
MATH 587/589 COURSE NOTES

LOUIGI ADDARIO-BERRY
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1. Acknowledgements

Thanks to Huangchen Zhou for spotting many typos and making useful suggestions.

2. Notation

We write LX or µX (Make this consistent.) for the distribution of X . Given a σ-finite measure
µ on R and p > 0, write |µ|p =

(∫
R |x|pdµ(x)

)1/p. If µ is a probability distribution and X has
law µ then |µ|p = (E [|X|p])1/p. For a random variable X we’ll write ‖X‖p = (E [|X|p])1/p; if
the space in question is ambiguous we may instead write ‖X‖Lp(Ω,F ,P).

3. Why measure theory?

This is a somewhat hard question to answer rigorously, but I recently (2020) learned about the
connection between hat problems, the axiom of choice, and measurability, that I find helpful as a
motivation. It works as follows.

First, here is a cooperative game for n players, labeled 1, . . . , n. Each player is wearing either
a white (0) or a black (1) hat, and can see the colour of all the hats aside from their own. In order
from 1, . . . , n, the players guess the colour of their own hat. (No communication is allowed aside
from observing the guesses of the previous players.) The players win if everyone except for player 1
guesses correctly.

A winning strategy for the players is as follows. Player 1 reports the parity of the number of
black hats worn by players 2, . . . , n. Based on this, everyone can deduce the colour of their own
hat (because player i is wearing a black hat iff player i sees a different parity of black hats among
2, . . . , n than that reported by player 1).

The infinite player version is similar to the finite-player version, except that there are infinitely
many players (so the set of players is now N = {1, 2, 3, . . .}). The serial (sequential) game is still
interesting, but the parallel game is easier to analyze, so we focus on that. We thus insist that all
players guess simultaneously and that no communication is allowed (equivalently, no one has access
to the guesses of anyone else when making their own guess). For this infinite game, we will relax the
winning condition - now say that the players win if all but a finite number of players guess correctly.

The winning strategy for the infinite game requires the axiom of choice.1 The axiom of choice
states that for any collection (Si, i ∈ I) of nonempty sets indexed by some set I , there exists a
collection s = (si, i ∈ I) with si ∈ Si for all i ∈ I ; so s is a function “choosing” one element from
each of the sets Si.

We use the axiom of choice as follows. Each assignment of hats to players can be represented by
an element of {0, 1}N. Say that two assignments ω, ω′ are equivalent, and write ω ∼ ω′, if ω and
ω′ differ in only finitely many coordinates. Then∼ is an equivalence relation, so defines a partition
(Si, i ∈ I) of {0, 1}N, where ω, ω′ lie in the same part of the partition if and only if ω ∼ ω′.

Let (si, i ∈ I) be such that si ∈ Si for all i ∈ I ; this chooses for us a representative for each
equivalence class. Write si = (si(j), j ∈ N), so si(j) = 1 if player j has a black hat in assignment
si, and si(j) = 0 otherwise. Now define a strategy as follows. Given ω ∈ {0, 1}N , let i = i(ω) ∈ I
be such that ω ∼ si; note that all players can deduce i from observing the hat assignment ω, since
i is the unique index for which ω and si differ in only finitely many entries. Then player j guesses
that their hat has colour si(j). Since ω ∼ si, all but finitely many players will have si(j) = ω(j)
and so will guess correctly; so this is a winning strategy.

It may seem counterintuitive that a winning strategy could exist, since no player can see their
own hat, and moreover, changing the colour of any given hat doesn’t change the strategy. And,
indeed, we now show that any measurable strategy has probability at least 1/2 of failing, when the
hat colours are independent and each hat is equally likely to be black or to be white. The measure

1I use the word “required” advisedly; see Theorem 8 of An introduction to infinite hat problems, Hardin and Taylor, 2008;
https://link.springer.com/article/10.1007/BF03038092
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space modelling this is ({0, 1}N,F ,P), where F is the σ-field generated by the cylinder sets and P
is determined by the condition that for any (x1, . . . , xn) ∈ {0, 1}n,

P
{
{ω ∈ {0, 1}N : (ω1, . . . , ωn) = (x1, . . . , xn)}

}
= 2−n.

A measurable strategy for player i is a measurable mapXi : {0, 1}N → {0, 1} such that the events
{Xi = 1} and {ωi = 1} are independent; this condition reflects the fact that player i can not see
the colour of their own hat.

So fix any measurable strategies (Xi, i ∈ N) for the players. Then for all i, the above indepen-
dence implies that

P {Xi 6= ωi} = 1/2,

so by linearity of expectation, for all n ∈ N,

E|{i ∈ [n] : Xi 6= ωi}| = n/2.

FixingK ∈ N, the above identity and the inequality

E|{i ∈ [n] : Xi 6= ωi}| < K + nP {|{i ∈ [n] : Xi 6= ωi}| ≥ K}
together imply that

P {|{i ∈ [n] : Xi 6= ωi}| ≥ K} > n−K

2n−K
.

Since
lim
n→∞

{|{i ∈ [n] : Xi 6= ωi}| ≥ K} = {|{i ∈ N : Xi 6= ωi}| ≥ K} ,

by the monotone convergence theorem we deduce that

P {|{i ∈ N : Xi 6= ωi}| ≥ K} = lim
n→∞

P {|{i ∈ [n] : Xi 6= ωi}| ≥ K} ≥ 1/2.

Next, the events {|{i ∈ N : Xi 6= ωi}| ≥ K} are decreasing in K, and their limit is the event
{|{i ∈ N : Xi 6= ωi}| = ∞}, so by the dominated convergence theorem (or the monotone
convergence theorem applied to the complementary events) we obtain that

P {|{i ∈ N : Xi 6= ωi}| = ∞} ≥ 1/2,

as claimed.
On the one hand, we have shown that there exists a strategy which always succeeds. On the other

hand, we have shown that any measurable strategy fails with positive probability. The probabilistic
tools we use in the proof are very basic: independence, linearity of expectation, and the monotone
convergence theorem. It is hard to see how to do much probability without those tools. So if we
are to develop probability theory, either we need to find some substantially different approach, or
measure theory is required.

Conjecture. Any measurable strategy fails with probability 1. More formally: consider the prob-
ability space (Ω,F ,P) with Ω = {0, 1}n, F the σ-field generated by the cylinder sets, and P the
measure under which

P {(ω1, . . . , ωn) = (x1, . . . , xn)} = 2−n

for all n ≥ 1 and all (x1, . . . , xn) ∈ {0, 1}n. For i ≥ 1 let Bi : Ω → {0, 1} be the i’th coordinate
map: Bi(ω) = ωi.

Fix any measurable maps (Xi, i ≥ 1) with Xi : Ω → {0, 1} such that

P {Xi = Bi} = 1/2

for all i ≥ 1. Then
P {Xi 6= Bi for infinitely many i} = 1.

I don’t know how to prove this, though I haven’t spent a long time trying. I’ll give some bonus % to
the course grade of the first person or group who solves this; since I don’t yet know how hard the
question is, I’ll determine the amount of the bonus after seeing the solution.
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4. Measure theory

Measure theory is the algebraic underpinning of probability theory. It can feel rather abstract;
but it is worth setting things up clearly.

4.1. Rings, fields and σ-fields. Fix a set Ω and a set A of subsets of Ω with ∅ ∈ A. We say A
is a ring if the following hold.Ring

(a) If E,F ∈ A then E ∪ F ∈ A.
(b) If E,F ∈ A then F \ E ∈ A.

We say A is a π-system if the following holds.π-system

(c) If E,F ∈ A then E ∩ F ∈ A.
Field

We say A is a field if it is a ring and also the following holds.
(d) If E ∈ A then Ec ∈ A.

We say A is a σ-field if it is a field and also the following holds.σ-field

(a’) For any sequence (An, n ≥ 1) of elements of A,
⋃

n≥1An ∈ A.
In all the above cases, we refer to Ω as the ground set. Finally, for an arbitrary set A of subsets of Ω,σ(A)

the σ-field generated by A is
σ(A) :=

⋂
{F⊃A:F a σ−field}

F ;

this is the smallest σ-field containing the set A.

Exercise 4.1. (i) Show that properties (a) and (d) together imply properties (b) and (c).
(ii) Show that a field which is closed under countable disjoint unions is a σ-field.Throughout these notes,

“countable” means “finite
or countably infinite”. Exercise 4.2. Write N := {1, 2, 3, . . .}. For n ∈ N we let [n] := {1, 2, . . . , n}. Say that S ⊂ N has

an asymptotic density if

µ(S) := lim sup
n→∞

|S ∩ [n]|
n

= lim inf
n→∞

|S ∩ {1, 2, . . . , n}|
n

.

Write A for the set of subsets of N which have an asymptotic density. Is A is a π-system? Is it a ring? A field? A
σ-field?

Measurable space
4.2. Building measures. A measurable space is a pair (Ω,F), where F is a σ-field over Ω. Given
such a space, a measure µ on F is a function µ : F → [0,∞] such that µ(∅) = 0, and for any
sequence (An, n ≥ 1) of disjoint elements of F ,Measure

µ

⋃
n≥1

An

 =
∑
n≥1

µ(An) .

We then call (Ω,F , µ) a measure space. You should think of a measure space as a model for a physicalMeasure space

system involving randomness. Sometimes this can be quite concrete. For example, one might take
Ω = [6], F := 2Ω is the power set of Ω, and µ(S) = |S|/6, to model the roll of a fair die; here
µ(S) is the probability that the roll yields a value in S. If we took Ω = [6][2] = {(i, j) : i, j ∈ [6]}
and µ(S) = |S|/36, we could view this as modelling two successive rolls of a fair die.

On the other hand, when doing probability it is often useful to leave the details of the measure
space rather implicit. There are various tools which justify doing this (change of variables, existence
theorems,...), which we’ll see later.

Exercise 4.3. Let µ be a measure on a σ-field F .
(i) [Monotone convergence/Continuity from below.] Show that for any increasing sequence

(En, n ≥ 1) of elements of F , it holds that µ(
⋃

n≥1En) = limn→∞ µ(En).
(ii) [Dominated convergence/Continuity from above.]Show that for any decreasing sequence

(En, n ≥ 1) of elements of F with µ(E1) <∞, it holds that µ(
⋂

n≥1En) = limn→∞ µ(En).
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(iii) [Subadditivity.]Show that for any sequence (En, n ≥ 1) of elements ofF , it holds thatµ(
⋃

n≥1En) ≤∑
n≥1 µ(En).

Exercise 4.4. Which of the following triples (Ω,F , µ) are measure spaces? Can you think of physical systems
which they model?

(a) Ω = N, F the set of subsets of N which have an asymptotic density, µ(S) the asymptotic density of S.
(b) Ω = {0, 1}n, F the power set of Ω, µ({ω}) = p|{i∈[n]:ωi=1}|(1 − p)|{i∈[n]:ωi=0}|, where p ∈

(0, 1) is fixed.
(c) Ω = {0, 1}N, F the power set of Ω, µ(ω) = p|{i∈[n]:ωi=1}|, where p ∈ [0, 1] is fixed.
(d) Ω = [0, 1], F the collection of sets S ⊂ [0, 1] such that either S or [0, 1] \ S is countable, and

µ(S) = |S|.

You have likely seen probability distributions described in terms of cumulative distribution functions
(CDFs). For example, the standard exponential distribution has CDF F (x) = (1 − e−x)1[x≥0],
corresponding to the fact that for E is a standard exponential random variable, P {E ≤ x} =
(1− e−x)1[x≥0]. 2 What F (x) lets us easily compute is probabilities of the formP {E ∈ (a, b]} = Indicator of a set

F (b)− F (a), or P {E ∈
⋃n

i=1(ai, bi]} =
∑n

i=1(F (bi)− F (ai)), where (a1, b1], . . . , (an, bn] are
disjoint intervals. On the other hand, it’s not clear how we would use the above CDF to determine
P {E ∈ Q}, for example, although we know the answer must be zero. If we are going to specify
probability distributions in this way, we should really prove that probability measures are uniquely
determined by their CDFs; this is a corollary of the coming development.

