly removing leaves (degree-one vertices), and this does not change the surplus. Then, when replacing a path of degree 2 vertices by a single edge, the number of vertices removed is equal to the number of edges removed, so again the surplus does not change.

Suppose C is a core with vertex set $V(C) = V \subseteq \mathbb{N}$, and let $K = K(C)$ be its kernel. List the edges of K in lexicographic order as $e(1), \ldots, e(m)$, with $e(m) = (u(m), v(m))$ and $u(m) \leq v(m)$. (Each edge e appears in this list a number of times equal to its $\text{mult}(e; K)$.) Write $P(i)$ for the path between $u(i)$ and $v(i)$ in C which is replaced by the edge $e(i)$ in K, excluding its endpoints.13 Then C may be recovered from the kernel K together with the paths $(P(i), 1 \leq i \leq m)$.

The reconstruction of C from K and the paths $P(1), \ldots, P(m)$ is almost unique, but not quite. Note that if $e \in E(K)$ has multiplicity

13This means that if $e(i)$ is actually an edge of C then $P(i)$ is empty; otherwise it is non-empty. Note that only one copy of an edge can have an empty path, since C is simple.
In this expression, the sum is over valid m-tuples of (possibly empty) paths (P_1, \ldots, P_m) with disjoint vertex sets whose union is $V \setminus V(K)$.

Proposition 1.5.1. Fix a kernel K with vertex set $[k]$ and with m edges. Then as $\ell \to \infty$, the number of cores C with $V(C) = [\ell]$ and with $K(C) = K$ is

$$
(1 + o(1)) \prod_{e \in E(K)} 2^{-\text{mult}(e;K)} \frac{2^{\text{mult}(e;K)} \cdot (\ell-k)! (\ell-k+1)^{m-1}}{(m-1)!}.
$$

Proof. By (1.5.1), it suffices to show that the number of valid m-tuples with disjoint vertex sets whose union is $[\ell] \setminus [k]$ is

$$
(1 + o(1)) \frac{(\ell-k)! (\ell-k+1)^{m-1}}{(m-1)!}.
$$

We may form such an m-tuple (P_1, \ldots, P_m) as follows.

1. Choose an ordering $(s_1, \ldots, s_{\ell-k})$ of $[\ell] \setminus [k]$
2. Choose $(i_1, \ldots, i_{m-1}) \in [\ell-k+1]^{m-1}$
3. List (i_1, \ldots, i_{m-1}) in non-decreasing order as $(i(1), \ldots, i(m-1))$; set $i(0) = 1$ and $i(m) = \ell-k+1$.
4. For $1 \leq j \leq m$, let $P_i = s_{i(j-1)}^i, s_{i(j-1)+1}^i, \ldots, s_{i(j)}^i$.\footnote{If $i(j-1) = i(j)$ then P_i is empty.}

Note that if i_1, \ldots, i_{m-1} are all distinct and all belong to $2, \ldots, \ell+k$, then P_1, \ldots, P_m are all non-empty, so (P_1, \ldots, P_m) is valid. Therefore, if ℓ is large and i_1, \ldots, i_k are independent, uniform samples from $[\ell-k]$, then with high probability P_1, \ldots, P_m is valid.

If i_1, \ldots, i_{m-1} are all distinct, then there are $(m-1)!$ different orderings of i_1, \ldots, i_{m-1}, and each yields the same non-decreasing reordering $(i(1), \ldots, i(m-1))$. This implies that the expression in the proposition is a lower bound on the number of cores C with $V(C) = [\ell]$ and $K(C) = K$.

Finally, the number of choices of $(i_1, \ldots, i_{m-1}) \in [\ell-k+1]^{m-1}$ with at least two of i_1, \ldots, i_{m-1} taking the same value is $O((\ell-k+1)^{m-1})$.

\footnote{By saying (P_1, \ldots, P_m) is valid, we mean that (a) for any $1 \leq i < j \leq m$ such that $e(i), \ldots, e(j)$ are copies of the same edge, at most one of P_i, \ldots, P_j is empty, and (b) for any $1 \leq i \leq m$, if $e(i)$ is a loop then P_i is non-empty. This ensures that the reconstruction results in a simple graph.}

For fixed k as $\ell \to \infty$ we have $\ell - k + 1 = (1 + o(1))\ell$ which could be used to simplify the proposition. This simplification is used later in a corollary, but no reason not to use it here.
so \(m \)-tuples with at least one empty path contribute a lower-order term to the overall count. It follows that the number of valid \(m \)-tuples \((P_1, \ldots, P_m)\) with disjoint vertex sets whose union is \([\ell] \setminus [k]\) is \((1 + o(1))(\ell - k)!(\ell - k + 1)^m / (m - 1)!\), as required.

For positive integers \(n \) and \(s \), write \(\mathcal{G}_{n,s} \) for the set of connected graphs with vertex set \([n]\) and with surplus \(s \).

Corollary 1.5.2. Fix \(s \geq 2 \), and let \(C \) be a uniformly random core with \(V(C) = [\ell] \) and surplus \(s(C) = s \). Then as \(\ell \to \infty \), with high probability \(K(C) \) is a 3-regular multigraph with \(2(s - 1) \) vertices and \(3s - 2 \) edges, and for any fixed such multigraph \(K \),

\[
P \{ K(C) = K \} \propto \prod_{e \in E(K)} \frac{2^{-\text{mult}(e; K)}}{\text{mult}(e; K)!}.
\]

Proof. Any kernel \(K \) has minimum degree 3, and so has \(|E(K)| \geq 3|V(K)|/2 \) and surplus

\[
1 + |E(K)| - |V(K)| \geq 1 + |V(K)|/2.
\]

It follows that if \(K \) has surplus \(s \) then \(|V(K)| \leq 2(s - 1)\).

We now divide the set of cores with surplus \(s \) according to their kernel. In what follows when we write \(\sum_K \) we implicitly mean that \(K \) is a kernel. We have

\[
|\{ \text{Cores } C : V(C) = [\ell], s(C) = s \}| = \sum_K |\{ \text{Cores } C : V(C) = [\ell], s(C) = s, K(C) = K \}|
\]

\[
= \sum_{k=1}^{2(s-1)} \sum_{K:V(K)=[k]} \binom{\ell}{k} |\{ \text{Cores } C : V(C) = [\ell], s(C) = s, K(C) = [k] \}|.
\]

A kernel with \(V(K) = [k] \) and with surplus \(s \) has \(m = k - 1 + s \) edges, so by Proposition 1.5.1, it follows that this number is \((1 + o(1))\) times

\[
2(s-1) \sum_{k=1}^{2(s-1)} \sum_{K:V(K)=[k],s(K)=s} \binom{\ell}{k} \prod_{e \in E(K)} 2^{-\text{mult}(e; K)1_{[\ell \text{ loop}]}} \cdot \frac{(\ell - k)!(\ell - k + 1)^k s - 2}{(k + s - 2)!}
\]

\[
= \sum_{k=1}^{2(s-1)} \sum_{K:V(K)=[k],s(K)=s} \prod_{e \in E(K)} 2^{-\text{mult}(e; K)1_{[\ell \text{ loop}]}} \cdot \frac{\ell!(\ell - k + 1)^k s - 2}{(k + s - 2)!}.
\]

For \(\ell \) large, the term \(k = 2(s - 1) \) dominates, due to the factor \((\ell -
$k + 1)^{k+s-2}$, so this sum is in turn $(1 + o(1))$ times

$$\sum_{K: V(K) = \{2(s-1)\}, s(K) = s} \prod_{e \in E(K)} 2^{-\text{mult}(e; K) - [e, \text{loop}]} \cdot \frac{\ell!(\ell - 2s + 3)^{3s-4}}{(3s - 4)!}$$

$$= \sum_{K: V(K) = \{2(s-1)\}, s(K) = s} \prod_{e \in E(K)} 2^{-1 - [e, \text{loop}]} \cdot \frac{\ell!(\ell - 2s + 3)^{3s-4}}{(3s - 4)!}$$

(1.5.2)

the last equality holding since when $V(K) = \{2(s-1)\}$ and $s(K) = s$, necessarily K is 3-regular and so any loop edges in K must have multiplicity 1.

In particular, this implies that

$$\left| \{\text{Cores } C : V(C) = \{\ell\}, s(C) = s\} \right|$$

$$(1 + o(1))\left| \{\text{Cores } C : V(C) = \{\ell\}, s(C) = s, \left| V(K(C)) \right| = 2(s-1)\} \right|,$$

which proves the first assertion of the corollary. For the second assertion, it suffices to note that the terms in the sum in (1.5.2) only depend on K via the product term $\prod_{e \in E(K)} 2^{-1 - [e, \text{loop}]} \cdot \frac{\ell!(\ell - 2s + 3)^{3s-4}}{(3s - 4)!}$, so the probability that the kernel equals K must be proportional to this product.

Corollary 1.5.3. Fix $s \geq 2$. Then as $\ell \rightarrow \infty$,

$$\left| \{\text{Cores } C : V(C) = \{\ell\}, s(C) = s\} \right|$$

$$(1 + o(1))\left| \{\text{Cores } C : V(C) = \{\ell\}, s(C) = s, \left| V(K(C)) \right| = 2(s-1)\} \right|,$$

which proves the first assertion of the corollary. For the second assertion, it suffices to note that the terms in the sum in (1.5.2) only depend on K via the product term $\prod_{e \in E(K)} 2^{-1 - [e, \text{loop}]} \cdot \frac{\ell!(\ell - 2s + 3)^{3s-4}}{(3s - 4)!}$, so the probability that the kernel equals K must be proportional to this product.

Proof. This is immediate from (1.5.2), since for fixed s, we have $(\ell - 2s + 3)^{3s-4} = (1 + o(1))\ell^{3s-4}$ as $\ell \rightarrow \infty$.

The above computations now allow us to figure out the typical core size for a large random graph with a fixed surplus. So that the formulas don’t get too cumbersome, it’s useful to write

$$\kappa(s) = \frac{1}{(3s - 4)!} \sum_{K: V(K) = \{2(s-1)\}, s(K) = s} \prod_{e \in E(K)} 2^{-1 - [e, \text{loop}]} \cdot \frac{\ell!(\ell - 2s + 3)^{3s-4}}{(3s - 4)!}$$

so that the formula on the right-hand side of the above corollary becomes $(1 + o(1))\kappa(s)!\ell^{3s-4}$.