Fix a ringA over a ground set Ω. A pre-measure onA is a function µ : A → [0,∞] with µ(∅) = 0
such that for any sequence (An, n ≥ 1) of disjoint elements of F , if

⋃
n≥1An ∈ A then Pre-measure

µ

⋃
n≥1

An

 =
∑
n≥1

µ(An) .

We then say that (Ω,A, µ) is a pre-measure space. Pre-measure space

Here is a key example of a pre-measure space. We hereafter write A(R)

A(R) =

{
n⋃

i=1

(ai, bi] : n ≥ 1,−∞ < a1 ≤ b1 ≤ a2 ≤ . . . ≤ an ≤ bn <∞

}
.

Exercise 4.5. Prove that A(R) is a ring over R.

Wewill see later that ifF is a CDF thenwe can define a functionµ onA(R) by settingµ(
⋃n

i=1(ai, bi]) =∑n
i=1(F (bi) − F (ai) when ((ai, bi], n ≥ 1) are pairwise disjoint, and that the resulting triple

(R,A(R), µ) is a pre-measure space. The primordial3 existence theorem for measures is the fol-
lowing.

Theorem 4.1 (Carathéodory extension theorem). Let (Ω,A, µ) be a pre-measure space. Then
there exists a σ-field F containing A such that µ extends to a measure on F .

The previous theorem provides existence; the next theorem provides uniqueness.

Theorem 4.2 (Dynkin’s theorem). Let (Ω,F) be a measurable space, and let P ⊂ F be a
π-system Ω ∈ P and with σ(P) = F . Fix measures µ1, µ2 on F , and suppose that (a) µ1(E) =
µ2(E) for all E ∈ P and (b) there exist sets (Ωn, n ≥ 1) in P with Ωn ↑ Ω as n→ ∞ and with
µ1(Ωn) <∞. Then µ1 ≡ µ2.

2Here and throughout these notes, for a set S and a subset T ⊂ S, we write IT : S → {0, 1} for the indicator of set T ,
so IT (x) = 1 for x ∈ T and IT (x) = 0 otherwise.
3Primordial, adj. and n.: That constitutes the origin or starting point from which something else is derived or developed,
or on which something else depends; fundamental, basic; elemental. –Oxford English Dictionary
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The proof of the Carathéodory extension theorem consists of two parts. Starting from the pre-
measure space (Ω,A, µ) provided by the hypothesis of the theorem, we first use the pre-measure
µ provided by to produce an upper bound on any putative4 extension of µ. Next we show that the
upper bound indeed yields a measure on a σ-field extending the ring A.

Proposition 4.3. Let (Ω,A, µ) be a pre-measure space. For B ⊂ Ω let

µ∗(B) := inf

∑
n≥1

µ(An) : An ∈ A, n ≥ 1;B ⊂
⋃
n≥1

An

 .

Then µ∗ is an outer measure:Outer measure

(i) µ∗(∅) = 0;
(ii) If E ⊂ F then µ(E) ≤ µ(F );
(iii) If (Ei, i ≥ 1) are subsets of Ω then µ∗(

⋃
i≥1Ei) ≤

∑
i≥1 µ

∗(Ei).

Note: usually I try to avoid putting definitions within the statements of Theorems, Propositions,
Lemmas and so forth; but this is almost the only place where outer measures will be used.

Lemma 4.4 applies to any
outer measure, not just µ∗;
change notation? Lemma 4.4 (Carathéodory lemma). Given an outer measure µ∗ over a set Ω, say A ⊂ Ω is µ∗-additive

if for all B ⊂ Ω,
µ∗(B) = µ∗(A ∩B) + µ∗(Ac ∩B).

Let F = {A ⊂ Ω : A is µ∗-additive}, and define µ+ : F → [0,∞] by µ+(A) := µ∗(A). Then
(Ω,F , µ) is a measure space.

I think of µ∗-additive sets as knives; they “sharply cut” any setB ⊂ Ω in two without any change
of µ∗-measure. I’m not sure how useful this perspective is to others.

Proof of Proposition 4.3. Point (i) is obvious since the empty set is a cover of itself. Point (ii), mono-
tonicity, is also obvious, since if E ⊂ F then any cover of F is a cover of E, so µ∗(E) is an infimum
over a larger set than µ∗(F ).

Finally, fix subsets (Ei, i ≥ 1) of Ω and write E =
⋃

i≥1Ei. Next fix ϵ > 0, and for each i ≥ 1,
fix a cover (Ai

n, n ≥ 1) of Ei with ∑
n≥1

µ(Ai
n) ≤ µ∗(Ei) +

ϵ

2i
;

such a cover exists by the definition of µ∗(Ei). Then (Ai
n, n, i ≥ 1) is a cover of E, so

µ∗(E) ≤
∑
n,i≥1

µ(Ai
n)

≤
∑
i≥1

(
µ∗(Ei) +

ϵ

2i

)
=
∑
i≥1

µ∗(Ei) + ϵ .

Since ϵ > 0 was arbitrary it follows that µ∗(E) ≤
∑

i≥1 µ
∗(Ei). □

Proof of Lemma 4.4. The conclusion of the Carathéodory lemma is thatF is a σ-field overΩ and µ+
is a measure on F . We prove these in order.

First, for any B ⊂ Ω we have µ∗(∅ ∩ B) + µ∗(Ω ∩ B) = µ∗(∅) + µ∗(B) = µ∗(B), so ∅ ∈ F .
Also, the definition of µ∗ additive sets is invariant under complementation, so A ∈ F if and only if
Ac ∈ F .

4Putative, adj.: That is commonly believed to be such; reputed, supposed; imagined; postulated, hypothetical. –Oxford
English Dictionary
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We next show F is closed under intersections. Fix any sets A1, A2 ∈ F . For any B ⊂ Ω, we
may write B as a disjoint union

B = B0 ∪B1 ∪B2 ∪B12, where
B0 = B ∩Ac

1 ∩Ac
2,

B1 = B ∩A1 ∩Ac
2,

B2 = B ∩Ac
1 ∩A2, and

B12 = B ∩A1 ∩A2 .

This “cuts B into four pieces”, according to its intersection with B1 and B2. Since A1 and A2 are
µ∗-additive, we have

µ∗(B) = µ∗(B ∩A1) + µ∗(B ∩Ac
1)

= µ∗(B12) + µ∗(B1) + µ∗(B2) + µ∗(B0)

If we likewise cut B \ B12 into four pieces, only the last three pieces will be non-empty, and we
obtain

µ∗(B \B12) = µ∗(B0) + µ∗(B2) + µ∗(B1).

Together the last two equations give that

µ∗(B) = µ∗(B12) + µ∗(B \B12) = µ∗(B ∩A1 ∩A2) + µ∗(B ∩ (A1 ∩A2)
c) .

Thus A1 ∩A2 ∈ F .
At this point we know F is a field, so to show it is a σ-field it suffices to establish that it is

closed under countable disjoint unions. Fix a sequence (Ai, n ≥ 1) of disjoint sets in F , and
any set B ⊂ Ω. Writing A =

⋃
i≥1Ai, we must show that for all B ⊂ Ω we have µ∗(B) =

µ∗(A ∩ B) + µ∗(Ac ∩ B). The fact that µ∗(B) ≤ µ∗(A ∩ B) + µ∗(Ac ∩ B) is immediate by
subadditivity of outer measure, so we only need to show the reverse inequality.

We will again “cut B into pieces” according to its intersection with the sets An. However, since
the sets are disjoint, our task is now simpler; we may rewrite

µ∗(B) = µ∗(B12) + µ∗(B1) + µ∗(B2) + µ∗(B0)

= µ∗(B1) + µ∗(B2) + µ∗(B0)

= µ∗(B ∩A1) + µ∗(B ∩A2) + µ∗(B ∩Ac
1 ∩Ac

2) .

More generally, since An ∩B ∩Ac
1 ∩ . . . Ac

n−1 = An ∩B, by induction we have

µ∗(B) = µ∗(B ∩Ac
1 ∩ . . . ∩Ac

n) +
n∑

i=1

µ∗(B ∩Ai)

for all n. Now, since Ac ⊂ Ac
1 ∩ . . . ∩ Ac

n we have µ∗(B ∩ Ac
1 ∩ . . . ∩ Ac

n) ≥ µ∗(B ∩ Ac) by the
monotonicity of outer measure, so

µ∗(B) ≥ µ∗(B ∩Ac) +

n∑
i=1

µ∗(B ∩Ai) ;

taking a limit in n now gives

µ∗(B) ≥ µ∗(B ∩Ac) +
∞∑
i=1

µ∗(B ∩Ai) .

Since A =
⋃

i≥1Ai, by subadditivity of outer measure we have µ∗(B ∩ A) ≤
∑∞

i=1 µ
∗(B ∩ Ai),

which with the previous bound gives

µ∗(B) ≥ µ∗(B ∩Ac) + µ∗(B ∩A).
Thus µ∗(B) = µ∗(B ∩Ac) + µ∗(B ∩A), so A ∈ F and F is indeed a σ-field.
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Finally, note that in proving F is a σ-field, we also established that the restriction µ+ of µ∗ to
F is countably additive on F . Also, µ+ is monotone and has µ+(∅) = 0 by definition; so µ+ is a
measure on F , as required. □
Proof of Theorem 4.1. Let µ∗ be as in Proposition 4.3; then µ∗ is an outer measure. We first verify
that µ∗ agrees with µ onA. FixA ∈ A and any sequence (Ai, i ≥ 1) of elements ofA which cover
A. Writing Bn = An \ (A1 ∪ . . . ∪ An), then Bn ⊂ An and (A ∩Bn, n ≥ 1) is another cover of
A with elements ofA. Since A =

⋃
n≥1A∩Bn, by countable additivity for pre-measures we have

µ(A) =
∑
n≥1

µ(A ∩Bn)

≤
∑
n≥1

µ(Bn)

≤
∑
n≥1

µ(An) .

Taking the infimum over covers (An, n ≥ 1) of A we obtain that µ(A) ≤ µ∗(A). Also, clearly
µ(A) ≥ µ∗(A) since A covers itself; so µ(A) = µ∗(A).

Next, let F be the collection of µ∗-additive sets, and let µ be the restriction of µ∗ to F ; we
are recycling notation here but this is OK since we already checked that µ and µ∗ agree on their
common domain of definition. By Lemma 4.4, (Ω,F , µ∗) is a measure space, and by the first
paragraph we know that µ∗ agrees with µ on A. So, to complete the proof of the theorem it
remains to show that A ⊂ F , or in other words that the sets in A are µ∗-additive.

So fix any set A ∈ A and any set B ⊂ Ω. By subadditivity of µ∗ we have
µ∗(B) ≤ µ∗(A ∩B) + µ∗(Ac ∩B) ;

we need to prove the reverse inequality. If µ∗(B) = ∞ then this is obvious, so we suppose µ∗(B) <
∞. Fix ϵ > 0; then we may find a cover (An, n ≥ 1) of B with elements of A such that∑

n≥1

µ(An) ≤ µ∗(B) + ϵ

Finally, (A ∩An, n ≥ 1) is a cover of A ∩B with elements of A, and (Ac ∩An, n ≥ 1) is a cover
of Ac ∩B with elements of A, so from the definition of µ∗ we have

µ∗(A ∩B) + µ∗(Ac ∩B) ≤
∑
n≥1

µ(A ∩An) +
∑
n≥1

µ(Ac ∩An)

=
∑
n≥1

(µ(A ∩An) + µ(Ac ∩An))

=
∑
n≥1

µ(An)

≤ µ(B) + ϵ .