Theorem 1.5.4. Fix any positive integer $s \geq 2$. Then as $n \rightarrow \infty$,

$$\left| \mathcal{G}_{n,s} \right| = (1 + o(1))\kappa(s) \cdot n^{n-2+3s/2} \int_{0}^{\infty} x^{3s-3}e^{-x^2/2}dx.$$

Moreover, if $G \in \mathcal{G}_{n,s}$ then

$$\left| V(C(G)) \right| / n^{1/2} \xrightarrow{d} X.$$
where \(X \equiv \sqrt{\text{Gamma}(\frac{3s-2}{2}, \frac{1}{2})} \) has density

\[
\frac{1}{2^{(3s-4)/2} \Gamma((3s-2)/2)} x^{3s-3} e^{-x^2/2} 1_{\{x \geq 0\}}.
\]

Proof. To specify a graph \(G \) in \(\mathcal{G}_{n,s} \) we may first specify the vertex set of the core, then specify the core itself, and finally specify the trees which are attached to the core. It follows that

\[
|\{ G \in \mathcal{G}_{n,s} : |V(C(G))| = \ell \}|
= (1 + o_\ell(1)) \left(\frac{n}{\ell} \right)^\ell \kappa(s) \ell! \ell^{3s-4} \cdot \ell \sqrt{n} \sqrt{\ell} - 1
= (1 + o_\ell(1)) \kappa(s) \ell! n^{\sqrt{n}} \ell^{3s-4} \cdot \ell \sqrt{n} \sqrt{\ell} - 1.
\]

We would like to argue that only terms with \(\ell = O(n^{1/2}) \) contribute asymptotically to \(|\mathcal{G}_{n,s}| \). To see this, first note that using the Taylor expansion \(\log(1 - x) = -x + O(x^2) \) we have

\[
(n)_\ell = n^\ell \prod_{i=0}^{\ell-1} (1 - i/n) = n^\ell \exp\left(-\sqrt{\frac{\ell^2}{2n}} + O\left(\frac{\ell^3}{n^2}\right)\right).
\]

For \(\ell = O(n^{1/2}) \) this gives

\[
|\{ G \in \mathcal{G}_{n,s} : |V(C(G))| = \ell \}| = (1 + o_\ell(1)) \kappa(s) n^{\sqrt{n}} \ell^{3s-3} e^{-\frac{\ell^2}{2n}}.
\]

(1.5.3)

It follows that the total number of graphs \(G \in \mathcal{G}_{n,s} \) with \(|V(C(G))| = o(n^{1/2}) \) is \(o(|\mathcal{G}_{n,s}|) \). Next, summing over graphs \(G \) with \(|V(C(G))| = \Theta(n^{1/2}) \) also yields the lower bound

\[
|\mathcal{G}_{n,s}| = \Omega(n^{n^{1/2} + (3s-3)/2}).
\]

Also, if \(\omega(n) \) is any function with \(\omega(n) \to \infty \) as \(n \to \infty \), then the upper bound \((n)_\ell \leq n^\ell e^{-\ell^2/2n} \) gives the bound

\[
|\{ G \in \mathcal{G}_{n,s} : |V(C(G))| \geq \omega(n) \}|
\leq (1 + o(1)) \kappa(s) n^{\sqrt{n}} \sum_{\ell \geq \omega(n)} \ell^{3s-3} e^{-\ell^2/2n}
= (1 + o(1)) \kappa(s) n^{\sqrt{n}} \sum_{\ell \geq \omega(n)} \left(\frac{\ell}{\sqrt{n}}\right)^{3s-3} e^{-\ell^2/2n}
= o(n^{n^{1/2} + (3s-3)/2}) = o(|\mathcal{G}_{n,s}|).
\]

It follows from these bounds only graphs in \(\mathcal{G}_{n,s} \) with core size \(\Theta(n^{1/2}) \) contribute asymptotically, and therefore (1.5.3) gives

\[
|\mathcal{G}_{n,s}| = (1 + o(1)) \kappa(s) n^{n^{1/2} + 3s/2} \int_0^\infty y^{3s-3} e^{-y^2/2} dy.
\]

When \(\ell = \ell(n) = (1 + o(1)) x n^{1/2} \), equation (1.5.3) also gives

\[
|\{ G \in \mathcal{G}_{n,s} : |V(C(G))| = \ell \}| = (1 + o(1)) \kappa(s) n^{n^{1/2} + 3s/2} x^{3s-3} e^{-x^2/2}.
\]
For \(\mathbf{G} \in \mathcal{U}_{n,s} \), these estimates imply that for \(\ell = \theta(n^{1/2}) \),

\[
\mathbf{P} \left\{ |V(C(G))| = \ell \right\} = (1 + o(1)) \left(\frac{\ell}{n^{1/2}} \right)^{3s-3} e^{-\ell^2/(2n)} \left(\int_0^\infty y^{3s-3} e^{-y^2/2} dy \right)^{-1}.
\]

\[
= \frac{(1 + o(1))}{2^{(3s-4)/2} \Gamma \left(\frac{3s-2}{2} \right)} \left(\frac{\ell}{n^{1/2}} \right)^{3s-3} e^{-\ell^2/(2n)};
\]

to see the second bound, one may either verify that

\[
\int_0^\infty y^k e^{-y^2/2} dy = 2^{(k-1)/2} \Gamma \left(\frac{k+1}{2} \right),
\]

or else note that since \(x^{3s-3} e^{-x^2/2} / \int_0^\infty y^{3s-3} e^{-y^2/2} dy \) must be a probability density on \([0, \infty)\), it must be equal to the density from Exercise 1.3.5.

Exercise 1.5.2. Fix an integer \(s \geq 0 \), let \(\mathbf{G}_n \in \mathcal{U}_{n,s} \), and list the leaves of \(\mathbf{G}_n \) in increasing order as \((L_i, i \geq 1)\).\(^{16}\)

For \(k \geq 1 \) let \(C^k_{\mathbf{G}_n} \) be the subgraph of \(\mathbf{G}_n \) containing the core \(C(\mathbf{G}_n) \) together with the paths from \(L_i \) to \(C(\mathbf{G}_n) \) for \(1 \leq i \leq k \). Let \(K^k_{\mathbf{G}_n} \) be the graph obtained from \(C^k_{\mathbf{G}_n} \) by replacing all maximal length paths all of whose internal vertices have degree 2 by edges. For \(e \in E(K^k_{\mathbf{G}_n}) \) write \(\text{len}(e) \) for the number of edges of the path in \(C^k_{\mathbf{G}_n} \) which gives rise to edge \(e \) in \(K^k_{\mathbf{G}_n} \).

(a) Prove that for all \(k \geq 1 \) there is the joint convergence

\[
\frac{1}{n^{1/2}} |V(C^k_{\mathbf{G}_n})| \overset{d}{\to} G
\]

\[
\frac{1}{n^{1/2}} (\text{len}(e), e \in E(K^k_{\mathbf{G}_n})) \overset{d}{\to} G \cdot (X_i, 1 \leq i \leq 3s - 3 + 2k),
\]

where \(G \) is distributed as \(\sqrt{\text{Gamma}((3s - 2 + 2k)/2, 1/2)} \) and \((X_i, 1 \leq i \leq 3s - 3 + 2k) \) is Dirichlet(1, 1, \ldots, 1)-distributed and is independent of \(G \).

(b) Prove that

\[
\frac{1}{n^{1/2}} \left(\frac{|V(C^k_{\mathbf{G}_n})|}{|V(C^k_{\mathbf{G}_n})|}, \frac{|V(C^k_{\mathbf{G}_n})| - |V(C^{k-1}_{\mathbf{G}_n})|}{|V(C^k_{\mathbf{G}_n})|} \right) \overset{d}{\to} \text{Dirichlet}(3s - 4 + 2k, 1),
\]

where the limiting vector is independent of the limit \(G \) in part (a).
2
Bienaymé trees

2.1 Plane trees and the Ulam-Harris tree

The Ulam-Harris tree \mathcal{U} has nodes labelled by $\bigcup_{n \geq 0} \mathbb{N}^n$, where $\mathbb{N}^0 := \{\emptyset\}$. The node \emptyset is the root. In general, a node at level n is labeled by a string $v = v_1 v_2 \ldots v_n$; it has parent $\text{par}(v) = v_1 v_2 \ldots v_{n-1}$ and children $(v_i, i \geq 1) = (v_1 \ldots v_n i, i \geq 1)$. We think of the children of v as being born one-at-a-time: first $v1$, then $v2$ and so on. If $i < j$ we say vi is an older sibling of vj.

We write $\mathcal{U} = \bigcup_{n \geq 0} \mathbb{N}^n$, identifying \mathcal{U} with the set of labels of its nodes. (This is a bit sloppy, since the Ulam-Harris tree is not the only graph with these node labels, but this shouldn’t cause any confusion.)

A subtree of \mathcal{U} is a set $t \subset \mathcal{U}$ with the following properties:

(a) $\emptyset \in t$.

(b) If $v \in t$ then $\text{par}(v) \in t$; the ancestors of v are all in t as well.

(c) If $v \in t$, $v = wi$ then $w_j \in t$ for all $j \leq i$; the older siblings of v are all in t as well.

Given a subtree t of \mathcal{U}, for $v \in t$ we write $c(v; t) = \max(i : vi \in t)$; this is the outdegree, or number of children of v in t, and it may be infinite. We also write $t_n := t \cap \mathbb{N}^n$, and $t_{\leq n} = \bigcup_{m=0}^n t_m$ and the like.

A subtree $t \subset \mathcal{U}$ is finite if $|t| < \infty$. It is locally finite if $t_n := t \cap \mathbb{N}^n$ is finite for all n. Its height is $\text{ht}(t) := \max(n : t_n \neq \emptyset)$.

From now on, the phrase “plane tree” means “locally finite subtree of \mathcal{U}”, and we write \mathcal{T} for the set of plane trees. Equivalently, a plane tree is a rooted tree t in which each node has finitely many children, together with a left-to-right ordering of the children of each vertex of t. The left-to-right orderings endows the nodes of a plane tree with a canonical labeling by strings of positive integers, as follows. The root is labeled by \emptyset; recursively, the children of a node with label i_1, \ldots, i_k are labeled in left-to-right order by the elements of the set.
(i_1, \ldots, i_k, i \mid 1 \leq i \leq c(v; t))$. Thus, the children of the root \varnothing have labels $1, 2, \ldots, c(\varnothing; t)$, the children of the node with label 1 have labels $11, 12, \ldots, 1c(1; t)$, and so forth. By identifying the nodes of a plane tree with their vertex labels, we realize it as a subtree of the Ulam-Harris tree.

We wish to consider random trees, and for this we need to turn the set of trees into a measurable space.

Definition 2.1.1. For a plane tree t and an integer $n \geq 0$, let $[t]_{\leq n} = \{\text{plane trees } t' : t'_\leq n = t_{\leq n}\}$.

It’s useful to also introduce the notation $[\,]_{< n} := [\,]_{\leq n-1}$. The equivalence relation $[\,]_{\leq n}$ partitions the set of trees into countably many equivalence classes; we let $F_n = \sigma([t]_{\leq n} : t \in T)$, and let $F = \sigma(\cup_{n \geq 0} F_n)$. Note that $[\,]_{\leq n+1}$ refines $[\,]_{\leq n}$, which implies that $(F_n, n \geq 0)$ is a filtration. Note that since $[\,]_{\leq n}$ is an equivalence relation, the sets $[t]_{\leq n}$ are all atoms of F_n.

Exercise 2.1.1. Let $F_{\text{fin}} = \sigma(\{t \in T, |t| < \infty\})$ be the σ-algebra generated by finite plane trees. Show that $F_{\text{fin}} \subset F$.

Perhaps: To a rooted tree t with vertex set $[n]$, we associate a plane tree using the convention that the children of each node are listed in increasing order of label from left to right.

2.2 Plane trees and the cycle lemma

For a finite plane tree t, by the lexicographic ordering of the vertices of T we mean the lexicographic ordering of the vertices according to their Ulam-Harris labels. In this ordering, each vertex appears before all its descendants, and the children of a fixed node appear in left-to-right order.

Fix a finite plane tree t, write $n = |t|$, and list the vertices of t in lexicographic order as v_1, \ldots, v_n. Then, for $i \in [n]$ let $d(i) = c(v_i; t)$, and for $0 \leq i \leq n$ let $s(i) = 1 + \sum_{j=1}^{i} (d(j) - 1)$. The sequence $(s(0), \ldots, s(n))$ is called the depth-first queue process of t.

Imagine exploring the vertices of tree t in lexicographic order. At time zero, the root of t has been discovered but no vertices have been explored. For $1 \leq i \leq n$, at time i, node v_i is explored, and its set of children is discovered. Then for each $0 \leq i \leq n$, the quantity $s(i)$ is the number of vertices of t which have been discovered but not yet explored. This number is positive until the whole tree has been explored, so $s(i) > 0$ for $0 \leq i < n$ and $s(n) = 0$. Moreover, $s(i+1) \geq s(i) - 1$ for each $0 \leq i < n$, since at each step we explore exactly one vertex and discover $d(i+1) \geq 0$ new vertices.

Conversely, suppose that (s_0, \ldots, s_n) are non-negative integers with $s_0 = 1$ and $s_n = 0$, and with $s_i > 0$ and $s_{i+1} \geq s_i - 1$ for each
0 \leq i < n. Then, writing \(d_i = s_i - s_{i-1} - 1 \) for \(i \in [n] \), there is a unique plane tree \(t \) with \(n \) vertices, such that the degrees of the vertices of \(t \) listed in lexicographic order are \((d_1, \ldots, d_n) \). In other words, the tree \(t \) can be recovered from its depth-first queue process.