Since ϵ > 0 was arbitrary, it follows that µ∗(A ∩B) + µ∗(Ac ∩B) ≤ µ∗(B), as required. □
The proof of Theorem 4.2 relies on one more algebraic/set theoretic closure property, which we

now state. We say a collectionA of subsets of a ground setΩ is a λ-system ifΩ ∈ A and additionallyλ-system

the following both hold.
(i) For all E,F ∈ A with E ⊂ F we have F \ E ∈ A.
(ii) For any increasing sequence (An, n ≥ 1) of subsets of A we have

⋃
n≥1An ∈ A.

By increasing we mean that An ⊂ An+1 for all n ≥ 1.

Exercise 4.6. (i) If A is a σ-field then it is a π-system.Part (i) is similar to Exercise
2.1. (ii) If A is both a π-system and a λ-system then it is a σ-field.

(iii) Fix any collection {Ai, i ∈ I} of λ-systems with a common ground set. Then
⋂

i∈I Ai is a λ-system.



10 LOUIGI ADDARIO-BERRY

Lemma 4.5 (Dynkin’s π-system lemma). Let P be a π-system over a ground set Ω. Then⋂
{F⊃P:F a σ−field}

F =
⋂

{F⊃P:F a λ−system}

F

Proof of Lemma 4.5. The left-hand side is σ(P) by definition; temporarily writing λ(P) for the right-
hand side, we aim to show that σ(P) = λ(P).

Since σ-fields are λ-systems we automatically have σ(P) ⊃ λ(P), so to prove the lemma it
suffices to show that λ(P) is a σ-field. Moreover λ(P) is a λ-system by Exercise 4.6 (ii), so by part
(iii) of the same exercise, to show it is a σ-field we just have to show it is closed under intersections.

We proceed in two steps. For E ∈ λ(P), say E is cooperative if E ∩ F ∈ λ(P) for all F ∈ P , and
that E is helpful if E ∩ F ∈ λ(P) for all F ∈ λ(P).

If E ∈ P then E ∩ F ∈ P for all F ∈ P since P is a π-system; so E is cooperative. Next, if E
and E′ are both cooperative and E ⊂ E′ then for all F ∈ P we have E ∩ F ∈ λ(P) and E′ ∩ F
in λ(P). Since λ(P) is a λ-system, it follows that

(E′ \ E) ∩ F = (E′ ∩ F ) \ (E ∩ F ) ∈ λ(P),

so E′ \ E is cooperative. Third, if (En, n ≥ 1) is an increasing sequence of cooperative sets then
for all F ∈ P we have

F ∩
⋃
n≥1

En =
⋃
n≥1

F ∩ En.

Each of the sets F ∩ En lies in λ(P) since the En are cooperative. Since (F ∩ En, n ≥ 1) is
increasing and λ(P) is a λ-system, it follows that F ∩

⋃
n≥1En ∈ P , so

⋃
n≥1En is cooperative.

We’ve now showed that the cooperative sets in λ(P) contain P and are closed under monotone
difference and monotone limits: they are a λ-system; so all sets in λ(P) are cooperative.

We now bootstrap this argument. If E ∈ P then for any F ∈ λ(P), since F is cooperative we
have E ∩ F ∈ λ(P); so E is in fact helpful. Next, if E,E′ are helpful and E ⊂ E′ then for all
F ∈ λ(P), E′ ∩ F and E ∩ F both lie in λ(P), so

(E′ \ E) ∩ F = (E′ ∩ F ) \ (E ∩ F ) ∈ λ(P).

Finally, if (En, n ≥ 1) is an increasing sequence of helpful sets then for all F ∈ λ(P) and all n ∈ N,
F ∩ En ∈ λ(P), so

F ∩
⋃
n≥1

En =
⋃
n≥1

F ∩ En ∈ λ(P).

Thus
⋃

n≥1En is helpful. We’ve just showed that the helpful sets are a λ-system containing P , so
all sets in λ(P) are helpful. But this means that means that E ∩F ∈ λ(P ) for all E,F ∈ λ(P ); so
λ(P ) is closed under intersections, as required. □

We now show that Lemma 4.5 easily yields Theorem 4.2.

Proof of Theorem 4.2. Let µ1,µ2 be as in the theorem’s statement. Fix any set G ∈ P with µ1(G) <
∞, and write Λ = {E ∈ F : µ1(E ∩G) = µ2(E ∩G)}; then Λ contains P by definition, and in
particular Ω ∈ Λ.

Next, if (En, n ≥ 1) is an increasing sequence of sets in Λ then

µ1(
⋃
n≥1

En ∩G) = lim
n≥1

µ1(En ∩G) = lim
n≥1

µ2(En ∩G) = µ2(
⋃
n≥1

En ∩G)

where we’ve used countable additivity (as “continuity from below” in the form given in Exer-
cise 4.3 (i)) for the first and third equalities. Thus

⋃
n≥1En ∈ Λ. Also, If E ⊂ F and E,F ∈ Λ

then

µ1(G ∩ (F \ E)) = µ1(G ∩ F )− µ1(G ∩ E) = µ2(G ∩ F )− µ2(G ∩ E) = µ2(G ∩ (F \ E)),
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where we’ve used additivity of µ1 and µ2, together with the fact that µ1(G) <∞, for the first and
third equalities. Thus F \ E ∈ Λ. It follows that Λ is a λ-system containing P , so Λ contains
F = σ(P) by Lemma 4.5. If µ1(Ω) <∞ then by taking G = Ω the result follows.

For the general case, let (Ωn, n ≥ 1) be elements of P with Ωn ↑ Ω and with µ1(Ωn) < ∞ for
all n. Then for all E ∈ F , since µ1 and µ2 are measures

µ1(E) = lim
n→∞

µ1(E ∩ Ωn) = lim
n→∞

µ2(E ∩ Ωn) = µ2(E),

where we have taken G = Ωn to deduce that µ1(E ∩ Ωn) = µ2(E ∩ Ωn). □
Remark. We say a measure µ on measurable space (Ω,F) is σ-finite if there exists an increasingσ-finite

sequence (Ωn, n ≥ 1) of elements of F with
⋃

n≥1Ωn = Ω and with µ(Ωn) < ∞ for all n ≥ 1.
Condition (b) in Dynkin’s theorem is stronger than σ-finiteness, as it requires the approximating sets
to in fact lie in P .

One might think that the requirement (b) in the statement of Theorem 4.2 could be weakened
to simply require σ-finiteness. The result of Exercise 4.9, below, shows that this is not the case. (We
must briefly postpone stating the example, until we have defined Borel sets - but they are coming
very shortly.)

4.3. Measures onR. The above development meant to be in service of defining probability mea-
sures in particular. The most fundamental example driving the theory is that of measures on R.
We already discussed the specification of probability distributions on R via their CDFs. Return-
ing to this more formally and slightly more generally, we say F : R → R is a Stieltjes functionStieltjes function

if F is non-decreasing and right-continuous with left limits. If additionally limx→−∞ F (x) = 0
and limx→∞ F (x) = 1 then F is called a cumulative distribution function. Recall from above thatCumulative distribution

function A(R) is the set of finite unions of intervals of the form
⋃n

i=1(ai, bi]. We now define a function
µF : A(R) → [0,∞] starting from the supposition that µF ((a, b]) = F (b) − F (a). We are then
forced by additivity to set µF (

⋃n
i=1(ai, bi]) =

∑n
i=1 F (bi) − F (ai) whenever (ai, bi] are disjoint

intervals.

Lemma 4.6. For any Stieltjes function F , µF is a pre-measure on A(R).

Proof. It is easy to verify thatA(R) is a ring (this is Exercise 4.5). We show that µF is a pre-measure
in three steps.

The first step is to check that µF is well-defined, i.e., that the expression in the definition of µF
does not depend on how the elements of A(R) are expressed as finite disjoint unions. To see this,
suppose that

L :=
n⋃

i=1

(ai, bi] =
m⋃
j=1

(cj , dj ]

are two ways of expressing the same element ofA as a disjoint union. For each i ∈ [n] and j ∈ [m],
if (ai, bi] ∩ (cj , dj ] is non-empty we denote the intersection by (ℓij , rij ]. Then

n∑
i=1

F (bi)− F (ai) =
n∑

i=1

∑
{j:(ai,bi]∩(cj ,dj ] ̸=∅}

F (rij)− F (ℓij)

=
n∑

j=1

∑
{i:(ai,bi]∩(cj ,dj ] ̸=∅}

F (rij)− F (ℓij) =
m∑
j=1

F (dj)− F (cj),

so µF is indeed well-defined.
We next check that µF is additive. This is easy: if

⋃n
i=1(ai, bi] and

⋃m
j=1(cj , dj ] are disjoint

elements of A(R) then

µF

 n⋃
i=1

(ai, bi] ∪
m⋃
j=1

(cj , dj ]

 =
n∑

i=1

(F (bi)− F (ai)) +
m∑
j=1

(F (dj)− F (cj)),
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which is indeed the sum of the measures of the two elements of A(R).
Finally, we check that µF is a pre-measure. For this, suppose that

L :=
n⋃

i=1

(ai, bi] =
∞⋃
j=1

(cj , dj ]

where the two unions are over disjoint intervals. Then for allm ∈ N,
n⋃

i=1

(ai, bi] ⊃
∞⋃
j=1

(cj , dj ],

Thus, by monotonicity of µF ,

µF (

n⋃
i=1

(ai, bi]) ≥ sup
m≥1

µF (

m⋃
j=1

(cj , dj ]) =

∞∑
j=1

µF (cj , dj ] ;

to complete the proof, we must show that in fact equality holds.
Suppose for a contradiction that µF (L) =

∑∞
j=1 µF (cj , dj ] + 2ϵ, for some ϵ > 0, and write

∆m := L \
⋃m

i=1(ci, di]. Note that∆m ∈ A— it is a difference of finite unions of intervals — and
∆m ↓ 0 asm→ ∞. Also, since L = ∆m ∪

⋃m
i=1(ci, di]) is a disjoint union, it follows that

µF (∆m) = µF (L)−
m∑
i=1

µF (ci, di] ≥ 2ϵ

for allm.
Choose Dm ∈ A with Dm ⊂ ∆m and such that µF (∆m \Dm) ≤ ϵ/2m for allm.5 Since

∆m =

m⋂
i=1

∆i =

m⋂
i=1

Di ∪ (∆i \Di) ⊆
m⋂
i=1

Di ∪
m⋃
i=1

(∆i \Di),

by monotonicity

2ϵ ≤ µF (∆m) ≤ µF (
m⋂
i=1

Di) +
m∑
i=1

µF (∆i \Di) ≤ µF (
m⋂
i=1

Di) + ϵ.

Thus µF (
⋂m

i=1Di) ≥ ϵ for all m, so
⋂m

i=1Di 6= ∅ for all m, so
⋂∞

i=1∆i ⊃
⋂∞

i=1Di 6= ∅,
contradicting the fact that∆m ↓ ∅ asm→ ∞. □

The σ-field generated by A(R) is called the Borel σ-field, and denoted B(R); its elements are
called Borel sets ofR. The next exercise asks you to show thatB(R) is the smallest σ-field containing B(R).

all open sets in R.

Exercise 4.7. Show that σ(A(R)) = σ({U ⊂ R : U open}).

More generally, given a topological spaceM , the Borel σ-field overM is defined to be the σ-field
generated by the open sets, B(M) := σ({U ⊂M : U open). B(M).

With Lemma 4.6 under our belt, it now follows easily that Stieltjes functions R uniquely deter-
mine measures on (R,B(R)).

Theorem 4.7. Let F be a Stieltjes function. Then there exists a unique measure µ on B(R) such that µ(a, b] =
F (b)− F (a) for all −∞ < a ≤ b <∞.

Proof. Write P = {(a, b] : −∞ < a ≤ b < ∞}. By Lemma 4.6, there exists a pre-measure µ
on A(R) such that µ(a, b] = F (b) − F (a) for all (a, b) ∈ P . By the Carathéodory Extension
Theorem, Theorem 4.1, µ extends to a measure µ+ : F → [0,∞] for some σ-field F containing

5Not hard to see this is possible - add a proof ?
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A(R). Since B(R) is the smallest σ-field containing A(R), the restriction of µ+ to B(R) is well-
defined, is a measure on B(R) and has µ+(a, b] = µ(a, b] = F (b)− F (a) for all (a, b] ∈ P . This
proves existence.

Now suppose that µ1 and µ2 are measures on B(R) satisfying the hypotheses of the theorem.
Then µ1 and µ2 agree on P . But P is a π-system. Clearly σ(P) containsA(R), so so we must have
σ(P) = σ(A(R)) = B(R). It follows by Dynkin’s theorem, Theorem 4.2, that µ1 ≡ µ2. This
proves uniqueness. □

The above proof refers to “some σ-field F containing A(R)”. Looking back at the statement of
of the Carathéodory lemma reveals that the σ-field F consists precisely of the µ∗-additive sets.

The next exercise reveals more information about the collection of µ∗-additive sets, and its rela-
tion to the Borel σ-fields. The exercise after that provides an example which shows that condition
(b) in Dynkin’s theorem can not be replaced by σ-finiteness. The following definition features in first
of the two exercises: we say a measure space (Ω,F ′, µ′) extends another measure space (Ω,F , µ) if
F ⊆ F ′ and µ′|F ≡ µ.

Exercise 4.8. Let (Ω,F , µ) be a measure space. SayN ∈ F is a null set if µ(N) = 0. Say that (Ω,F , µ)
is complete if for any null set N , for allM ⊂ N we haveM ∈ F .

(a) Write F :=
⋂

{(Ω,F ′,µ′) extending (Ω,F ,µ):(Ω,F ′,µ′) complete}F ′. Prove that

F = {E ∪M : E ∈ F ,M ⊂ N for some null set N ∈ F} .
(b) Let µ∗ : 2Ω → [0,∞] be an outer measure on some ground set Ω, and let F = {A ⊂ Ω :

A is µ∗-additive}. Show that (Ω,F , µ∗|F ) is complete.
(c) Let µ be the Lebesgue pre-measure onA(R), i.e., with µ(a, b] = b−a for bounded intervals (a, b] ⊂ R.

Let µ∗ be the corresponding outer measure on R, and let L(R) = {S ⊂ R : S is µ∗-additive}. Show
that L(R) is the completion of B(R).NB: For (c) you will need the

σ-finiteness of Lebesgue
measure. The setL(R) is known as the Lebesgue σ-field (actually, I have only ever seen it called the Lebesgue

σ-algebra, but I decided to call them σ-fields, and I’m sticking to it).

Exercise 4.9. Consider the measures µ1, µ2 on B(R) defined by µ1(B) = |B ∩Q|, µ2(B) = 2|B ∩Q|.
(a) Show that µ1 and µ2 are σ-finite measures.
(b) Show that µ1(A) = µ2(A) for all A ∈ A(R).

Given a measurable space (Ω,F) a set S and a function f : Ω → S, the push-forward of F to S
is the set f∗(F) = {B ⊂ S : f−1(B) ∈ F}.

Exercise 4.10. Show that the push-forward f∗(F) is a σ-field.

4.4. Independent events. A probability space is a measure space (Ω,F ,P) with P(Ω) = 1. Ele-Probability space

ments of F are called events; elements of Ω are called elementary events.6
We say that events (Ei, i ∈ I) are mutually independent if for all J ⊂ I finite,Independent events

P

⋂
j∈J

Ej

 =
∏
j∈J

P {Ej} . (4.1)

(Often the word “mutually” is omitted.) For k ≥ 1, we say the events (Ei, i ∈ I) are k-wise
independent if (4.1) holds for all J ⊂ I with |J | ≤ k. In particular, they are pairwise independent if
P {Ei ∩ Ej} = P {Ei}P {Ej} for any distinct i, j ∈ I .

Exercise 4.11. In this exercise we say that an event E in a probability space (Ω,F ,P) is non-trivial if
P {E} ∈ (0, 1).

(a) Let k ∈ N, let (Ω,F ,P) be a probability space and let (E1, . . . , Ek) be nontrivial, independent events
in F . Prove that |Ω| ≥ 2k.

6An unfortunate aspect of this terminology: elementary events need not be events! But it is what it is.
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(b) Construct a probability space (Ω,F ,P) with |Ω| = 2k−1 and nontrivial events (E1, . . . , Ek), such
that for any 1 ≤ i ≤ n, the events (Ej , j ∈ [k] \ {i}) are mutually independent, but (E1, . . . , Ek)
are not mutually independent.

The following example is further developed in the homework (and inspired by the use of Rademacher
random variables in James Norris’s “Probability and measure” lecture notes). It is a hands-on way
to model an infinite sequence of independent fair coin tosses. Let Ω = [0, 1], F = B([0, 1]) =
B(R)|[0,1], and let P be Lebesgue measure on [0, 1], which isoften called the uniform probability
measure in this context; then (Ω,F ,P) is a probability space. For k ≥ 1 define the event

Ak =
⋃

0≤i<2k

i even

(
i

2k
,
i+ 1

2k

]
. (4.2)

So A1 = (0, 1/2], A2 = (0, 1/4] ∪ (1/2, 3/4], and so on.

Exercise 4.12. Show that (Ak, k ≥ 1) are mutually independent.

Note that Ai may be thought of as the set of x ∈ (0, 1] for which the i’th bit in the binary
expansion is zero (provided we adopt the convention that we never use infinite strings of zeros in
our binary representation).

The Borel–Cantelli lemmas are basic and important workhorses of probability theory; stating them
will additionally help us away from the language of sets and toward probabilistic terminology. Given
a probability space (Ω,F ,P) and events (En, n ≥ 1), we define

lim sup
n→∞

En :=
⋂
n≥1

⋃
m≥n

Em = {ω ∈ Ω : ω ∈ En for infinitely many n}.

(In fact, this definition makes sense for any sequence of sets (En, n ≥ 1) over a common ground
set Ω.) Thinking probabilistically, if ω ∈ lim supn→∞En then infinitely many of the events En oc-
cur; we therefore introduce {En occurs infinitely often} or simply {En i.o.} as alternative notation
for the set lim supn→∞En.

Similarly, we define

lim inf
n→∞

En :=
⋃
n≥1

⋂
m≥n

Em = {ω ∈ Ω : ω ∈ En for all but finitely many n}.

Note that (lim supn→∞En)
c = lim infn→∞(Ec

n).
As an example, for the events (Ak, k ≥ 1) described above, we have

lim sup
n→∞

An = {x ∈ [0, 1] : there are infinitely many zeros in any binary expansion of x}, and

lim inf
n→∞

An = {x ∈ [0, 1] : x = k/2n, for some integers n, k with n ≥ 1, 0 ≤ k ≤ 2n} .

Lemma4.8 (First Borel–Cantelli Lemma). Let (Ω,F ,P) be a probability space and let (En, n ≥
1) be events in F . If

∑
n≥1P {En} <∞ then P {En i.o} = 0.

Proof. Fix ϵ > 0. Then there exists n0 such that
∑

m≥n0
P {Em} < ϵ, so by monotonicity and

subadditivity of measures,

P {En i.o} ≤ P

 ⋂
n≥n0

⋃
m≥n

Em

 ≤ P

 ⋃
m≥n0

Em

 ≤
∑
m≥n0

P {Em} < ϵ .

Since ϵ > 0 was arbitrary, the result follows. □

http://www.statslab.cam.ac.uk/~james/Lectures/pm.pdf
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Lemma 4.9 (Second Borel–Cantelli Lemma). Let (Ω,F ,P) be a probability space and let
(En, n ≥ 1) be mutually independent events in F . If

∑
n≥1P {En} = ∞ thenP {En i.o} = 1.

Proof. Note that by definition,

{En i.o}c = lim inf
n→∞

(Ec
n) =

⋃
n≥1

⋂
m≥n

Ec
m,

so by subadditivity

P {{En i.o}c} ≤
∑
n≥1

P

 ⋂
m≥n

Ec
m

 .

To prove the lemma we’ll show that the summands on the right are all zero.
Writing pn = P {En}, for all 1 ≤ n ≤ N , by monotonicity and independence we have

P

 ⋂
m≥n

Ec
m

 ≤ P

{
N⋂

m=n

Ec
m

}
=

N∏
m=n

(1− pm).

Since this holds for all N , and since 1− pn ≤ e−pn , it follows that

P

 ⋂
m≥n

Ec
m

 ≤
∞∏

m=n

(1− pm) ≤ e−
∑∞

m=n pn = 0,

as required. □

The two Borel-Cantelli lemmas together show that if (En, n ≥ 1) is any sequence of independent
events, then P {En i.o.} ∈ {0, 1}. This is a first instance of a zero-one law, and a special case of
Kolmogorov’s zero-one law, which you will meet quite shortly.

We conclude the section by defining independence of σ-fields and establishing a sufficient con-
dition for such independence. Given a probability space (Ω,F ,P) and a collection (Gi, i ∈ I)
of subsets of F , we say that (Gi, i ∈ I) are independent if for all J ⊂ I finite and any events
(Ej , j ∈ J) with each Ej ∈ Gj , we have

P

⋂
j∈J

Ej

 =
∏
j∈J

P {Ej} .

Proposition 4.10. Fix a probability space (Ω,F ,P) and let P,Q be π-systems in F . If P {A ∩B} =
P {A}P {B} for all A ∈ P , B ∈ Q, then σ(P) and σ(Q) are independent.

Proof. First fix A ∈ P and define measures µA,PA on σ(Q) by

µA(B) = P {A}P {B} and PA(B) = P {A ∩B} .

Then µA(B) = PA(B) for all B ∈ Q, and µA(Ω) = P {A} = PA(Ω), so µA = PA by Dynkin’s
theorem. Thus

P {A ∩B} = P {A}P {B}
for all A ∈ P , B ∈ σ(Q).

Next, fix B ∈ σ(Q) and define measures νB,PB on σ(P) by

νB(A) = P {A}P {B} and PB(A) = P {A ∩B} .

Then νB(A) = PB(A) for A ∈ P , and νB(Ω) = P {B} = PB(Ω), so by Dynkin’s theorem we
have νB = PB . Thus P {A ∩B} = P {A}P {B} for all A ∈ σ(P) and B ∈ σ(Q), i.e., σ(P)
and σ(Q) are independent. □
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Exercise 4.13. Fix a probability space (Ω,F ,P) and π-systems (Pi, i ∈ I) which are subsets of F . Then
the σ-fields (σ(Pi), i ∈ I) are independent if and only if P

{⋂
j∈J Ej

}
=
∏

j∈J P {Ej} for all J ⊂ I

finite and any events Ej ∈ Pj .

5. Random variables

Much of the richness of probability theory arises from the interaction of independence with
random variables, but to explore that, we need to define random variables first!

To begin, given measurable spaces (R,R) and (S,S), a (R/S)-measurable map is a function
f : R→ S such that f−1(E) ∈ R for all E ∈ S .7 If R and S are topological spaces andR,S are
the Borel σ-algebras, then f is also called a Borel function.

Fix a probability space (Ω,F ,P). A (real) random variable is a (F/B(R))-measurable function
X : Ω → R. In other words, random variables are just measurable maps but where the domain
happens to be the ground set of a probability space. Real random variables and extended real
random variables are the bread and butter of the course. The laws of large numbers are the jam.
Basic measure theory is the plate. Enough with that metaphor. (We write R∗ = R ∪ {±∞} R∗

for the extended real line; its open sets are generated by those of R together with sets of the form
(x,∞] and [−∞, x) for x ∈ R; an extended real random variable is a (F/B(R∗))-measurable map
X : Ω → R∗.) Oh, and random variables taking values in more general spaces are the croissants au Extended real random

variablebeurre. IfM is a topological space and X : Ω → M is (F/B(M))-measurable then we call X an
M -valued random variable; if (S,S) is a measurable space and X : Ω → S is (F/S)-measurable
then we call X an S-valued random variable.