Exercise 2.2.1. Show carefully that any finite plane tree \(t \) can be recovered from its depth-first queue process.

The following combinatorial identity is fundamental for aspects of the study of branching process. It has been rediscovered in various forms by several researchers; the version we present here is more or less that of Dwass\(^1\).

Proposition 2.2.1 (Dwass’s cycle lemma). Fix integers \(x_1, x_2, \ldots, x_n \in \{-1, 0, 1, \ldots\} \) with \(x_1 + \ldots + x_n = -r \leq 0 \). For \(j \in \mathbb{Z} \) and \(i \in [n] \) let \(s_j(i) = x_{j+1 \mod n} + \ldots + x_{j+i \mod n} \). Then there are exactly \(r \) values of \(j \in [n] \) for which \(s_k(i) > -r \) for all \(0 < i < n \).

Proof. We closely follow the proof given by Janson\(^2\). Extend the sequence \((x_k, k \in [n])\) to \(\mathbb{Z} \) by evaluating the index modulo \(n \), so \(x_k = x_{k+n} \) for all \(i \in \mathbb{Z} \). Then extend the definition of \((s(k), 0 \leq k \leq n)\) to \(\mathbb{Z} \) accordingly, by setting \(s(k) = s(k-1) = x_k \) for \(k \in \mathbb{Z} \); since we fix \(s(0) = 0 \) this uniquely determines \(s(k) \) for all \(k \in \mathbb{Z} \). More precisely, we have

\[
s(k) = \begin{cases}
\sum_{j=1}^{k} x_j & \text{if } k \geq 0 \\
-\sum_{j=k+1}^{0} x_j & \text{if } k < 0.
\end{cases}
\]

Since \(x_1 + \ldots + x_n = -r \), this implies that \(s(k+n) = s(k) - r \) for all \(k \in \mathbb{Z} \). Note also that \(s(i+j) - s(i) = s(j) \) for all \(j \in \mathbb{Z} \) and \(i \in [n] \). Next let \(m(k) = \min_{-\infty < j \leq k} s(j) \). Since \(s(j-n) = s(j) + r \) for all \(j \in \mathbb{Z} \), we also have \(m(k) = \min_{-n < j \leq k} s(j) \), and moreover \(m(k+n) = m(k) - r \) for all \(k \in \mathbb{Z} \). Note also that for all \(k \in \mathbb{Z} \), since

\[\text{Diagram and equations...}\]
\[s(k + 1) = s(k) + x_{k+1}. \]

\[
m(k + 1) = \begin{cases}
 m(k) - 1 & \text{if } s(k) = m(k) \text{ and } x_{k+1} = -1 \\
 m(k) & \text{otherwise.}
\end{cases}
\]

It follows that

\[s_k(i) > -r \text{ for all } 0 < i < n \iff s(k+i) - s(k) > -r \text{ for all } 0 < i < n \]
\[\iff s(k+i) - s(k) + r > 0 \text{ for all } 0 < i < n \]
\[\iff s(k+i-n) - s(k) > 0 \text{ for all } 0 < i < n \]
\[\iff s(j) > s(k) \text{ for } k-n < j < k \]
\[\iff m(k-1) > s(k) \]
\[\iff m(k-1) > m(k). \]

Finally, since \(m(n) = m(0) - r \) and \(m(i+1) \geq m(i) - 1 \) for all \(i \), there are exactly \(r \) integers \(k \in \{1, \ldots, n\} \) for which \(m(k-1) > m(k) \). This completes the proof. \(\square\)

2.3 Branching processes, Bienaymé trees and the fundamental theorem

Fix a probability distribution \(\mu \) on \(\mathbb{R} \) with \(\mu(\mathbb{N}) = 1 \). A Bienaymé tree with offspring distribution \(\mu \), or a Bienaymé(\(\mu \)) tree for short, is a random plane tree \(T \) which is the family tree of a branching process with offspring distribution. The law \(B_\mu \) of \(T \) is uniquely determined by the following property: for all \(h \geq 1 \), for any plane tree \(t \) of height at most \(h \),

\[
P \{ T \leq h = t \} = B_\mu(\{ t \in T : t \leq h = t \}) = \prod_{v \in T \leq h-1} \mu(\text{deg}_t(v)). \tag{2.3.1}
\]

A Bienaymé(\(\mu \)) tree may be constructed as follows.

* Start from the root (call it \(\emptyset \)), let \(X_\emptyset \) have law \(\mu \).

* Give \(\emptyset \) children \(1, \ldots, X_\emptyset \).

* Independently for each \(i = 1, \ldots, X_\emptyset \), let \(X_i \) have law \(\mu \).

* Give \(i \) children \(i_1, i_2, \ldots, i_{X_i} \).

* Repeat forever or until done; call the resulting random tree \(T \).

Equivalently: let \((X_v, v \in \mathcal{U}) \) be independent with law \(\mu \). Then let \(T \) be the random subtree of \(\mathcal{U} \) in which the root \(\emptyset \) has \(X_\emptyset \) children and more generally, inductively, if \(v \in T \) then \(c(v, T) := X_v \).
Exercise 2.3.1. Suppose that the random variables \((X_v, v \in U)\) are defined on a common probability space \((\Omega, \mathcal{G}, \mathbb{P})\). Show that the above construction of \(T\) yields a \(\mathcal{G}/\mathcal{F}\)-measurable map from \(\Omega\) to \(T\). In other words, \(T\) is a \((\mathcal{T}, \mathcal{F})\)-valued random variable.

Let \(Z_n = Z_n(T)\) be the number of individuals of \(T\) in the \(n\)'th generation \(N_n\), and write \(|T| = \sum_{n=0}^{\infty} Z_n\) for the total number of individuals. We say the survival occurs if \(Z_n > 0\) for all \(n\), and otherwise that say that extinction occurs. Equivalently, survival occurs if \(|T| = \infty\), and extinction occurs if \(|T| < \infty\).

Theorem 2.3.1 (Fundamental theorem of branching processes). Let \(X\) be a non-negative random variable integer random variable with distribution \(\mu\), and let \(T\) be \(B_{\mu}\)-distributed. Then \(\mathbb{P}\{\left|\mathcal{T}\right| = \infty\} > 0\) if and only if one of the following two conditions holds.

1. \(\mathbb{P}\{X = 1\} = 1\)
2. \(\mathbb{E}\{X\} > 1\).

As a warm up, we prove the following lemma.

Lemma 2.3.2. Let \(X\) be \(\mu\)-distributed. Then for all \(n\), \(\mathbb{E}\{Z_n\} = [\mathbb{E}X]^n\).

Proof. This is obviously true for \(n = 0\). Supposing the equality holds for a given \(n\), we write

\[
\mathbb{E}\{Z_{n+1}\} = \sum_{i=0}^{\infty} \mathbb{E}\{Z_{n+1} \mid X_\emptyset = i\} \mathbb{P}\{X_\emptyset = i\}.
\]

Given that \(X_\emptyset = i\), the children \(1, \ldots, i\) of \(\emptyset\) are each the root of an independent copy of the whole process, so

\[
\mathbb{E}\{Z_{n+1} \mid X_\emptyset = i\} = i \mathbb{E}\{Z_n\}.
\]

We thus have

\[
\mathbb{E}\{Z_{n+1}\} = \sum_{i=0}^{\infty} i \mathbb{E}\{Z_n\} \mathbb{P}\{X_\emptyset = i\} = \mathbb{E}\{Z_n\} \cdot \mathbb{E}\{X\} = [\mathbb{E}X]^n+1,
\]

the last step by induction. \(\square\)

Corollary 2.3.3. If \(\mathbb{E}\{X\} < 1\) then \(\mathbb{E}\{|T|\} < \infty\), so \(\mathbb{P}\{\left|\mathcal{T}\right| = \infty\} = 0\).

Proof. If \(\mathbb{E}\{X\} < 1\) then

\[
\mathbb{E}\{|T|\} = \sum_{n=0}^{\infty} \mathbb{E}\{Z_n\} = \sum_{n=0}^{\infty} (\mathbb{E}X)^n = \frac{1}{1 - \mathbb{E}\{X\}} < \infty.
\]

It follows by Markov's inequality that \(\mathbb{P}\{\left|\mathcal{T}\right| = \infty\} = 0\). \(\square\)
Here is another approach to the above lemma which gives a little more. For \(n \geq 0 \) let \(\mathcal{F}_n^0 = \sigma(Z_0, \ldots, Z_n) \). Then \(Z_{n+1} = \sum_{v \in T_n} X_v \), so for any fixed subset \(S \) of \(\mathbb{N}^n \),

\[
E \{ Z_{n+1} \mid T_n = S \} = E \left\{ \sum_{v \in S} X_v \mid S = S \right\} = \sum_{v \in S} E X = |S| \cdot EX.
\]

The second inequality holds by linearity of expectation and since \(E \{ X_v \mid S = S \} = EX \). Since \(Z_n = |S| \), it follows that \(E \{ Z_{n+1} \mid \mathcal{F}_n^0 \} = Z_n \cdot EX \). Therefore, if \(EX = 1 \) then \((Z_n, n \geq 0) \) is an \(\mathcal{F}_n^0 \)-martingale.

More generally, setting \(M_n = M_n(T) = Z_n(T)/(EX)^n \), then \((M_n, n \geq 0) \) is always an \(\mathcal{F}_n^0 \)-martingale.

Exercise 2.3.2. With \(T \) constructed as in Exercise 2.3.1, show that \(M_n = M_n(T) \) is a \(\mathbb{P} \)-martingale with respect to \((\mathcal{F}_n')_n \), where \(\mathcal{F}_n' = \sigma(X_v, v \in U_{<n}) \).

Now let \(F(z) = F_\mu(z) = E[z^X] = \sum_{k=0}^\infty \mu(k)z^k \).

Proposition 2.3.4 (Fundamental proposition of branching processes). If \(P \{ X = 1 \} < 1 \) then

\[
P \{ |T| < \infty \} = \min_{x \geq 0} \{ F(x) = x \}.
\]

Proof. Write \(p = P \{ |T| < \infty \} \). We prove the proposition in two parts: first we show that \(F(p) = p \), and second we show that \(p \) is the smallest non-negative solution of \(F(x) = x \).

The proof of the first part is similar to that of the proof of the lemma. We begin by noting that

\[
|T| < \infty \iff Z_n = 0 \text{ for some } n,
\]

so

\[
p = P \left\{ \bigcup_{n=0}^\infty Z_n = 0 \right\}.
\]
The events on the right are increasing (if \(Z_n = 0 \) then \(Z_{n+1} = 0 \)) so it follows that
\[
p = \lim_{n \to \infty} \mathbb{P} \{ Z_n = 0 \}.
\]
Now write \(F_1(x) = F(x) \) and for \(n > 1 \) write \(F_n(x) = F(F_{n-1}(x)) \), so \(F_n(x) \) is the result of applying \(F \) to \(x \) \(n \) times.

We claim that for all \(n \geq 1 \), \(\mathbb{P} \{ Z_n = 0 \} = F_n(0) \). When \(n = 1 \), we have \(F_1(0) = F(0) = \mathbb{P} \{ X = 0 \} = \mathbb{P} \{ Z_1 = 0 \} \). For larger \(n \), we apply the same inductive technique as in Lemma 1.

\[
\mathbb{P} \{ Z_n = 0 \} = \sum_{i=0}^{\infty} \mathbb{P} \{ Z_n = 0 \mid Z_1 = i \} \mathbb{P} \{ Z_1 = i \}
\]
\[
= \sum_{i=0}^{\infty} \mathbb{P} \{ Z_{n-1} = 0 \}^i \mathbb{P} \{ X = i \}
\]
\[
= \sum_{i=0}^{\infty} F_{n-1}(0)^i \mathbb{P} \{ X = i \}
\]
\[
= F(F_{n-1}(0))
\]
\[
= F_n(0).
\]

We now have
\[
p = \lim_{n \to \infty} F_n(0).
\]
Since \(F_n(0) \to p \) and \(F(x) \) is continuous, we also have \(F(F_n(0)) \to F(p) \).

\(\therefore \) \(F(F_n(0)) \to p \), so we must have \(p = F(p) \).

For the second part, suppose \(q \) is any other non-negative solution of \(F(x) = x \). By differentiation we see that \(F \) is non-decreasing and so since \(q \geq 0 \) we must have \(q = F(q) \geq F(0) \). Repeatedly applying \(F \) we see that we must have \(q \geq F_n(0) \) for all \(n \), and so \(q \geq \lim_{n \to \infty} F_n(0) = p \).

Proof of Fundamental Theorem. We already saw that if \(\mathbb{E} \{ X \} < 1 \) then extinction is certain, so we assume that \(\mathbb{E} \{ X \} \geq 1 \). Case (a) is also obvious so we assume that \(\mathbb{P} \{ X = 1 \} < 1 \). Note that \(F(0) = \mathbb{P} \{ X = 0 \} \geq 0 \) and that \(F''(x) > 0 \) for all \(x > 0 \). Also,
\[
F'(z) = \left(\sum_{n=0}^{\infty} \mathbb{P} \{ X = n \} z^n \right)' = \sum_{n=1}^{\infty} n \mathbb{P} \{ X = n \} z^{n-1},
\]
so \(F'(1) = \sum_{n=1}^{\infty} n \mathbb{P} \{ X = n \} = \mathbb{E} \{ X \} \). If \(\mathbb{E} \{ X \} > 1 \) then by continuity there is \(x < 1 \) such that \(F(x) < x \), so by the intermediate value theorem, there is \(0 \leq y < x \) with \(F(y) = y \), and we must have \(p < 1 \). On the other hand, if \(\mathbb{E} \{ X \} = 1 \) then since \(\mathbb{P} \{ X = 1 \} < 1 \) there must be \(k > 1 \) such that \(\mathbb{P} \{ X = k \} > 0 \). It follows that \(F''(x) > 0 \) for all \(x > 0 \), so we must have \(F(x) > x \) for all \(0 \leq x < 1 \), and so \(p = 1 \).

Exercise 2.3.3. Let \((Z_n, n \geq 0) \) be the generation sizes in a Bienaymé(\(\mu \)) process \(T \). Let \(X \) be \(\mu \)-distributed and write \(\alpha = \mathbb{E} X \) and \(\sigma^2 = \mathbb{V} \{ X \} \).
We suppose in this question that \(\sigma^2 \in (0, \infty) \) and that \(\alpha > 1 \). Also, write \(M_n = Z_n / (EX)^n \) and let \(M \) be the a.s. martingale limit of \(M_n \).

(a) Prove that for every \(n \geq 0 \),
\[
E \left\{ Z_{n+1}^2 \mid F_n \right\} = (EX)^2 Z_n^2 + \sigma^2 Z_n.
\]

(b) Prove that for every \(n \geq 0 \),
\[
E \left[Z_n^2 \right] = \alpha^{2n} + \frac{\sigma^2(\alpha^n - \alpha^{2n})}{\alpha(1 - \alpha)}
\]

(c) Prove that \(M_n \to M \) in \(L^2 \) and that \(\text{Var} \{ M \} = \frac{\sigma^2}{\alpha(\alpha - 1)} \).

Exercise 2.3.4. Fix \(\lambda \in [0, \infty) \), let \(T \) be a Poisson(\(\lambda \)) Bienaymé tree, and let \(\theta(\lambda) = P \{|T| = \infty\} \).

(a) Show that \(\theta(\lambda) \) is the largest real solution \(x \) of \(e^{-\lambda x} = 1 - x \).

(b) Show that \(\theta \) is continuous and that \(\theta \) is concave and strictly positive on \((1, \infty) \).

(c) Show that for \(0 < \lambda \leq 1 \), \(\theta(\lambda) = 0 \), and for \(\lambda \geq 2 \), \(1 - 2e^{-\lambda} \leq \theta(\lambda) \leq 1 - e^{-\lambda} \).

(d) Show that \(\theta(\lambda) \) is increasing and \(\lambda(1 - \theta(\lambda)) \) is decreasing.

(e) Show that \(\frac{d}{d\lambda}\theta(\lambda) \uparrow 2 \) as \(\lambda \downarrow 1 \). Conclude that \(2e(1 - o(1)) \leq \theta(1 + \epsilon) \leq 2e \), the first inequality holding as \(\epsilon \downarrow 0 \).

2.4 Conditioning Bienaymé trees to be finite

Let \(\mu \) be a probability distribution with support \(\mathbb{N} \), and let \(T \) be Bienaymé(\(\mu \))-distributed. If \(\sum_{i \geq 0} i\mu(i) > 1 \) then \(P \{|T| = \infty\} > 0 \). What is the distribution of \(T \) conditioned to be finite?

This question only makes sense provided that \(p_0 = \mu(0) > 0 \); under this condition, we may understand the conditional law by thinking about the distribution of the number of children at the root.

Writing \(q = P \{|T| < \infty\} \), then we have
\[
P \left\{ c(\emptyset; T) = j \mid |T| < \infty \right\} = \frac{P \{ c(\emptyset; T) = j \} P \{|T| < \infty \}}{P \{|T| < \infty \}}
= \frac{\mu(j)}{q} \cdot q^j.
\]

The last equality is because if the root has \(j \) children, then each of their subtrees must be finite in order for the whole tree to be finite. Write \(\hat{\mu} \) for the probability measure on \(\mathbb{N} \) given by \(\hat{\mu}(j) = \mu(j)q^{j-1} \).
As a consistency check, note that

\[\sum_{j \geq 0} \hat{\mu}(j) = \sum_{j \geq 0} \mu(j)q^{j-1} = q^{-1}F_{\mu}(q) = q^{-1}q = 1, \]

since \(q \) is a fixed point of \(F_{\mu} \); so \(\hat{\mu} \) is indeed a probability measure. Moreover, if \(\hat{X} \) is \(\hat{\mu} \)-distributed then

\[E\hat{X} = \sum_{j \geq 0} j\mu(j)q^{j-1} = F_{\mu}'(q) < 1, \]

the last inequality holding because \(F_{\mu} \) is convex and \(F_{\mu}(t) < t \) for \(t \in (q, 1) \).

Conditionally given that \(|T| < \infty \) and that \(c(\emptyset, \hat{T}) = j \), the children of \(\emptyset \) are themselves the roots of Bienaymé(\(\mu \)) trees, conditioned to be finite, so their offspring distribution is likewise \(\hat{\mu} \). Continuing in this manner, we see that conditionally given that it is finite, \(|T| \) is distributed as a Bienaymé(\(\hat{\mu} \)) tree.

Exercise 2.4.1 (Poisson Bienaymé process duality). Fix \(\lambda > 1 \) and let \(T \) be a Poisson(\(\lambda \)) Bienaymé tree conditioned to be finite.

(a) Show that \(T \) is a Poisson(\(\lambda(1 - \theta(\lambda)) \)) Bienaymé tree. (Suggestion: use Exercise 2.3.4 (a).)

(b) Write \(\lambda = 1 + \epsilon \). Show that \(\lambda(1 - \theta(\lambda)) = 1 - \epsilon(1 + o(1)) \) as \(\epsilon \to 0 \).

(Suggestion: use Exercise 2.3.4 (e).)

2.5 Conditioned Bienaymé trees

Proposition 2.5.1. Fix a probability distribution \(\mu \) with support \(\mathbb{N} \). Let \(T \) be a Bienaymé tree with offspring distribution \(\mu \), and let \((D_i, i \geq 0) \) be independent \(\mu \)-distributed random variables. Then for any positive integer \(n \),

\[P\{|T| = n\} = \frac{1}{n} P\{D_1 + \ldots + D_n = n - 1\}. \]

Proof. Let \(\mathcal{D} \) be the set of degree sequences of plane trees with \(n \) vertices, and for \(0 \leq i < n \) let

\[\mathcal{D}_i = \{(d_{i+1}, \ldots, d_n, d_1, \ldots, d_{i-1}) : (d_1, \ldots, d_n) \in \mathcal{D}\}. \]

By the cycle lemma, \(\mathcal{D}_0, \ldots, \mathcal{D}_{n-1} \) are disjoint and

\[\bigcup_{i=0}^{n-1} \mathcal{D}_i = \{(d_1, \ldots, d_n) \in \mathbb{N}^n : d_1 + \ldots + d_n = n - 1\}. \]

Now let \(t \) be any plane tree with \(n \) vertices, and list the vertices of \(t \) in lexicographic order as \(v_1, \ldots, v_n \), and list their degrees as
\[d(1), \ldots, d(n). \] Then since \(t \) is finite, taking \(h \geq n - 1 \) in (2.3.1) gives that
\[
P\{T = t\} = \prod_{v \in T} \mu(\text{deg}(v))
= \prod_{i=1}^{n} \mu(d(i))
= P\{(D_1, \ldots, D_n) = (d(1), \ldots, d(n))\}
\]

Summing over degree sequences in \(D \), it follows that
\[
P\{|T| = n\} = P\{(D_1, \ldots, D_n) \in D\} = \frac{1}{n} \sum_{i=1}^{n} P\{(D_1, \ldots, D_n) \in D_i\}
= \frac{1}{n} P\{D_1 + \cdots + D_n = n - 1\},
\]
as required.

Let \((X_i, i \geq 1)\) be IID with each \(X_i\) distributed as \(D_1 - 1\), and for \(n \geq 0\) let \(S_n = 1 + X_1 + \cdots + X_n\). Write \(\tau = \inf(m : S_m = 0)\). Then by the cycle lemma,
\[
P\{\tau = n\} = P\{S_n = 0, S_m > 0 \text{ for } 0 \leq m < n\} = \frac{1}{n} P\{S_n = 0\},
\]
So Proposition 2.5.1 implies that \(P\{|T| = n\} = P\{\tau = n\}\). A direct way to see this is by thinking of \((S(i), i \geq 0)\) as (an extension of) the depth-first queue process of a Bienaymé tree. If the tree is infinite, then the process goes on forever (and \(\tau = \infty\)); and if the tree is finite then its size is precisely \(\tau\).

Using the above proposition, we can verify the identity (1.4.1) and so show that the Borel(1) distribution is an honest-to-goodness probability distribution. In fact, we may as well show something slightly more general. Fix \(\lambda \in [0, 1]\), let \((D_i, i \geq 1)\) be independent Poisson(\(\lambda\)) random variables, and let \(T\) be a Bienaymé tree with Poisson(\(\lambda\)) offspring distribution. By the fundamental theorem of branching processes, \(P\{|T| < \infty\} = 1\). Moreover, for all \(k \in \mathbb{N}\), we have
\[
P\{|T| = k\} = \frac{1}{k} P\{D_1 + \cdots + D_k = k - 1\}
= \frac{1}{k} P\{\text{Poisson}(\lambda k) = k - 1\}
= \frac{1}{k} e^{-\lambda k} (\lambda k)^{k-1} (k-1)!.
\]
Summing over \(k \geq 1\) yields that
\[
1 = P\{|T| < \infty\} = \sum_{k \geq 1} \frac{e^{-\lambda k} (\lambda k)^{k-1}}{k!}.
\]
The case \(\lambda = 1 \) of this identity is (1.4.1).

The next exercise extends Proposition 2.5.1 to forests; you can prove it by considering the depth-first queue process of a forest, which is obtained by concatenating the depth-first queue processes of its constituent trees.

Exercise 2.5.1. Let \(\mu \) be a probability distribution with support \(\mathbb{N} \), and let \((T_i, i \geq 1) \) be independent Bienaymé(\(\mu \)) trees. Prove that for any \(1 \leq r \leq n \),

\[
P \{|T_1| + \ldots + |T_n| = r\} = \frac{r}{n} P \{D_1 + \ldots + D_n = n - r\},
\]

where \((D_i, i \geq 1) \) are independent \(\mu \)-distributed random variables.