For a function X : Ω → R or X : Ω → R∗, it’s very useful to introduce the notation {X ≤
r} := {ω ∈ Ω : X(ω) ≤ r} and to think of this set as “the event that X ≤ r”. More generally for
a function X : R→ S and U ⊂ S we write {X ∈ U} := X−1(U).

Before diving into the theory, it’s worth motivating ourselves (and honing our intuition) by con-
sidering an example. We revisit the events Ak defined in (4.2), above, and define Rk : [0, 1] → R
by Rk = 1[Ak], so Rk(x) = 1 if and only if x ∈ Ak.

Exercise 5.1. Show that Rk is B([0, 1])/B(R)-measurable.
Under the uniform probability measure on [0, 1], we have

P {Rk = 1} := P {{x : Rk(x) = 1}} = P {Ak} =
1

2
.

This agrees with the intuition that for a uniformly random point in [0, 1], each bit of the binary
expansion is equally likely to be zero or one. Moreover, intuition suggests that these bits should be
independent, and that the asymptotic proportion of ones in the sequence (Rn, n ≥ 1) should be
1/2. More precisely, we expect that

P

{
lim
n→∞

1

n

n∑
i=1

Rn =
1

2

}
= 1. (5.1)

To make rigorous sense of this assertion, we first need to know that{
lim
n→∞

1

n

n∑
i=1

Rn =
1

2

}
=

{
x ∈ [0, 1] : lim

n→∞

1

n

n∑
i=1

Rn(x) =
1

2

}
(5.2)

is a measurable set (otherwise its probability is not defined). Fortunately, this is not hard to see;
the closure properties of σ-fields allow us to perform essentially any operations we please with
random variables and obtain other random variables, provided we perform at most countably many
operations in total. The next theorem provides a useful time-saving device for provingmeasurability
of random variables; the subsequent exercise shows that many of the basic operations of arithmetic
and analysis preserve measurability, and in particular implies that the set in (5.2) is measurable.

7Notice the similarity to the definition of continuous functions between topological spaces.
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Theorem 5.1. Let (R,R) and (S,S) be measurable spaces and let f : R → S. Suppose that there is
A ⊂ S with σ(A) = S such that f−1(A) ∈ R for all A ∈ A. Then f is (R/S)-measurable.

Proof. Let S0 = {E ∈ S : f−1(E) ∈ R}. Then A ⊂ S0 by assumption. Also, if E ∈ S0 then

f−1(Ec) = {r ∈ R : f(r) ∈ Ec} = R \ {r ∈ R : f(r) ∈ E} = (f−1(E))c ∈ R,
so Ec ∈ S0. Similarly, if (En, n ≥ 1) are in S0 and En ↑ E∞ then

f−1(E∞) = {r ∈ R : f(r) ∈ E∞} =
⋃
n≥1

{r ∈ R : f(r) ∈ En} =
⋃
n≥1

f−1(En) ∈ R,

so E∞ ∈ S0. Thus S0 is a σ-field, so equals S . □

Here are some examples of how the theorem is useful. Fix a probability space (Ω,F ,P).
• If X : Ω → R satisfies that {X ≤ r} = X−1(−∞, r] ∈ F for all r ∈ R, then X is a real
random variable (it is (F/B(R))-measurable).

• IfX : Ω → R is a real random variable and f : R → R is continuous then f(X) is another
random variable. (Since if U ⊂ R is open, then f−1(U) is open, so {f(X) ∈ U} =
(f ◦ X)−1(U) = X−1(f−1(U)) ∈ B(R); and the open sets are a π-system generating
B(R).)

• If XJ = (Xj , j ∈ J) is a finite collection of random variables then XJ may be viewed as a
function from Ω to RJ , sending ω to (Xj(ω), j ∈ J). The collection

PJ :=

∏
j∈J

(−∞, bj ] : bj ∈ R for j ∈ J

 (5.3)

is a π-system generating the Borel sets B(RJ). For any element
∏

j∈J(−∞, bj ] of PJ , we
have

X−1
J

(∏
j∈J

(−∞, bj ]
)
=
⋂
j∈J

X−1
j (bj) ∈ F ,

since F is closed under finite intersections. Thus X is an RJ -valued random variable.
• If R and S are topological spaces, and h : R→ S is such that h−1(U) ∈ B(R) for all open
U ⊂ S, then h is a Borel function.

The next exercise asks you to check various closure properties of the collection of real-valued mea-
surable maps. Some of these require enlarging the target space from the real numbers to the extended
real numbers R∗ := R ∪ {−∞,∞}. The open sets of R∗ are generated by A = {(a, b), a, b ∈
R} ∪ {(a,∞], a ∈ R} ∪ {[−∞, b), b ∈ R}, so A also generates the Borel sets of R∗: that is,
B(R∗) = σ(A).

Exercise 5.2. Let (Ω,F) be a measurable space and letX,Y , and (Xn, n ≥ 1) be (F/B(R))-measurable
maps from Ω to R.

(a) Prove that 1[X≥0], X + Y,XY, (X/Y )1[Y ̸=0] are all (F/B(R))-measurable.
(b) Prove that supn≥1Xn, infn≥1Xn, lim supn≥1Xn and lim infn≥1Xn are all (F/B(R∗))-measurable.
(c) Prove that if Z is any of the four expressions from part (b), then Z1[Z∈R] is (F/B(R))-measurable.
(d) Prove that if f : Rn → R is (B(Rn)/B(R))-measurable then f(X1, . . . , Xn) is (F/B(R))-

measurable.

Given a sequence (an, n ≥ 1) of real numbers, we say that limn→∞ an exists if either there is
a ∈ R such that limn→∞ an = a, or if limn→∞ an = ∞ or limn→∞ an = −∞.

Proposition 5.2. If (Xn, n ≥ 1) is a sequence of random variables on probability space (Ω,F ,P), then

E :=
{
lim
n→∞

Xn exists
}
=
{
ω ∈ Ω : lim

n→∞
Xn(ω) exists

}
is an element of F .Remove P since it is not

needed in the proposition?
But trying to encourage
readers to think
probabilistically...
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Proof. By Exercise 5.2 (b),X := lim supn≥1Xn andX := lim infn≥1Xn are extended real-valued
random variables, so

E∞ := { lim
n→∞

Xn = ∞} = {X = ∞}

is an event, and
E−∞ := { lim

n→∞
Xn = −∞} = {X = −∞}

is an event. Also,

Ebd := {(Xn, n ≥ 1) is a bounded sequence} = {−∞ < X} ∩ {X <∞}

is an event, so

Efin =
{
lim
n→∞

Xn exists and is finite
}
= Ebd ∩

⋂
m∈N

{X −X < 1/m}

is an event. Since E = E∞ ∪ E−∞ ∪ Efin, this completes the proof. □

Exercise 5.3. Let (Ω,F) be a measurable space and let (Xn, n ≥ 1) be (F/B(R))-measurable maps from
Ω to R. Write E := {ω : limn→∞Xn(ω) exists}. Prove that, defining X∞ : Ω → R∗ by

X∞(ω) =

{
limn→∞Xn(ω) if ω ∈ E

0 otherwise,

then X∞ is (F/B(R∗))-measurable.

5.1. Generated σ-fields. Fix a setR and a measurable space (S,S). Given a collection (Xi, i ∈
I) of functions from R to S, we define

σ(Xi, i ∈ I) := σ({X−1
i (E) : i ∈ I, E ∈ S}) =

⋂
F a σ−field over R

∀ i∈I, Xi is (F/S)−measurable

F .

In words, σ(Xi, i ∈ I) is the smallest σ-field over R to yield measurability of all the maps (Xi, i ∈
I). If (R,R) is a measurable space and the functions (Xi, i ∈ I) are all (R/S)-measurable, then
σ(Xi, i ∈ I) ⊂ R by definition.

The most important example is that of a collection of real random variables (Xi, i ∈ I) over a
common probability space. For i ∈ I we have σ(Xi) = {{Xi ∈ B}, B ∈ B(R)} = σ({Xi ≤
b}, b ∈ R), so it follows that

σ(Xi, i ∈ I) = σ

(⋃
i∈I

{{Xi ≤ b} : b ∈ R}

)
For any J ⊂ I finite and (bj , j ∈ J) ∈ RJ , it follows that

{Xj ≤ bj , j ∈ J} =
⋂
j∈J

{Xj ≤ bj} ∈ σ(Xi, i ∈ I),

so we may also write

σ(Xi, i ∈ I) = σ
(
{Xj ≤ bj , j ∈ J} : J ⊂ I finite, (bj , j ∈ J) ∈ RJ

)
.

Exercise 5.4. Let (Xi, i ∈ I) be random variables defined on a common probability space. Show that

σ(Xi, i ∈ I) =
⋃

J⊂I,J countable

σ(Xj , j ∈ J) .

Exercise 5.5 (Doob-Dynkin Lemma). Fix a probability space (Ω,F ,P) and let X,Y : Ω → R
be random variables. Show that Y is (σ(X)/B(R))-measurable if and only if there exists a Borel function
f : R → R such that Y = f(X).
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5.2. Independence of random variables. We say a collection of random variables (Xi, i ∈ I)
over a common probability space (Ω,F ,P) are mutually independent if the σ-fields (σ(Xi), i ∈ I)
are mutually independent. (We’ll often drop the word “mutually”.) In other words, (Xi, i ∈ I) are
independent if for any J ⊂ I finite, and any Borel sets (Bj , j ∈ J), we have

P {Xj ∈ Bj , j ∈ J} =
∏
j∈J

P {Xj ∈ Bj} .

Proposition 5.3. Real random variables (Xi, i ∈ I) defined on a probability space (Ω,F ,P) are mutually
independent if and only if for all J ⊂ I finite, for any real numbers (bj , j ∈ J) ∈ RJ ,

P {Xj ≤ bj for all j ∈ J} =
∏
j∈J

P {Xj ≤ bj} .

Proof. By definition, (Xi, i ∈ I) are mutually independent if and only if the σ-fields (σ(Xi), i ∈ I)
are independent. For i ∈ I , set Pi = {{Xi ≤ r}, r ∈ R}. Then Pi is a π-system with σ(Pi) =
σ(Xi), so by Exercise 4.13, the σ-fields in (σ(Xi), i ∈ I) are independent if and only if for all J ⊂ I

finite, and any choice of events Ej ∈ Pj for j ∈ J , it holds that P
{⋂

j∈J Ej

}
=
∏

j∈J P {Ej}.
This is equivalent to the condition in the proposition. □

Note that this proposition implies that the Rademacher random variables (Rk, k ≥ 1) defined
earlier are independent, since for any n ∈ N and b1, . . . , bn ∈ R,

P {Rk ≤ bk for all k ∈ [n]} =

(
1

2

)#{k∈[n]:bk∈[0,1)}
=
∏
k∈[n]

P {Rk ≤ bk} .

5.3. Existence of random variables with given distributions. You already met cumulative
distribution functions of random variables in passing in Section 4.2. Given a real random variable
X on a probability space (Ω,F ,P), its cumulative distribution functionFX : R → [0, 1] is given by
FX(r) = P {X ≤ r}. Its distribution is the measure µX on B(R) given by µX(B) = P {X ∈ B}
for B ∈ B(R). In other words, µX is the push-forward of the measure P by X .µX

Note this is a different use of
the term “push-forward”
from earlier.

It’s easy to see that FX is a Stieltjes function, and that the Borel measure corresponding to FX —
which by Theorem 4.7 is unique — is µX . The next proposition says that, in turn, any cumulative
distribution function (CDF) is the CDF of some random variable.

Proposition 5.4. Let F be any CDF. Then there exists a random variableX : [0, 1] → R on the probability
space ([0, 1],B([0, 1]),Leb[0,1]) such that FX = F .

Proof. It’s both efficient and pedagogically useful to first treat a special case. Suppose F is the
Uniform[0, 1] CDF; that is,

F (x) =


0 if x ≤ 0

x if 0 ≤ x ≤ 1

1 if x ≥ 1 .