In place of the cycle lemma, one may use the following lemma to prove Proposition 2.5.1. This lemma is weaker than the cycle lemma, but the proof is perhaps more straightforward.

Lemma 2.5.2. Let \((X_i, i \geq 1) \) be IID random variables taking values in \(\{-1, 0, 1, \ldots\} \). Fix \(k \geq 0 \) and for \(n \geq 0 \) let \(S_n = k + X_1 + \ldots + X_n \). Then for all \(n \geq 1 \), writing \(\tau_0 = \inf\{m \in \mathbb{N} : S_m = 0\} \),

\[
P \{\tau = n\} = \frac{k}{n} P \{S_n = 0\}
\]

Proof. Write \(P_k \{\cdot\} \) as shorthand for the measure under which \(S_0 = k \). We prove the theorem by induction on \(n \). When \(n = k = 1 \) the theorem is obvious; in that case

\[
P_1 \{\tau_0 = 1\} = P \{X_1 = -1\} = P_1 \{S_1 = 0\}.
\]

Also note that for all \(n \), the case \(k = 0 \) is obvious as in that case both sides of the equation equal zero.

Now fix \(n > 1 \) and \(0 < k \leq n \). Condition on the value of \(X_1 \) and use the Markov property: given that \(X_1 = i \), the remaining steps look like a random walk started from position \(k + i \). After the first step, we have \(n - 1 \) more steps to get to time \(n \), so for \(k \geq 1 \),

\[
P_k \{\tau_0 = n\} = \sum_{i=1}^{\infty} P_{k+i} \{\tau_0 = n-1\} P \{X_1 = i\}.
\]

Since \(k > 0 \), \(n > 1 \), and \(i \geq -1 \), we have \(k + i \geq 0 \) and \(n - 1 \geq 1 \), so we can apply induction to get

\[
P_k \{\tau_0 = n\} = \frac{1}{n-1} \sum_{i=-1}^{\infty} (k+i) P_{k+i} \{S_{n-1} = 0\} P \{X_1 = i\}.
\]

Now we use Bayes’ formula to obtain

\[
P_{k+i} \{S_{n-1} = 0\} P \{X_1 = i\} = P_k \{X_1 = i, S_n = 0\} = P_k \{X_1 = i \mid S_n = 0\} P_k \{S_n = 0\}.
\]
Using this equality in the previous displayed equation, we see that
\[
P_k \{ \tau_0 = n \} = \frac{1}{n-1} P_k \{ S_n = 0 \} \sum_{i=-1}^{\infty} (k+i) P_k \{ X_1 = i \mid S_n = 0 \}
\]
\[
= \frac{1}{n-1} P_k \{ S_n = 0 \} \left(k + E_k \{ X_1 \mid S_n = 0 \} \right).
\]

Given that \(S_n = 0 \), the average step size from starting from \(k \) must be \(-k/n \), so since \(X_1, \ldots, X_n \) are IID we must have \(E_k \{ X_1 \mid S_n = 0 \} = -k/n \). Plugging this into the preceding equation we get
\[
P_k \{ \tau_0 = n \} = \frac{1}{n-1} P_k \{ S_n = 0 \} \left(k - \frac{k}{n} \right)
\]
\[
= \frac{k}{n} P_k \{ S_n = 0 \}.
\]

We finish the section with an exercise connecting conditioned Poisson Bienaymé processes to uniformly random trees.

Exercise 2.5.2. Fix \(\lambda > 0 \) and let \(T \) be a Bienaymé tree with Poisson(\(\lambda \)) offspring distribution.

(a) Show that for any rooted plane tree \(t \) with \(n \) vertices, for any \(\lambda > 0 \),
\[
P \{ T = t \mid |T| = n \} = \frac{1}{n^{n-1}} \prod_{v \in t} e^{\lambda (c(v) - t)}
\]

note that this formula does not depend on \(\lambda \).

(b) Conditionally given that \(|T| = n \), let \(T' \) be the rooted tree obtained from \(T \) by labeling the vertices of \(T \) uniformly at random with labels from \([n]\) and ignoring the plane structure. Prove that \(T \in uT_n \).

(c) Show that if \(\lambda = 1 \) then \(P \{ |T| = n \} \sim (2\pi n^3)^{-1/2} \). (Suggestion: Stirling’s formula.)

(d) Fix \(\epsilon \in (0,1) \) and let \(\lambda = 1 - \epsilon \). Using the formula
\[
P \{ |T| = n \} = \frac{n^{n-1} (e^\epsilon (1 - \epsilon))^n}{\epsilon^n n!}
\]

show that\(^3\)
\[
P \{ |T| = n \} \geq \frac{n^{n-1}}{e^n n!} (1 - \epsilon^2)^n,
\]

that
\[
P \{ |T| = n \} \leq \frac{n^{n-1}}{e^n n!} \left(1 - \frac{\epsilon^2}{3} \right)^n,
\]

and that
\[
P \{ |T| = n \} = \frac{n^{n-1}}{e^n n!} \left(1 - (1 + o(1)) \frac{\epsilon^2}{2} \right)^n,
\]

the final asymptotic holding as \(\epsilon \downarrow 0 \), uniformly in \(n \).

\(^3\) By Stirling’s formula, the lower bound is \((1 + o(1))(2\pi n^3)^{-1/2}(1 - \epsilon)^n\) as \(n \to \infty \).
2.6 Branching processes with immigration

These are very natural extensions of branching processes where at each generation a random number of individuals “immigrate”, joining the current population. The generation size process \((U_n)_{n \geq 0}\) of a branching process with offspring distribution \(\mu\) and immigration distribution \(v\) may be constructed as follows. Let \((X_{n,k}, n, k \geq 1)\) be IID with law \(\mu\), and independently let \((Y_n, n \geq 0)\) be IID with law \(v\). Then set \(U_0 = Y_0\) and, for \(n \geq 0\) let \(U_{n+1} = Y_{n+1} + X_{n,1} + \ldots + X_{n,U_n}\). Note that this construction makes perfect sense with \((Y_n, n \geq 0)\) replaced by a deterministic vector \(y = (y_n, n \geq 0)\) of non-negative integers; this will be useful below.

The next theorem characterizes when immigration leads to super-exponential population growth.

Theorem 2.6.1 (Seneta, 1970). Let \(Y\) have law \(v\). If \(E[\max(\log Y, 0)] < \infty\) then \(\lim_{n \to \infty} U_n / a^n\) exists and is almost surely finite. If \(E[\max(\log Y, 0)] = \infty\) then \(\lim_{n \to \infty} U_n / c^n\) is almost surely infinite for all \(c > 0\).

Lemma 2.6.2. Let \((R_n, n \geq 1)\) be IID and non-negative.

(a) If \(ER_1 < \infty\) then almost surely \(\limsup_{n \to \infty} \frac{R_n}{n} = 0\) and \(\sum_{n \geq 1} e^{R_n} n < \infty\) for all \(c \in (0, 1)\).

(b) If \(ER_1 = \infty\) then almost surely \(\limsup_{n \to \infty} \frac{R_n}{n} = \infty\) and \(\sum_{n \geq 1} e^{R_n} n = \infty\) for all \(c \in (0, 1)\).

Proof. Suppose \(ER_1 < \infty\) and fix any \(\epsilon > 0\). Then

\[
\sum_{n > 0} P\{R_n \geq \epsilon n\} = \sum_{n > 0} P\{R_1 \geq \epsilon n\} \leq \frac{1}{\epsilon} \sum_{n \geq 0} P\{R_1 \geq n\} = \frac{ER_1}{n} < \infty,
\]

so by the first Borel-Cantelli lemma, \(\limsup_{n \to \infty} R_n / n \leq \epsilon\) almost surely, and since \(\log(1 - \alpha) < -\alpha\) for \(\alpha \in (0, 1)\), letting \(N_0 = \sup(n : R_n \geq \epsilon n)\), which is almost surely finite, for all \(c \in (0, 1 - 2\epsilon)\) we have

\[
\sum_{n \geq 1} e^{R_n} n \epsilon^n < \sum_{n \geq 1} e^{R_n + n \log(1 - 2\epsilon)} \\
\leq \sum_{n \geq 1} e^{R_n - 2\epsilon n} \\
\leq \sum_{n \leq N_0} e^{R_n - 2\epsilon n} + \sum_{n > N_0} e^{-\epsilon n} < \infty.
\]

Since \(\epsilon > 0\) was arbitrary, the first result follows.

Next suppose \(ER_1 = \infty\) and fix any \(C > 1\). Then

\[
\sum_{n > 0} P\{R_n \geq Cn\} = \sum_{n > 0} P\{R_1 \geq Cn\} \geq \frac{1}{C} \sum_{n \geq 0} P\{R_1 \geq n\} \geq \frac{ER_1 - C}{C} = \infty,
\]
so by the second Borel-Cantelli lemma, almost surely $R_n/n \geq C$ infinitely often. It follows that almost surely $\limsup_{n \to \infty} R_n/n \geq C$, and for any $c > 1/C$,

$$\sum_{n>0} e^{R_n c^n} \geq \sup_{n>0} e^{R_n c^n} \geq \sup_{n>0} (Cc)^n = \infty.$$

Since $C > 1$ was arbitrary, the second result follows. \hfill \square

Proof of Theorem 2.6.1. First suppose that $E[\max(\log Y_1, 0)] = \infty$. Then for all $c > 0$,

$$\limsup_n \frac{U_n}{c^n} \geq \limsup_n Y_n c^n = \infty,$$

the last inequality holding almost surely by Lemma 2.6.2.

Next suppose that $E[\max(\log Y_1, 0)] < \infty$. Let $U_{n,k}$ be the number of generation-n descendants of generation-k immigrants. Conditionally given Y_k, $U_{n,k}$ is just distributed as the number of individuals in generation $n - k$ of a branching process started with Y_k individuals. Moreover, $U_{n,k}$ is independent of $(Y_j, j \neq k)$, so if $G := \sigma(Y_n, n \geq 1)$ then

$$E\{U_{n,k} \mid G\} = E\{U_{n,k} \mid Y_k\} = Y_k a^{n-k}.$$

Since $U_n = \sum_{k=0}^n U_{n,k}$ it follows that

$$E\{a^{-n}U_n \mid G\} = \sum_{k \leq n} E\{a^{-n}U_{n,k} \mid G\} = \sum_{k \leq n} \frac{Y_k}{a^k}. \tag{2.6.1}$$

Lemma 2.6.2 gives that $\sum_{k \leq n} \frac{Y_k}{a^k} \to \sum_{n \leq 0} \frac{Y_n}{a^n} < \infty$ almost surely, so by the conditional Fatou lemma, almost surely

$$E\left(\liminf_{n \to \infty} a^{-n}U_n \mid G\right) \leq \liminf_{n \to \infty} E\{a^{-n}U_n \mid G\} = \sum_{n \leq 0} \frac{Y_n}{a^n} < \infty.$$

Thus, $P\{\liminf_{n \to \infty} a^{-n}U_n = \infty \mid G\} = 0$ almost surely. But then

$$P\{\liminf_{n \to \infty} a^{-n}U_n = \infty\} = E\left[P\left(\liminf_{n \to \infty} a^{-n}U_n = \infty \mid G\right)\right] = 0,$$

so almost surely

$$\liminf_{n \to \infty} a^{-n}U_n < \infty.$$

It remains to show that $a^{-n}U_n$ converges almost surely. For this we use the submartingale convergence theorem, which states that a submartingale which is bounded in expectation converges almost surely. We have

$$E\{U_{n+1} \mid U_1, \ldots, U_n, G\} = aU_n + Y_{n+1},$$

so $(a^{-n}U_n, n \geq 0)$ is a submartingale with respect to its natural filtration given G; the fact that it is bounded in expectation (given G) follows from (2.6.1). \hfill \square
There is a nice construction of branching processes with immigration within the Ulam-Harris tree. A spinal tree is a pair \((t, p)\), where \(t \in T\) and \(p = p_0, p_1, \ldots\) is a finite or infinite path in \(t\), starting from the root. We write \(p_{\leq n}\) for the truncation of \(p\) at level \(n\), so if \(p\) has at most \(n\) nodes then \(p = p_{\leq n}\), and otherwise \(p_{\leq n} = p_0, p_1, \ldots p_n\).