We claim that U :=
∑

k≥1 2
−kRk has FU = F . First, note that U = supℓ≥1

∑ℓ
k=1 2

−kRk.
Each of the terms in the supremum is a finite sum of random variables, so is a random variable;
thus U is a random variable by Exercise 5.2.

To see that FU = F , note that for any n ≥ 1 and 0 ≤ m < 2n, if we write m/2n in binary as
m/2n = 0.b1b2 . . . bn then

P

{
U ∈

(
m

2n
,
m+ 1

2n

]}
= P {R1 = b1, . . . , Rn = bn} =

1

2n
.

It follows that P {U ≤ m/2n} = m/2n.
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Writing D =
⋃

n≥1{m/2n, 0 ≤ m ≤ 2n} for the dyadic fractions in [0, 1], for any x ∈ (0, 1]

we may thus find an increasing sequence (xk, k ≥ 1) of elements of D with xk → x as k → ∞.
For monotone sequences of events we may interchange limit and probability, so

P {U < x} = lim
k→∞

P {U ≤ xk} = lim
k→∞

xk = x.

We also have P {U ≤ x} ≤ inf{P {U ≤ y} : y ∈ D, y ≥ x} = x, so in fact we must have
P {U ≤ x} = x. Thus F is indeed the CDF of U .

For the general case, fix any CDF F : R → [0, 1], and let G : [0, 1] → R∗ be defined by

G(p) := inf{x : F (x) ≥ p} .
The function G is sometimes called the “right inverse” of F . It is straightforward to check that G
is Borel measurable.

Note that for q ∈ [0, 1] and r ∈ R, if F (r) ≥ q then {x ∈ R : F (x) ≥ q} ⊂ [r,∞), so

G(q) = inf{x : F (x) ≥ q} ≥ inf[r,∞) = r .

Conversely, if F (r) < q then, by right-continuity of F , there exists s > r such that F (s) < q. For
such s we have {x ∈ R : F (x) ≥ q} ⊂ (s,∞), so G(q) ≥ s > r.

The preceding paragraph establishes thatF (r) ≥ q if and only if r ≥ G(q). Now letX = G(U).
Then X is a random variable since G is Borel, and for r ∈ R,

P {X ≤ r} = P {G(U) ≤ r} = P {U ≤ F (r)} = F (r) .

□

There is a simpler way to construct a Uniform[0, 1] random variable on the probability space
([0, 1],B([0, 1]),Leb[0,1]). Simply let X : [0, 1] → R be the identity function, X(ω) = ω. Then
for x ∈ R,

P {X ≤ x} = P {ω ∈ [0, 1] : ω ≤ x} = Leb[0,1]{ω ∈ [0, 1] : ω ≤ x} =


0 x ≤ 0

x x ∈ (0, 1]

1 x > 1 ,

soX is Uniform[0, 1]. Moreover, the function U defined in the course of the proof is essentially just
the identity function (expand on this), which may make the proof seem unnecessarily complicated.
However, by building a Uniform[0, 1] random variable in this way, the argument can be more easily
bootstrapped to yield not just a single random variable, but sequences of independent random
variables with arbitrary prescribed CDFs.

Theorem 5.5. Fix any sequence (Fn, n ≥ 1) of cumulative distribution functions. Then there exists a sequence
of independent random variables (Xn, n ≥ 1) such that Xn has CDF Fn.

Proof. In the previous proof, we constructed a random variable with a given CDF by an appro-
priate transformation of a uniform random variable. We want to do the same thing but using an
independent uniform for each term in the sequence. For this, we begin by splitting the sequence
(Rn, n ≥ 1) of Rademacher random variables into infinitely many independent groups; there is
no canonical way to do this so we just pick one.

List the prime numbers as (pi, i ≥ 1), so p1 = 2, p2 = 3 and so forth. Then for j, k ≥ 1 set
Qj,k = Rpkj

. Then for any i, j ≥ 1 with i 6= j, the sequences (Qi,j , k ≥ 1) and (Qi,j , k ≥ 1)

contain no common terms.
Next, for i ≥ 1 letUi =

∑
k≥1 2

−kQi,k. The random variables (Ui, i ≥ 1) are eachUniform[0, 1]
by the same reasoning as in the proof of Proposition 5.4. Moreover, they are independent since
σ(Ui) ⊆ σ(Qi,k, k ≥ 1), and the σ-fields (σ(Qi,k, k ≥ 1), i ≥ 1) are independent.

Now, for n ≥ 1 let Gn : [0, 1] → R be defined by Gn(p) = inf{x : Fn(x) ≥ p}, and set
Xn = Gn(Un). Then Xn has CDF Fn by the argument from the proof of Proposition 5.4, and
(Xn, n ≥ 1) = (Gn(Un), n ≥ 1) are independent since (Un, n ≥ 1) are independent. □
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The independence of the random variables (Un, n ≥ 1) constructed in the above proof is a
special case of the result of the following exercise.

Exercise 5.6. If (Yi, i ∈ I) are mutually independent random variables, (In, n ≥ 1) partitions I , and for
each n, gn : RIn → R is (σ(Yi, i ∈ In)/B(R))-measurable, then with Xn = gn(Yi, i ∈ In), the random
variables (Xn, n ≥ 1) are independent.

5.4. Kolmogorov’s zero-one law. Fix a countable collection X = (Xn, n ∈ N) of random
variables over a probability space (Ω,F ,P). For M ⊂ N , write TM = TM (X) := σ(Xm,m ∈
N \M). The tail σ-field is T (X) :=

⋂
M⊂N :|M |<∞ TM . Informally, it contains all information

about the sequence (Xn, n ≥ 1) that can be obtained while ignoring any given finite set of the
random variables. The term “tail” comes from the (standard) setting when N = N, in which case
T (X) =

⋂
n≥1 σ(Xm,m > n), and from thinking of N as arranged on the number line.

At first blush, it might seem that if the entries of (Xn, n ∈ N) are independent then T ought to
be the trivial σ-field {∅,Ω}; after all, for any fixed n ∈ N, it appears not to contain any information
about Xn. However, that’s not quite the case. For example, the event that limn→∞Xn exists is a
tail event, as is any event of the form

{Xn ∈ Bn infinitely often} =
⋂
n≥1

⋃
m≥n

{Xm ∈ Bm} ,

where (Bn, n ≥ 1) are Borel sets in R.

Exercise 5.7. Prove carefully that the two preceding examples are indeed examples of tail events.
Kolmogorov’s zero-one law says that T is at least trivial in a somewhat weaker sense.

Theorem 5.6 (Kolmogorov’s 0-1 law). Let X = (Xn, n ∈ N) be a countable collection of
independent random variables on a common probability space (Ω,F ,P). Then P {E} ∈ {0, 1} for
all E ∈ T (X).

Proof. Fix E ∈ T . For any n ∈ N and F ∈ σ(Xn), since T ⊂ σ(Xm,m ∈ N \ {n}), the events
E and F are independent. Let

G = σ(Xn, n ∈ N) = σ

( ⋃
n∈N

σ(Xn)

)
.

Note that E is independent of all events in
⋃

n∈N σ(Xn) so is independent of G; that is, for all
F ∈ G, P {E ∩ F} = P {E}P {F}. However, T ⊂ G so E ∈ G, so

P {E ∩ E} = P {E}2 ;

this is only possible if P {E} ∈ {0, 1}. □
One appealing thing about this result is that there are applications that can be described without
having developed the theory of integration (expectation). We sketch two.

First, let (Xn, n ≥ 1) be independent random variables, and let T be their tail σ-field. Write
Sn =

∑n
i=1Xi andM+ := lim supn→∞ Sn/n,M− := lim infn→∞ Sn/n.

For all x ∈ R, we have {M+ ≥ x} ∈ T , so P {S+ ≥ x} ∈ {0, 1}. Letting x+ = sup{x :
P {M+ ≥ x} = 1}, then for y > x we have P {M+ ≥ y} < 1 so P {M+ ≥ 0} = 0. Thus
P {M+ = x+} = 1, and likewise P {M− = x−} = 1. Moreover, P {limn→∞ Sn/n exists} ∈
{0, 1}. The strong law of large numbers gives a necessary and sufficient condition for the last
probability to equal 1, provided the entries of (Xn, n ≥ 1) are identically distributed.

The second example is that of percolation, one of the most active areas of modern probability
theory. Let Zd be the d-dimensional integer lattice; in this context the elements of Zd are called
sites. Fix p ∈ [0, 1] and let B = (Bv, v ∈ Zd) be independent Bernoulli(p) random variables
on a common probability space (Ω,F ,P). (By Bernoulli(p) we mean that P {Bv = 1} = p =
1−P {Bv = 0} for all v ∈ Zd.) Let T be the tail σ-field of B.
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We use B to define site percolation clusters as follows. Write Zd(B) = {v ∈ Zd : Bv = 1}. For
x, y ∈ Zd say that x is connected to y in Zd(B), and write x B−→ y, if there is a nearest-neighbour
path from x to y containing only elements of Zd(B). Then for x ∈ Zd define

C(x) := {y ∈ Zd : x
B−→ y}.

Note that if y ∈ C(x) then C(x) = C(y).
Now let
E = {∃x ∈ Zd; |C(x)| = ∞} = {Zd(B) contains an infinite connected component} .

An infinite connected component can not be created or destroyed by adding or removing finitely
many sites, so E is a tail event; therefore x(p, d) := P {E} ∈ {0, 1} by Kolmogorov’s 0-1 law.
Which of these values is correct depends on the parameter p of the Bernoulli random variables and
on the dimension d.

The critical probability for site percolation on Zd is

pc(Zd) := sup{p : x(p, d) = 0}.
We necessarily have x(p, d) = 1 for all p > pc, but unlike for lim supSn/n the first example, this
doesn’t imply that x(pc, d) = 1. In fact, it is conjectured that x(pc, d) = 0, or in words that there is
“no percolation at criticality”, in any dimension. This is probably the most famous open question
in probability.

The next exercise should take care of any measurability concerns in the definition of percolation.
Recall that 2Zd is the set of all subsets of Zd. So a set S ⊂ 2Z

d is a set of subsets of Zd; we say such
S is a cylinder set if

S = {V ⊂ Zd : A ⊂ V,B ⊂ V c},
for some finite sets A,B. I haven’t checked these

exercises carefully, proceed
at your own riskExercise 5.8. Let G = σ(Bv, v ∈ Zd) and let G∗ = B∗(G) be the push-forward of G under the map

ω
B7→ {Bv(ω), v ∈ Zd} ∈ {0, 1}Zd

.

Show that G∗ = σ
(
Cylinder sets in 2Zd

)
.

Exercise 5.9. Show carefully that the event {∃x ∈ Zd; |C(x)| = ∞} is in T ⊂ G.

5.5. Almost sure convergence, convergence in probability and convergence in distri-
bution. Let (Xn, 1 ≤ n ≤ ∞) be a sequence of random variables defined on a common space
(Ω,F ,P). We say Xn converges almost surely to X∞, and write Xn

a.s.→ X∞, if Almost sure convergence

P
{
lim
n→∞

Xn = X∞

}
= 1 .

We say Xn converges in probability to X∞ if for all ϵ > 0, Convergence in probability

lim
n→∞

P {|Xn −X∞| > ϵ} = 0.

Next, given random variables (Xn, 1 ≤ n ≤ ∞), withXn : Ωn → R for some probability space
(Ωn,Fn,Pn), we say Xn converges in distribution to X∞, and write Xn

d→ X∞, if Convergence in distribution

lim
n→∞

Pn {Xn ≤ x} = P∞ {X∞ ≤ x}

for all x with P∞ {X∞ = x} = 0. This may seem complicated compared with the previous
definitions; the reason for this is that convergence in distribution is really a property of the distributions
of the random variables (or, equivalently, of their CDFs), and is insensitive to the specific spaces on
which they are defined.

Exercise 5.10. (a) Check thatXn
d→ X∞ iffFXn(x) → FX∞(x) for all continuity points x ofFX∞ .