Let \(X = (X_i, i \in \mathcal{U})\) be IID with distribution \(\mu\). Fix a vector \(y = (y_n, n > 0)\) of non-negative integers, and another vector \(i = (i_n, n > 0)\) of integers with \(1 \leq i_n \leq y_n + 1\) for all \(n > 0\). Let \(P_n = P_n(i) := i_1 \ldots i_n\), so \(P_{n+1} = P_n(i_n+1)\) for \(n \geq 0\), and let \(P = P_0, P_1, \ldots\). Then define a random tree \(T = T(X, y, i)\) containing \(P(i)\), as follows.

1. Let \(\emptyset \in T\) and let \(p_0 = \emptyset\).

2. For \(n \geq 0\), given \(T_{\leq n}\):
 - Let \(c(P_n; T) = y_{n+1} + 1\). (Note that \(i_{n+1} \leq c(P_n; T)\) so \(P_{n+1} \in T_{n+1}\)).
 - For \(v \in T_n\) with \(v \neq P_n\), let \(c(v; T) = X_v\).

Exercise 2.6.1. The process \(|T_{n+1}| - 1, n \geq 0\) is distributed as a branching process with immigration with offspring distribution \(\mu\) and immigration vector \(y\).

We next introduce a sigma-field on spinal trees, much the same as we did for the set of trees \(T\). The set of spinal trees is

\[T^* = \{(t, p) : t \in T, p\ \text{a path in} \ t \ \text{starting at the root}\}. \]

For each \(n \geq 0\), for each pair \((t, v)\) where \(t \in T\) and \(v \in t_n\), we define an equivalence class

\[[(t, v)]_{\leq n} = \{(t', p') \in T^* : t'_{\leq n} = t_{\leq n}, p' \ \text{passes through} \ v\}. \]

Let \(F^*_n = \sigma(\bigcup_{m=0}^n \{(t, p)_{\leq m} : (t, p) \in T^*\})\), and let \(F^* = \sigma(\bigcup_{n \geq 0} F^*_n)\). The reason the definition of \(F^*_n\) has a union over \(m \leq n\) is that we allow for finite paths, which may end at some level \(m \leq n\). Again, \((F^*_n, n \geq 0)\) is a filtration, and it is easy to see that \(F^*_n\) refines \(F_n\) for each \(n\).

2.7 The Kesten-Stigum theorem

Recall that \(M_n = Z_n / \alpha^n\), and that \(M = \limsup_{n \to \infty} M_n\) is the a.s. martingale limit of \(M_n\). The goal of this section is to prove the Kesten-Stigum theorem, which provides necessary and sufficient conditions for \(M_n\) to converge to \(M\) in \(L_1\).

Theorem 2.7.1 (Kesten-Stigum Theorem). Fix an offspring distribution \(\mu\) with \(\alpha = \sum_{i \geq 1} i \mu(i) > 1\). Let \(T\) be \(B_{\alpha}\)-distributed, and let \(M_n\) and \(M\) be defined as above. Then the following are equivalent.
(i) $P\{M = 0\} = P\{|T| < \infty\}$

(ii) $EM = 1$

(ii) $\sum_{i \geq 1} \mu(i) \cdot i \log i < \infty$.

Remarks.

• Note that if ω is such that $|T(\omega)| < \infty$ then $M_n(\omega) = 0$ for all n large, so $M(\omega) = 0$. It follows that $P\{M = 0\} \geq P\{|T| < \infty\}$.

• By the uniformly integrable martingale convergence theorem, $EM_n \to EM$ if and only if (M_n) is uniformly integrable (in which case $M_n \overset{L^1}{\to} M$), so a fourth equivalent condition which can be added to the Kesten-Stigum theorem is that (M_n) is UI.

To prove the Kesten-Stigum theorem we use a beautiful method called a “spinal change of measure”. The size-biasing $\hat{\mu}$ of μ is the probability distribution with $\hat{\mu}(i) = i\mu(i)/\alpha$. Note that if X has law $\hat{\mu}$ then $P\{X \geq 1\} = 1$.

Let ν be the probability measure on \mathbb{Z}^+ defined by setting $\nu(i) = \hat{\mu}(i - 1)$ for all i. Let $X = (X_0, v \in U)$ are independent with law μ, let $Y = (Y_n, n > 0)$ be independent with law ν, and let $U = (U_n, n > 0)$ be independent Uniform$[0,1]$ random variables, with X, Y and U mutually independent. For $n > 0$ let $I_n = \lfloor (Y_n + 1)U_n \rfloor$, so that I_n is a uniformly random element of $\{1, \ldots, Y_n + 1\}$. Then write BPI^*_μ for the law of the pair $(T, P) = (T(X, Y, I), P(I))$, and let BPI_μ be the law of the tree $T = T(X, Y, I)$ obtained from (T, P) by “ignoring the spine”.

Proposition 2.7.2. For any offspring distribution μ with $\mu(0) < 1$, and any spinal tree (t, p), for all $n \geq 0$,

$$BPI^*_\mu(t_{\leq n}, p_{\leq n}) = \frac{1}{\alpha^n} B\mu(t_{\leq n}).$$

Proof. Let (T, P) be constructed as above, so that

$$BPI^*_\mu(t_{\leq n}, p_{\leq n}) = P\{(T_{\leq n}, P_{\leq n}) = (t_{\leq n}, p_{\leq n})\}.$$

Then write

$$P\{(T_{\leq n}, P_{\leq n}) = (t_{\leq n}, p_{\leq n})\} = \prod_{i=0}^{n-1} P\{T_{i+1} = t_{i+1}, P_{i+1} = p_{i+1} \mid (T_{\leq i}, P_{\leq i}) = (t_{\leq i}, p_{\leq i})\}.$$

Now, given that $(t_{\leq i}, p_{\leq i})$, in order to have $T_{i+1} = t_{i+1}$ and $P_{i+1} = p_{i+1}$, the following must occur: p_i must have the right number of children; the correct extension of $p_{\leq i}$ must be chosen; and all the other nodes in t_i must also have the right number of children. The
probability of all these occurring is
\[P \{ T_{i+1} = t_{i+1}, P_{i+1} = p_{i+1} \mid (T_{\leq i}, P_{\leq i}) = (t_{\leq i}, p_{\leq i}) \} = \hat{\mu}(c(p; t)) \cdot \frac{1}{c(p; t)} \cdot \prod_{v \in t, v \neq p_i} \mu(c(v; t)) \]
\[= \frac{c(p; t) \mu(c(p; t))}{\alpha} \cdot \frac{1}{c(p; t)} \cdot \prod_{v \in t, v \neq p_i} \mu(c(v; t)) \]
\[= \frac{1}{\alpha} \prod_{v \in t} \mu(c(v; t)), \]
which combined with the two previous equations gives
\[B_{\mu}^{\ast}(t_{\leq n}, p_{\leq n}) = \prod_{i=0}^{n-1} \left(\frac{1}{\alpha} \prod_{v \in t_i} \mu(c(v; t)) \right) = \frac{1}{\alpha^n} B_{\mu}(t_{\leq n}). \]
\[\square \]

Corollary 2.7.3. For all \(n \geq 0 \),
\[\frac{dB_{\mu} |_{F_n}}{dB_{\mu} |_{F_n}} = M_n. \]

Proof. For any subtree \(\mathcal{U} \), by definition,
\[B_{\mu}^{\ast}(t_{\leq n}) = \sum_p B_{\mu}^{\ast}(t_{\leq n}, p), \]
where the sum is over paths \(p \) from the root to generation \(n \) in \(t_{\leq n} \).
But the number of such paths is just \(|t_n| \). Using Proposition 2.7.2 and
the fact that \(M_n(t) = |t_n| / \alpha^n \), we thus have
\[B_{\mu}^{\ast}(t_{\leq n}) = \frac{|t_n|}{\alpha^n} B_{\mu}(t_{\leq n}) = M_n(t) \cdot B_{\mu}(t_{\leq n}), \]
and the result follows. \(\square \)

Before proving the Kesten-Stigum theorem, we need one further lemma.

Lemma 2.7.4. Either \(P \{ M = 0 \} = P \{ |T| < \infty \} \) or \(P \{ M = 0 \} = 1 \).

Proof. If \(i \in T_1 \) then the subtree of \(T \) rooted at \(i \) is itself a \(B_{\mu^r} \)
branching process. Writing
\[M_n^{(i)} = \frac{1}{\alpha^{n-1}} \# \{ v \in T_n : 1 \text{ is an ancestor of } v \}, \]
then \(M_n^{(i)} \) is a martingale; writing \(M^{(i)} \) for its almost sure limit, we may decompose \(M \) as
\[M = \frac{1}{\alpha} \left(M_n^{(1)} + \ldots + M_n^{(X_0)} \right). \]
Conditionally given that \(X = k \), the limits \(M_1^{(k)}, \ldots, M_n^{(k)} \) are independent copies of \(M \), and \(M = 0 \) if and only if each of \(M_1^{(1)}, \ldots, M_n^{(k)} \) equals zero. Thus

\[
p := P\{M = 0\} = \sum_{k \geq 0} P\{X = k\} P\{M = 0\}^k = E[p^X].
\]

The only roots the equation \(s = E[s^X] \) are \(P\{|T| < \infty\} \) and 1, so the lemma follows.

Proof of Theorem 2.7.1. Let \(X \) have law \(\mu \), let \(Y \) have law \(\nu \) where \(\nu(i) = \hat{\mu}(i+1) \), and let \(L = \log(Y+1) \). It is easy to verify that \(E[L] < \infty \) if and only if \(E[\log^+ Y] < \infty \), and

\[
E[X \log^+ X] = \sum_{i > 0} (i \log i) \mu(i) = \sum_{i > 0} \log(i) \hat{\mu}(i) = E_L,
\]

so by Theorem 2.6.1 BPI\(\mu(M < \infty) = 1 \) if and only if \(E[L] < \infty \), i.e. if and only if \(E[X \log^+ X] < \infty \).

We now use that

\[
M = \limsup_n M_n = \limsup_n \frac{d\tilde{B}_\mu||F_n}{d\hat{B}_\mu||F_n}.
\]

by Corollary 2.7.3. Since

\[
EM = \int M(t)B_\mu(dt) = B_\mu(M),
\]

It follows by Theorem 3.3.1 that \(EM = 1 \) if and only if BPI\(\mu(M < \infty) = 1 \), which occurs if and only if \(E[X \log^+ X] < \infty \).

Now, if \(EM = 1 \) we must have \(P\{M = 0\} < 1 \), in which case \(P\{M = 0\} = P\{|T| < \infty\} \) by Lemma 2.7.4.

Finally, if \(E[X \log^+ X] = \infty \) then BPI\(\mu(M = \infty) = 1 \), and by Theorem 3.3.1 this implies that \(B_\mu(M = 0) = 1 \), or in other words, that \(P\{M = 0\} = 1 \); we then have \(EM = 0 < 1 \). \(\square \)
3
Random graphs

3.1 The Erdős-Rényi process

We begin with the classical Erdős-Rényi processes. Write K_n for the complete graph, i.e. the graph with vertices $[n]$ and edges $\{\{i, j\}, 1 \leq i < j \leq n\}$.

The Erdős-Rényi process (discrete time). Choose a uniformly random permutation $e_1, \ldots, e_{\binom{n}{2}}$ of $E(K_n)$. For $0 \leq m \leq \binom{n}{2}$, let $G_m^{(n)}$ have vertices $[n]$ and edges $\{e_1, \ldots, e_m\}$.

The Erdős-Rényi process (continuous time). Let $(U_e, e \in E(K_n))$ be independent $	ext{Uniform}[0, 1]$ random variables. For $p \in [0, 1]$ let $G(n, p)$ have vertices $[n]$ and edges $\{e \in E(K_n) : U_e \leq p\}$.

Note that in the continuous time process since the random variables $(U_e, e \in E(K_n))$ are exchangeable, the ordering $(e_i, 1 \leq i \leq \binom{n}{2})$ of the edges of K_n in increasing order of U_e-value is a uniformly random permutation. Thus, writing $p_i = U_{e_i}$, the sequence of graphs $(G(n, p_m), 0 \leq m \leq \binom{n}{2})$ has the same distribution as the discrete time Erdős-Rényi process. The next exercise contains a closely-related fact.

Exercise 3.1.1. Prove that for any $p \in (0, 1)$ and $0 \leq m \leq \binom{n}{2}$, given that $|E(G(n, p))| = m$, the conditional distribution of $G(n, p)$ is the same as that of $G_m^{(n)}$.

A fair amount of this section is devoted to studying how the component sizes and structures evolve over the course of the Erdős-Rényi process. If we are only interested in component sizes, then we might choose to only consider the coalescent at times when the sizes change, or (informally) to simply ignore any edges added by the Erdős-Rényi coalescent that fail to join distinct components. In
the discrete time process, we may achieve this as follows. For each
$0 \leq m \leq \binom{n}{2}$, let τ_m be the number of edges $e_i = \{U_i, V_i\}$, $0 < i \leq m$
such that U_i and V_i lie in different components of $G^{(n)}_{i-1}$. (See Figure 3.1 for an example.) Observe that
\[
\tau_m + 1 = \begin{cases}
\tau_m & \text{if } G^{(n)}_{m+1} \text{ and } G^{(n)}_m \text{ have the same number of components} \\
\tau_m + 1 & \text{if } G^{(n)}_{m+1} \text{ has one fewer component than } G^{(n)}_m .
\end{cases}
\]
In other words, τ_m increases precisely when the endpoints of the edge added to $G^{(n)}_m$ are in different components. Further, the set
\[
\{e_m : m \geq 1, \tau_m > \tau_{m-1}\}
\]
contains $n-1$ edges, since $G^{(n)}_0$ has n components and $G^{(n)}_{\binom{n}{2}}$ almost surely has only one component.

![Figure 3.1: An example of the first steps of the Erdős-Rényi coalescent. The edges which join distinct connected components are represented by thicker, blue lines.](image)

Set $I_1 = 0$ and for $1 < k \leq n$ let
\[
I_k = \inf\{m \geq 1 : \tau_m = k-1\}.
\]
Then for $1 < k \leq n$, the edge e_{I_k} joins distinct components of $G^{(n)}_{I_k-1}$, and by symmetry is equally likely to be any such edge.

3.2 Component sizes when $p < 1/n$.

For a graph G, and $v \in V(G)$, let $N(v) = N_G(v)$ be the set of vertices adjacent to v, and let $C(v) = C_G(v)$ be the component of G containing v.

Exercise 3.2.1. (a) Show that in the discrete time Erdős-Rényi process, if for some m, all components of $G^{(n)}_m$ have size at most s then the probability a uniformly random edge from among the remaining edges has both endpoints in the same component is at most $(s-1)/(n-1)$.

(b) Show that for all $0 \leq m \leq \binom{n}{2}$, in $G^{(n)}_m$, $\mathbb{E}|N(v)| = 2m/n$.

(c) Prove by induction that for all $0 \leq m < n/2$, in $G^{(n)}_m$, $\mathbb{E}|C(1)| \leq n/(n-2m)$.

(Hint. First condition on $N(1)$, then average.)
(d) Prove that for all $k \in \mathbb{N}$,
\[
\mathbb{P} \left\{ |C_{\text{max}}(G_m(n))| \geq k \right\} \leq \frac{n}{k} \mathbb{P} \left\{ |C(1)| \geq k \right\}.
\]
(Suggestion. Given that the largest component of $G_m(n)$ has size s, with probability at least s/n vertex 1 is in such a component.)

Exercise 3.2.2. This exercise is the continuous-time analogue of the previous one.

(a) Show that in the continuous-time Erdős-Rényi process, if for some p, all components of $G(n, p)$ have size at most s then the probability a uniformly random edge from among the remaining edges has both endpoints in the same component is at most $(s - 1)/(n - 1)$.

(b) Show that for all $p \in (0, 1)$, in $G(n, p)$, $\mathbb{E}|N(v)| = (n - 1)p$.

(c) Prove by induction that for all $p \leq 1/(n - 1)$, in $G(n, p)$, $\mathbb{E}|C(1)| \leq 1/(1 - p(n - 1))$.
(Suggestion. First condition on $N(1)$, then average.)

(d) Prove that for all $k \in \mathbb{N}$, in $G(n, p)$,
\[
\mathbb{P} \left\{ |C_{\text{max}}(G(n, p))| \geq k \right\} \leq \frac{n}{k} \mathbb{P} \left\{ |C(1)| \geq k \right\}.
\]
(Suggestion. Given that the largest component of $G_m(n)$ has size s, with probability at least s/n vertex 1 is in such a component.)

Exercise 3.2.3. Fix $p \in (0, 1)$, $\lambda > 0$ and $n \in \mathbb{N}$. Let B be Binomial(n, p) and P be Poisson(λ).

(a) For $k \in \mathbb{N}$ let $r(k) = \mathbb{P} \left\{ B = k \right\} / \mathbb{P} \left\{ P = k \right\}$. Show that $r(k)$ is decreasing in k.

(b) Prove that if $r(0) > 1$ then there is $k^* \in \mathbb{N}$ such that $\mathbb{P} \left\{ B = k \right\} \geq \mathbb{P} \left\{ P = k \right\}$ for $k \leq k^*$ and $\mathbb{P} \left\{ B = k \right\} < \mathbb{P} \left\{ P = k \right\}$ for $k > k^*$.

(c) Prove that if $(1 - p)^n > e^{-\lambda}$ then $B \leq_{st} P$.

(d) Show that $(1 - p) > e^{-p/(1 - p)}$ for $p \in [0, 1)$, and conclude that if $np/(1 - p) \leq \lambda$ then $B \leq_{st} P$.

For the next exercise, recall that the total variation distance between two random variables X and Y is
\[
\|X - Y\|_{TV} := \sup \{ |\mathbb{P} \{ X \in S \} - \mathbb{P} \{ Y \in S \} | : S \subset \mathbb{R} \text{ Borel} \}.
\]

While not needed for the exercise, we recall that
\[
\|X - Y\|_{TV} = \inf \{ \mathbb{P} \{ X' \neq Y' \} : (X', Y') \text{ is a coupling of } X \text{ and } Y \}.
\]
Exercise 3.2.4. (a) Fix $\epsilon > 0$, let X be Bernoulli(ϵ) and let Y be Poisson(ϵ). Show that $\|X - Y\|_{TV} \leq 2\epsilon^2$.

(b) Fix $\lambda > 0$ and $n \in \mathbb{N}_+$, let B be Binomial($n, \lambda/n$) and let P be Poisson(λ). Show that $\|B - P\|_{TV} \leq 2\lambda^2/n$. (Suggestion: use the fact that total variation distance satisfies the triangle inequality.)

We can use the above exercises to start to understand component sizes in $G_{\text{nc}}^{(n)}$ and in $G(n, p)$ in more detail. In $G(n, p)$, by Exercise 3.2.2 parts (c) and (d),
\[
P\{\max_{\omega}(|C(G(n, p))| \geq k) \} \leq \frac{n^k}{k^k} P\{\max_{\omega}(|C(1)| \geq k) \} \\
\leq \frac{n^k}{k^k} E[|C(1)|] \\
\leq \frac{n}{k^2(1 - p(n - 1))}.
\] (3.2.1)

If $p = p(n) = c/n$ with $c \in (0, 1)$, this yields that for any function $\omega(n) \to \infty$
\[
P\{\max_{\omega}(|C(G(n, p))| \geq \omega(n)n^{1/2}) \} \to 0,
\]
so in particular $|C(G(n, p))|/n \to 0$ in probability. In fact, we can deduce this even for p quite close to $1/n$. Fix any function $\epsilon(n) \to 0$ with $n\epsilon(n) \to \infty$ and let $p = (1 - \epsilon(n))/n$. Then $1 - p(n - 1) \geq 1 - pn = \epsilon(n)$, so for any $\delta > 0$, the bound (3.2.1) gives
\[
P\{\max_{\omega}(|C(G(n, p))| \geq \delta n) \} \leq \frac{1}{\delta^2 n \epsilon(n)} \to 0;
\]
it again follows that $|C(G(n, p))|/n \to 0$ in probability.

Exercise 3.2.5. Show that if $p = p(n)$ is any sequence of values such that $|C(G(n, p))|/n \to 0$ in probability, then also $E|C(G(n, p))|/n \to 0$.

Though it might seem boring, it’s useful to do a third version of this computation, with $p = (1 - \lambda n^{-1/3})/n$ and $\lambda > 0$. For this value of p we have
\[
1 - p(n - 1) \geq \lambda n^{-1/3},
\]
so for any function $\omega(n)$ with $\omega(n) \to \infty$, we have
\[
P\{\max_{\omega}(|C(G(n, p))| \geq \omega(n)n^{2/3}) \} \leq \frac{n}{(\omega(n)n^{2/3})^2 (1 - p(n - 1))} \leq \frac{1}{\omega(n)^2 \lambda} \to 0;
\]
so with high probability the largest component of $G(n, (1 - \lambda n^{-1/3})/n)$ has size $O(n^{2/3})$.

In fact, we can even prove bounds on component sizes when $p = 1/n$ or when p is a little bigger than $1/n$, with a bit of care.
Since for any vertex v in $G(n, p)$, we have $|N(v)| \overset{\text{d}}{=} \text{Bin}(n - 1, p)$, but
neighbourhoods may overlap, it follows that $|C(v)|$ is stochastically dominated by the size of a Bienaymé process with $\text{Bin}(n-1, p)$ offspring distribution. Using the stochastic relation between Binomial and Poisson random variables given in Exercise 3.2.3, it follows that

$$|C(v)| \preceq_{st} |T|,$$

where $|T|$ is a Poisson(λ) Bienaymé tree with $\lambda = np/(1-p)$.

Now suppose $p = (1+\epsilon)/n$ for $\epsilon \in (0, 1)$; think of ϵ as close to zero. Then $\lambda = (1+\epsilon)(1+(1+\epsilon)/(n-1-\epsilon)) < 1 + \epsilon + 2(1+\epsilon)/n$, the second inequality holding for $n \geq 4$.

Therefore,

$$\mathbb{P}\{|C(v)| \geq s\} \leq \mathbb{P}\{|T| \geq s\} \leq \mathbb{P}\{|T| = \infty\} + \mathbb{P}\{|T| \geq s\ \mid |T| < \infty\}.$$

By Exercise 2.3.4 (e) we know that

$$\mathbb{P}\{|T| = \infty\} = \theta(\lambda) \leq 2(\lambda - 1) < 2(\epsilon + 2(1+\epsilon)/n).$$

Moreover, conditionally given that $|T| < \infty$, the tree T is distributed as a Poisson($\hat{\lambda}$) Bienaymé tree, where $\hat{\lambda} = \lambda(1-\theta(\lambda)) = 1-\epsilon(1+o(1))$ as $\epsilon \to 0$, by Exercise 2.4.1 (b). If ϵ is sufficiently small that $|\hat{\lambda} - (1-\epsilon)| \leq \epsilon/2$, then it follows that

$$\mathbb{P}\{|T| \geq s\ \mid |T| < \infty\} \leq \sum_{m=s}^{\infty} \mathbb{P}\{|T^*| = m\},$$

where T^* is a Poisson($1-\epsilon/2$) Bienaymé tree. Using Exercise 2.5.2 (c), we then have

$$\sum_{m=s}^{\infty} \mathbb{P}\{|T^*| = m\} \leq \sum_{m=s}^{\infty} \frac{m^{m-1}}{e^m m!} \left(1 - \frac{\epsilon^2/2}{3}\right)^m \leq O(1) \cdot \sum_{m=s}^{\infty} \frac{1}{m^{3/2} e^{-\epsilon^2m/6}}.$$

[The last bit of the section can be improved, we can get bounds even when $\epsilon = 0$. When $s = x/\epsilon^2$ for x positive and bounded away from zero, this sum is]

$$O(\epsilon) \cdot x^{-3/2}e^{-x/6}.$$

It follows that for any $\delta > 0$ there is x such that for all n sufficiently large, in $G(n, (1+\epsilon)/n)$,

$$\mathbb{P}\{|C(v)| \geq x/\epsilon^2\} \leq (2+\delta)\epsilon.$$
3.3 Explorations of graphs

Before analyzing component sizes further, we need to introduce some more tools: exploration process for graphs. Let G be a graph with vertex set $[n]$. We will explore the components of G via a procedure called depth-first search; this is closely linked to the depth-first queue process seen above. In depth-first search, at each step one vertex is “explored”: its neighbors are revealed, and the previously undiscovered neighbors are added to the queue for later exploration.