(b) Show that if Xn
d→ X as X → ∞ and Xn

d→ Y as n→ ∞ then FX = FY and so µX = µY .
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One warning, which partially explains the restriction to x ∈ R with P {X∞ = x} = 0 above,
is in order. Write Un =

∑n
k=1 2

−kRk, where (Rn, n ≥ 1) are the Rademacher random variables
defined earlier, and let U∞ =

∑
k≥1 2

−kUk. Then Un → U∞ almost surely, since |Un − U∞| ≤∑
k>n 2

−k = 2−n. However, P {Un ∈ Q} = 1 and P {U∞ ∈ Q} = 0. This shows that Xn
a.s.→

X∞ does not in general imply that

P {Xn ∈ A} → P {X∞ ∈ A}
for all A ∈ B(R); more care is needed.

An easy example also shows that convergence in probability does not imply almost sure conver-
gence. Let (Bn, n ≥ 1) be independent with Bn a Bernoulli(1/n) random variable, which is to
say P {Bn = 1} = 1/n = 1−P {Bn = 0}. Then for all ϵ ∈ (0, 1),

P {|Bn − 0| > ϵ} = P {Bn = 1} =
1

n
→ 0

as n → ∞, so Bn
p→ 0. However,

∑
n≥1P {Bn = 1} =

∑
n≥1 1/n = ∞, so by the second

Borel-Cantelli lemma, P {Bn = 1 i.o.} = 1. It follows that

P
{
lim
n→∞

Bn = 0
}
= P {{Bn = 1 i.o.}c} = 1−P {Bn = 1 i.o.} = 0.

Thus Bn does not converge to 0 almost surely.
We now turn from warning examples to positive results.

Proposition 5.7. Let (Xn, n ≥ 1) be a sequence of random variables defined on a common probability space
(Ω,F ,P). If Xn

a.s.→ X∞ then Xn
p→ X∞.

Proof. Fix ϵ > 0. Then we have

P
{
lim
n→∞

Xn = X∞

}
≤ P

{
lim sup
n→∞

|Xn −X∞| ≤ ϵ

}
= P

{
∃n ∈ N : sup

m≥n
|Xm −X∞| ≤ ϵ

}
.

The sequence of events {supm≥n |Xm −X∞| ≤ ϵ} is increasing in n, and its limit is the event

{lim sup
n→∞

|Xn −X∞| ≤ ϵ} ,

so

P

{
lim sup
n→∞

|Xn −X∞| ≤ ϵ

}
= lim

n→∞
P

{
sup
m≥n

|Xm −X∞| ≤ ϵ

}
≤ lim

n→∞
P {|Xn −X∞| ≤ ϵ} .

It follows that if P {limn→∞Xn = X∞} = 1 then limn→∞P {|Xn −X∞| ≤ ϵ} = 1. □
Proposition 5.8. Let (Xn, n ≥ 1) be a sequence of random variables defined on a common probability space
(Ω,F ,P). If Xn

p→ X∞ then there exists a subsequence (nk, k ≥ 1) such that Xnk

a.s.→ X∞ as k → ∞.

Proof. Suppose that Xn
p→ X∞. Then for each k ∈ N, we may choose nk ∈ N large enough that

P {|Xm −X∞| > 1/k} < 1/2k for all m ≥ nk. The nk can clearly be chosen to be increasing,
so that (nk, k ≥ 1) is indeed a subsequence of N. Then∑

k≥1

P {|Xnk
−X∞| > 1/m} ≤ m+

∑
k≥m

1

2k
<∞ ,

so by the first Borel-Cantelli lemma, P {|Xnk
−X∞| > 1/m i.o.} = 0. Thus

P

{
lim
k→∞

Xnk
6= X∞

}
= P

{
∃m ∈ N : lim sup

k→∞
|Xnk

−X∞| > 1/m

}
≤
∑
m∈N

P

{
lim sup
k→∞

|Xnk
−X∞| > 1/m i.o.

}
= 0 . □
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Proposition 5.9. Let (Xn, n ≥ 1) be a sequence of random variables defined on a common probability space
(Ω,F ,P). If Xn

p→ X∞ then Xn
d→ X∞.

Proof. First, note that for any random variableX , for each x ∈ R withP {X = x} > 0 the interval

(P {X < x} ,P {X ≤ x})

is non-empty, and these intervals are pairwise disjoint for different points x, y ∈ R. Thus, if for
each x ∈ R with P {X = x} > 0 we choose a point q(x) ∈ (P {X < x} ,P {X = x}) ∩ Q,
then the values q(x) are distinct rational numbers. We have thus defined an injective map from
{x ∈ R : P {X = x} > 0} to Q, so {x ∈ R : P {X = x} > 0} is at countable.

Now fix x ∈ R with P {X∞ = x} = 0. Then since {X∞ < x} is the increasing limit of the
events {X∞ ≤ x− δ} as δ ↓ 0, we have

P {X∞ ≤ x} = P {X∞ < x} = lim
δ↓0

P {X∞ ≤ x− δ} .

Also, by continuity from above, P {X∞ ≤ x} = limδ↓0P {X∞ ≤ x+ δ}. Thus, for all ϵ > 0
there is δ > 0 such that

P {X∞ ≤ x} − ϵ < P {X∞ ≤ x− δ} ≤ P {X∞ ≤ x+ δ} < P {X∞ ≤ x}+ ϵ .

Now, if Xn ≤ x then either X∞ ≤ x+ δ or |Xn −X∞| > δ, so

lim sup
n→∞

P {Xn ≤ x} ≤ lim sup
n→∞

(P {X∞ ≤ x+ δ}+P {|Xn −X∞| > δ})

= P {X∞ ≤ x− δ} ≤ P {X∞ ≤ x}+ ϵ .

Likewise, if X∞ ≤ x− δ then either Xn ≤ x or |Xn −X∞| > δ, so

lim inf
n→∞

P {Xn ≤ x} ≥ lim inf
n→∞

(P {X∞ ≤ x− δ} −P {|Xn −X∞| > δ})

= P {X∞ ≤ x− δ} ≥ P {X∞ ≤ x} − ϵ .

Since ϵ > 0 was arbitrary, this completes the proof. □

For the last, and perhaps most interesting, implication between different modes of convergence,
we require an additional definition. Fix a collection of measures (µi, i ∈ I). A coupling of (µi, i ∈ I) coupling

is a collection (Yi, i ∈ I) of random variables defined on a common probability space (Ω,F ,P) such
that µYi = µi for all i ∈ I . If (Xi, i ∈ I) is a collection of random variables, possibly defined on
different probability spaces, with µXi = µi, we might also refer to (Yi, i ∈ I) as a coupling of
(Xi, i ∈ I).

For example, suppose thatµ1 andµ2 are both the uniformmeasure on the set [6] = {1, 2, 3, 4, 5, 6}.
Then with Ω = [6], F = 2[6] and P the uniform measure on Ω, setting Y1(ω) = ω and
Y2(ω) = 7−ω gives a coupling of µ1 and µ2.8 Alternately, with Ω = [6]2 = {(i, j), 1 ≤ i, j ≤ 6},
F = 2Ω, and P the uniform measure on Ω, setting Y1(i, j) = i and Y2(i, j) = j gives another
coupling of µ1 and µ2; this is an “independent coupling” since Y1 and Y2 are independent. By
Theorem 5.5, if (µi, i ∈ I) is a countable collection of probability measures then a coupling of
(µi, i ∈ I) always exists.

Theorem 5.10 (Skorohod representation theorem). Fix random variables (Xn, 1 ≤ n ≤
∞), withXn : Ωn → R for some probability space (Ωn,Fn,Pn). IfXn

d→ X∞ then there exists
a coupling (Yn, 1 ≤ n ≤ ∞) of (Xn, 1 ≤ n ≤ ∞) such that Yn

a.s.→ Y∞.

Proof. We write Fn = FXn . Our coupling lives on the probability space

(Ω,F ,P) = ([0, 1],B([0, 1]),Leb[0,1]) .

8This is the “glass table” coupling of a die roll: the value that comes up and the value seen by someone lying under the
table.
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For 1 ≤ n ≤ ∞, let Yn : Ω → R be defined by
Yn(p) = inf{x : Fn(x) ≥ p}.

Then by the same argument as in the proof of Proposition 5.4, we have FYn = Fn for all n, so
(Yn, 1 ≤ n ≤ ∞) is indeed a coupling of (Xn, 1 ≤ n ≤ ∞). The bulk of the proof consists in
showing that Yn

a.s.→ Y∞.
Note that for all 1 ≤ n ≤ ∞, Yn(p) is increasing in p, so has at most countably many points

of discontinuity (reprising the argument from the start of Proposition 5.9 gives an injective map
from the discontinuity points into Q). Thus to prove that Yn

a.s.→ Y∞ it is sufficient to prove that
Yn(p) → Y∞(p) whenever Y∞ is continuous at p.

So fix p ∈ [0, 1] a continuity point of Y∞, and write y = Y∞(p) = inf{x ∈ R : F∞(x) ≥ p}.
Then F∞(x) < p for x < y. Writing p′ = F∞(y), by right-continuity of F∞ we must have p′ ≥ p.
Moreover, since p is a continuity point of F∞ wemust have F∞(z) > p for all z > y. (If F∞(z) = p
for some z > y then for all q > p we have Y∞(q) ≥ z, contradicting that p is a continuity point.)

Now fix ϵ > 0, and choose x < y < z with x, z continuity points of F∞ and such that
y − ϵ < x < y < z < y + ϵ.

Then F∞(x) < p and F∞(z) > p. Since z is a continuity point of F∞ and Xn
d→ X∞, it follows

that
Fn(z) → F∞(z) > p

so Fn(z) > p for all n sufficiently large. Thus Yn(p) ≤ z < y + ϵ for n large. Likewise, Fn(x) →
F∞(x) < p, so Fn(x) < p for n large. Thus for Yn(p) ≥ x > y − ϵ for n large. Since ϵ > 0 was
arbitrary, it follows that Yn(p) → Y∞(p), as required. □

6. Integration and expectation

Let (Ω,F , µ) be a σ-finite measure space. In this section, unless otherwise specified, when we
refer to a measurable function f , we mean a F/B(R)-measurable function f : Ω → R.9 We say that
an event E ∈ F occurs µ-almost everywhere, or µ-a.e., if µ(Ec) = 0.

Our aim is to define the (definite) integral∫
fdµ ≡

∫
Ω
fdµ ≡

∫
Ω
f(x)µ(dx) ≡ µ(f)

for as rich a class of measurable functions as possible. The preceding display lists four different bits
of notation for this integral; these notes use at least the first three.

The way the integral is defined is by starting from functions taking only finitely many values,
where the correct definition of the integral is obvious, then taking limits. We say a measurable
function f is simple if it takes only finitely many values. Thus, f is simple if for some n ∈ N thereSimple function.

are sets E1, . . . , En ∈ F and constants c1, . . . , cn ∈ R such that f =
∑n

i=1 ci1[Ei].

Exercise 6.1. For any simple function f : Ω → R, there is a unique choice of pairwise disjoint setsD1, . . . , Dℓ ∈
F and of distinct constants b1, . . . , bℓ ∈ R such that f =

∑ℓ
i=1 bi1[Di].

Let f =
∑ℓ

i=1 bi1[Di] be a simple function from Ω to R, with (D1, . . . , Dℓ) pairwise disjoint
and (b1, . . . , bℓ) distinct. We say f is integrable if µ(Di) <∞ for all 1 ≤ i ≤ ℓ; if this holds then we
define ∫

Ω
fdµ =

n∑
i=1

ciµ(Ei) .

If µ(Ω) < ∞ then every simple function is integrable. The next exercise says that for a simple
integrable function, the definition of the integral doesn’t depend on the representation of f as a
sum of indicators of sets of bounded measure.
9Most of what follows also works if f : Ω → R∗ is F/B(R∗)-measurable, provided one takes appropriate care around
situations where ∞−∞ might show up.
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Exercise 6.2. Suppose that
∑n

i=1 ci1[Ei] =
∑m

i=1 di1[Fi] define the same function (where E1, . . . , En ∈
F and F1, . . . , Fm ∈ F all have finite measure, and c1, . . . , cn, d1, . . . , dm ∈ R. Then

∑n
i=1 ciµ(Ei) =∑m

i=1 diµ(Fi).