Formally, in the depth-first search of graph G, at step i the vertex set $[n]$ is partitioned into sets E_i, D_i and U_i, respectively containing explored, discovered, and undiscovered vertices. We initialize the process by taking $E_1 = \emptyset, D_1 = \{1\}$, and $U_1 = [n] \setminus \{1\}$. The process will conclude with $E_n = [n]$ and $U_n = \emptyset = D_n$, between step 1 and n every vertex will be discovered and explored. We define the priority of a vertex $v \in [n]$ to be its time of discovery $\inf \{ j : v \in D_j \}$, so vertices that are discovered later have higher priority.\footnote{This is what makes the process a depth-first search process; if vertices discovered earlier had higher priority we would instead obtain breadth-first search.}

<table>
<thead>
<tr>
<th>Search process for G.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step $i (1 \leq i \leq n)$:</td>
</tr>
<tr>
<td>* Let v_i be the vertex of D_i with the highest priority (if there is a tie, pick the vertex with smallest label among top-priority vertices).</td>
</tr>
<tr>
<td>* If $(D_i \cup (N(v_i) \cap U_i)) \setminus {v_i}$ is non-empty then let $D_{i+1} = (D_i \cup (N(v_i) \cap U_i)) \setminus {v_i}$.</td>
</tr>
<tr>
<td>* If $(D_i \cup (N(v_i) \cap U_i)) \setminus {v_i}$ is empty then let D_{i+1} contain the smallest-labeled vertex of U_i (and nothing else), or set $D_{i+1} = \emptyset$ if $U_i = \emptyset$.</td>
</tr>
<tr>
<td>* Set $U_{i+1} = U_i \setminus D_{i+1}$ and $E_{i+1} = E_i \cup {v_i}$.</td>
</tr>
</tbody>
</table>

The process always ends with $U_n = U_{n+1} = \emptyset = D_{n+1}$ and with $E_{n+1} = [n]$, and we just focus on the process at steps $1 \leq i \leq n$. Note that $((D_i, E_i, U_i), i \in [n])$ can be recovered from either $(D_i, i \in [n])$ or $(U_i, i \in [n])$.

A component exploration concludes at step i if precisely $(D_i \cup (N(v_i) \cap U_i)) \setminus \{v_i\}$ is empty, which is to say that, after exploring v_i (but before adding v_{i+1}, if $i < n$), every vertex which has been discovered has also been explored. Let $(T(j), 1 \leq j \leq \kappa)$ be the times at which a component exploration concludes; so κ is the number of connected components of G. Writing $X(i) = X_G(i) = |N(v_i) \cap U_i| - 1$ and $S(i) = \sum_{j=1}^{i} X(j)$, then we may re-express $T(j)$ as

$$T(j) = \min \left(t \geq 0 : \sum_{i=0}^{j} X(i) \leq -j \right) = \min \left(t \geq 0 : S(t) \leq -j \right).$$
Setting $T(0) = 0$, the component sizes of G, in the order they are discovered by the depth-first search, are then

$$(T(j + 1) - T(j), 0 \leq j < \kappa).$$
Martingale limits and changes of measure

The next theorem describes how the dichotomy between absolute continuity and mutual singularity of measures manifests when observed along a filtration.

Theorem 3.3.1. Let \((\Omega, \mathcal{F}, P)\) be a measurable space and let \(Q\) be a finite measure on \((\Omega, \mathcal{F})\). Fix an increasing sequence of sub-\(\sigma\)-fields \((\mathcal{F}_n)_{n \geq 1}\) with \(\sigma(\bigcup_n \mathcal{F}_n) = \mathcal{F}\). Write \(P_n := P|\mathcal{F}_n\) and \(Q_n := Q|\mathcal{F}_n\). Suppose that \(Q_n \ll P_n\) for all \(n\), and write \(X_n = dQ_n/dP_n: \Omega \to [0, \infty)\) for the corresponding Radon-Nikodým derivatives. Then setting \(X = \limsup_{n \to \infty} X_n\), it holds that

\[
Q = XP + Q1_{X=\infty}. \tag{3.3.1}
\]

Exercise 3.3.1. In the notation of Theorem 3.3.1, show that \((X_n, n \geq 1)\) is an \(\mathcal{F}_n\)-martingale for \(P\).

Remark. Since the \(X_n\) are non-negative, Exercise 3.3.1 implies that \(X_n\) converges \(P\)-almost surely, so we must have \(P\left\{\lim_{n \to \infty} X_n = X\right\} = 1\). But it is standard that if \(Z_n \overset{P}{\to} Z_\infty\) and \(\mathbb{E}|Z_n| < \infty\) for all \(n\), then \(\mathbb{E}|Z_n| \to \mathbb{E}|Z|\) if and only if \((Z_n, n \geq 1)\) is uniformly integrable. This means that there is another equivalent property which may be added to (1) in Theorem 3.3.1: that \((X_n, n \geq 1)\) is \(P\)-uniformly integrable.

Exercise 3.3.2. Let \((X_n, 1 \leq n \leq \infty)\) be random variables in \(L_1(\Omega, \mathcal{F}, P)\) such that \(X_n \overset{P}{\to} X_\infty\). Prove that the following are equivalent: (a) \(X_n \overset{L_1}{\to} X_\infty\); (b) \((X_n, 1 \leq n \leq \infty)\) is uniformly integrable; (c) \(\mathbb{E}|X_n| \to \mathbb{E}|X_\infty|\).

Lemma 3.3.2. In the setting of Theorem 3.3.1, if \(Q \ll P\) then \(Q = XP\).

Recall that \(Q = XP\) is shorthand for the statement that for all \(E \in \mathcal{F}\),

\[
Q(E) = \int_E dQ = \int_E X dP = \mathbb{E}_P\left\{X 1_{[E]}\right\}.
\]

Proof. First suppose \(Q\) is absolutely continuous with respect to \(P\). Then the Radon-Nikodým derivative \(\tilde{X} = dQ/dP\) exists and satisfies \(Q(\tilde{X} = \infty) = 0\), so we just want to show that for all \(E \in \mathcal{F}\),

\[
Q(E) = \mathbb{E}_P\left\{X 1_{[E]}\right\}.
\]
For all $E \in F$, by the definition of the Radon-Nikodým derivative,
\[
E_Q \left\{ 1_E \right\} = \int_E 1dQ = \int_E \tilde{X}dP = E_P \left\{ \tilde{X}1_E \right\}.
\] (3.3.2)

For all $E \in F_n$, we also have
\[
E_P \left\{ X_n1_E \right\} = \int_E X_n dP \\
= \int_E X_n dP_n \quad \text{(Homework)} \\
= \int_E 1dQ_n \quad \text{(Since } X_n = dQ_n/dP_n) \\
= \int_E 1dQ \\
= E_Q \left\{ 1_E \right\},
\]
so X_n is a version of $E [\tilde{X} \mid F_n]$. Since $F_\infty := \sigma(\bigcup_{n \to \infty} F_n) = F$, the non-negative martingale convergence theorem then gives that P-almost surely
\[
X_n \to E [\tilde{X} \mid F_\infty] = E [\tilde{X} \mid F] = \tilde{X}.
\]

But $X = \limsup_{n \to \infty} X_n$ by definition, so P-almost surely $X = \tilde{X}$. Thus $E_P \left\{ \tilde{X}1_E \right\} = E_P \left\{ X1_E \right\}$, and the result follows from (3.3.2).

Proof of Theorem 3.3.1. Let π be the average of P and Q, so $\pi(E) = (P(E) + Q(E))/2$ for $E \in F$. For $n \geq 1$ let $\pi_n = \pi|_{F_n} = (P_n + Q_n)/2$. Then both P and Q are absolutely continuous with respect to π, and likewise P_n and Q_n are absolutely continuous with respect to π_n for all $n \geq 1$.

Write $U_n = dQ_n/d\pi_n$ and $V_n = dP_n/d\pi_n$ and let $U = \limsup_{n \to \infty} U_n$ and $V = \limsup_{n \to \infty} V_n$. Since $Q \ll \pi$ it follows by Lemma 3.3.2 (applied with π in place of P) that π-almost surely $U_n \to U$ and that $Q = U\pi$. Likewise, applying Lemma 3.3.2 with π in place of P and P in place of Q, it follows that π-almost surely $V_n \to V$ and that $P = V\pi$.

Next, π-almost surely we have
\[
U_n + V_n = \frac{dQ_n}{d\pi_n} + \frac{dP_n}{d\pi_n} = 2\frac{d\pi_n}{d\pi_n} = 2.
\]
It follows that
\[
\pi(U + V = 0) = \pi(\limsup_{n} (U_n + V_n) = 0) = 0,
\]
so π-almost surely, U/V is well-defined (and equal to ∞ if $U = \infty$.
and \(V = 0 \), and

\[
\frac{U}{V} = \lim_{n \to \infty} \frac{U_n}{V_n}
\]

\[
= \lim_{n \to \infty} \frac{U_n}{V_n}
\]

\[
= \lim_{n \to \infty} X_n \quad \text{(chain rule)}
\]

\[= X.\]

Finally, we already know \(Q = U \pi \) and \(P = V \pi \). We may also write

\[
U = XV + UI_{[V = 0]} = XV + UI_{[X = \infty]}, \text{ so}
\]

\[
Q = U \pi = XV \pi + I_{[X = \infty]} U \pi = XP + I_{[X = \infty]} Q,
\]

as claimed.

\[\square\]

Corollary 3.3.3. In the setting of Theorem 3.3.1, we have the following.

1. \(Q \ll P \iff Q(X = \infty) = 0 \iff E_P X = 1. \)
2. \(Q \perp P \iff Q(X = \infty) = 1 \iff E_P X = 0. \)

Proof. If \(Q \ll P \) then by Lemma 3.3.2 we have \(Q = XP \) so clearly \(Q(X = \infty) = 0. \) We now repeatedly use (3.3.1). If \(Q(X = \infty) = 0 \) then by (3.3.1) we have

\[
E_P \{X\} = E_Q \{1\} - E_Q \{1_{[X = \infty]}\} = 1.
\]

If \(E_P \{X\} = 1 \) then again by (3.3.1), \(Q(X = \infty) = 0 \) so \(Q = XP \) and thus \(Q \ll P. \) This proves the first line of equivalences of the theorem.

Note that by Exercise 3.3.1, \(X_n \) is an \(F_n \)-martingale for \(P \) so \(E_P \{X\} \leq \liminf_{n \to \infty} E_P \{X_n\} < \infty. \) It follows that \(P(X = \infty) = 0. \)

If \(Q \perp P \) then \(Q \) has no absolutely continuous part with respect to \(P. \) On the other hand, \(XP \ll P, \) so by (3.3.1) we must have \(Q = I_{[X = \infty]} Q; \) this in turn implies that \(Q(X = \infty) = 1. \)

If \(Q(X = \infty) = 1 \) then by (3.3.1), \(E_P \{X\} = \int X dP = XP = 0. \)

Finally, if \(XP = 0 \) then by (3.3.1) we have \(Q(X = \infty) = 1. \) But \(PX = \infty = 0, \) which implies \(Q \perp P. \) \[\square\]