The next proposition states some basic properties of the integral for simple integrable functions.

Proposition 6.1. Let (Ω,F , µ) be a σ-finite measure space and let f, g : Ω → R be simple integrable
functions.

• If f ≥ 0 µ-a.e. then
∫
fdµ ≥ 0.

• If a ∈ R then
∫
af + gdµ = a

∫
fdµ+

∫
gdµ.

• If f ≤ g µ-a.e. then
∫
fdµ ≤

∫
gdµ.

Proof. Write f =
∑n

i=1 ci1[Ei] with E1, . . . , En ∈ F disjoint. If some ci < 0 then since f ≥ 0
µ-almost everywhere we must have µ(Ei) = 0. Thus∫

fdµ =
∑
i:ci>0

ciµ(Ei) ≥ 0 ,

proving (a). Next, write g =
∑m

j=1 dj1[Fj ]. Then af + g = a
∑n

i=1 ci1[Ei] +
∑m

j=1 dj1[Fj ] is
simple so by definition∫

af + gdµ = a

n∑
i=1

ciµ(Ei) +

m∑
j=1

djµ(Fj) = a

∫
fdµ+

∫
gdµ ,

proving (b). Finally, if f ≤ g µ-a.e. then g − f ≥ 0 µ-a.e. so by (a) and (b),

0 ≤
∫
g − fdµ =

∫
gdµ−

∫
fdµ ,

proving (c). □
In what follows we’ll sometimes write “f s.i.” to mean that f is simple and integrable. We extend f s.i.: simple integrable

the definition from simple functions first to non-negative functions, then to general functions. For
f a non-negative measurable function, define∫

fdµ = sup
g≤f
g s.i.

∫
gdµ .

Note that if f is itself simple then for g ≤ f simple we have
∫
gdµ ≤

∫
fdµ by the previous

proposition; it follows that this new definition agrees with the previous definition when f is simple.
One may think of this definition as a “horizontal” definition via lower approximations, whereas

the Riemann integral uses a “vertical” approximation. Alternatively, one may say that the Riemann
approximation to the integral decomposes the domain, whereas the above definition (one might call
it a “Lebesgue approximation”) decomposes the range.

Finally, for a general measurable function f , write f+ = max(f, 0) and f− = −min(f, 0). If Definition of f+ and f−

for a function f ; note that
we use this notation
differently earlier in the
notes.

either
∫
f+dµ <∞ or

∫
f−dµ <∞ then we set∫

fdµ =

∫
f+dµ =

∫
f−dµ ,

and say the integral of f is defined. Note that if f ≥ 0 then f = f+ and f− = 0, so this definition
agrees with the definition for non-negative functions.

Having extended the definition of the integral from simple functions to this more general class,
we now need to check again that the basic properties of the integral all hold.

Proposition 6.2. Let (Ω,F , µ) be a σ-finite measure space and let f, g and (fn, n ≥ 1) be measurable
functions.

• Weak monotonicity. If f ≤ g and
∫
fdµ and

∫
gdµ are defined then

∫
fdµ ≤

∫
gdµ.

• Weak monotone convergence theorem. If fn ≥ 0 and fn ↑ f , then
∫
fndµ ↑

∫
fdµ.
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• Linearity of expectation. If f, g ≥ 0 and a ≥ 0 then
∫
af + gdµ = a

∫
fdµ+

∫
gdµ.

To prove linearity of expectation, we need the following lemma.

Lemma 6.3. Let f ≥ 0 be measurable. Then there exist non-negative simple functions (fn, n ≥ 1) such that
fn ↑ f as n→ ∞.

s

Proof. For 0 ≤ k < n · 2n let Bn,k = {k/2n ≤ f < (k + 1)/2n}. Then set

fn =
n2n−1∑
k=0

k

2n
1[Bn,k].

Then 0 ≤ fn ≤ f , and f1[f≤n] ≤ fn+1/2n so lim infn→∞ fn ≥ lim infn→∞(f1[f≤n]−2−n) =
f . □

For later use, we remark that the functions fn constructed in the course of proving the above
theorem are all (σ(f)/B(R))-measurable. This means that if (Ω,F ,P) is a probability space and
X : Ω → R and Y : Ω → R are non-negative independent random variables, then there exist
(σ(X)/B(R))-measurable random variables (Xn, n ≥ 1) and (σ(Y )/B(R))-measurable random
variables (Yn, n ≥ 1) such thatXn ↑ X and Yn ↑ Y as n→ ∞. The collections (Xn, n ≥ 1) and
(Yn, n ≥ 1) of random variables then independent due to the independence of X and Y . This
extends to more than two variables in an obvious way.

Proof of Proposition 6.2. If f ≥ 0 then this is obvious because the supremum in the definition of
∫
gdµ

is over a larger set than in the definition of
∫
fdµ. For general f , since f ≤ g we have f+ ≤ g+

and f− ≥ g− so∫
fdµ =

∫
f+dµ−

∫
f−dµ ≤

∫
g+dµ−

∫
g−dµ =

∫
gdµ .

This proves the first assertion.
Next, suppose 0 ≤ fn ↑ f . Then for each n by monotonicity we have fn ≤ f so

∫
fndµ ≤∫

fdµ, so

lim
n→∞

∫
fndµ = sup

n∈N

∫
fndµ ≤

∫
fdµ.

To prove the reverse inequality, fix any simple function g =
∑m

i=1 ci1[Ei] with 0 ≤ g ≤ f . We may
assume that (E1, . . . , Em) are disjoint and that ci > 0 for all 1 ≤ i ≤ m.

First suppose
∫
fdµ = ∞. For n ≥ 1 let

Ei,n = Ei ∩ {fn > ci/2} = {ω ∈ Ei : fn(ω) ≥ ci/2}.

ThenEi,n ↑ Ei as n→ ∞, so µ(Ei,n) ↑ µ(Ei). Since also fn ≥
∑m

i=1(ci/2)1[Ei,n], it follows that

lim inf
n→∞

∫
fndµ ≥ lim inf

n→∞

∫ m∑
i=1

(ci/2)1[Ei,n]dµ

= lim inf
n→∞

1

2

m∑
i=1

ciµ(Ei,n)

= lim inf
n→∞

1

2

m∑
i=1

ciµ(Ei)

=
1

2

∫
gdµ.
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Thus

lim inf
n→∞

∫
fndµ ≥ 1

2
sup
g≤f

g simple

∫
gdµ = ∞.

Next suppose
∫
fdµ <∞. Fix ϵ > 0, let δ = ϵ/

∫
gdµ, and for n ≥ 1 let

Ei,n = Ei ∩ {fn > ci − ϵ} .

Then again Ei,n ↑ Ei as n→ ∞, so µ(Ei,n) ↑ µ(Ei). Moreover,

fn ≥
m∑
i=1

(ci − δ)1[Ei,n] ≥
m∑
i=1

ci1[Ei,n] − δ

m∑
i=1

1[Ei] ,

so

lim inf
n→∞

∫
fndµ ≥ lim inf

n→∞

(∫ m∑
i=1

ci1[Ei,n]dµ−
∫
δ

m∑
i=1

1[Ei]dµ

)

= lim inf
n→∞

(∫ m∑
i=1

ci1[Ei,n]dµ

)
− δ

m∑
i=1

ciµ(Ei)

= lim inf
n→∞

m∑
i=1

ciµ(Ei,n)− ϵ

=
m∑
i=1

ciµ(Ei)− ϵ .

Since ϵ > 0 and g ≤ f were arbitrary, it follows that

lim inf
n→∞

∫
fndµ ≥

∫
fdµ

as before. This proves the second assertion.
Finally, fix non-negative measurable functions f, g and constant a ≥ 0. Then let (fn, n ≥ 1)

and (gn, n ≥ 1) be simple functions with 0 ≤ fn ↑ f and 0 ≤ gn ↑ g. Then afn+ gn ↑ af + g, so∫
cf + gdµ = lim

n→∞

∫
cfn + gndµ = lim

n→∞
c

∫
fndµ+

∫
gndµ = c

∫
fdµ+

∫
gdµ ,

where we have used monotone convergence, plus linearity of integration for simple functions, in
the above string of identities. This completes the proof. □

Notice that linearity of integration for non-negative functions implies that
∫
|f |dµ =

∫
f+dµ+∫

f−dµ, since |f | = f+ + f−. If
∫
|f |dµ <∞ we say that f is µ-integrable and write f ∈ L1(µ). L1(µ), µ-integrable

Exercise 6.3. (a) Show that if f, g are µ-integrable and a ∈ R then
∫
af+gdµ = a

∫
fdµ+

∫
gdµ.

(b) Let f ≥ 0 be measurable. Show that
∫
fdµ = 0 if and only if f = 0 µ-almost everywhere.

Proposition 6.4 (Monotonicity of integrals). If f ≤ g µ-almost everywhere and both integrals are defined,
then

∫
fdµ ≤

∫
gdµ.

Proof. Write ĝ = g + (f − g)1[f>g]. Then ĝ ≥ f so∫
ĝdµ ≥

∫
fdµ.

But ĝ − g = (f − g)1[f>g] is non-negative and µ-a.e. equals zero, so∫
gdµ =

∫
ĝdµ−

∫
(ĝ − g)dµ =

∫
ĝdµ . □



MATH 587/589 COURSE NOTES 29

Note that Proposition 6.4 implies that if f µ−a.e.
= g and

∫
fdµ is defined, then

∫
gdµ is defined

and
∫
fdµ =

∫
gdµ.

We now state and prove the fundamental convergence theorems for sequences of functions. In
all of them, (fn, n ≥ 1), f , and g are measurable functions defined on a σ-finite measure space
(Ω,F , µ). The first result, the (strong) monotone convergence theorem, is really a corollary of the
weak monotone convergence theorem combined with the previous proposition.

Theorem 6.5 (Monotone convergence theorem). If (fn, n ≥ 1) and f are measurable func-
tions and 0 ≤ fn ↑ f holds µ-almost everywhere then∫

fndµ→
∫
fdµ ,

as n→ ∞.

Proof. Let
E = {ω ∈ Ω : fn(ω) ↑ f(ω) as n→ ∞}.

Then µ(Ec) = 0 by assumption. Writing f ′n = fn1[E] and f ′ = f1[E], then 0 ≤ f ′n ↑ f ′ so by

the weak monotone convergence theorem
∫
f ′ndµ→

∫
f ′dµ. But f ′n

µ−a.e.
= fn and f ′ µ−a.e.

= f , so
Proposition 6.4 we have ∫

fndµ =

∫
f ′ndµ and

∫
fdµ =

∫
f ′dµ

and the result follows. □

Theorem 6.6 (Fatou’s lemma). If fn ≥ 0 for all n then∫
lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
fndµ .

Proof. Note that infk≥n fk is increasing in n, and its limit is lim infn→∞ fn, so by the monotone
convergence theorem ∫

lim inf
n→∞

fndµ = lim
n→∞

∫
inf
k≥n

fkdµ .

But for each k ≥ n,
∫
infk≥n fkdµ ≤

∫
fkdµ, so

lim
n→∞

∫
inf
k≥n

fkdµ ≤ lim
n→∞

inf
k≥n

∫
fkdµ = lim inf

n→∞

∫
fndµ . □

Theorem 6.7 (Dominated convergence theorem). Suppose that fn → f µ-almost everywhere.
If there exists g ∈ L1(µ) such that |fn| ≤ g µ-almost everywhere then∫

fndµ→
∫
fdµ.

Proof. We now know that changing a function on a set of measure zero doesn’t change its integral,
so we can assume that fn → f and |fn| ≤ g for all n. It follows that |f | ≤ g so f ∈ L1(µ) as well.

Now apply Fatou’s lemma to both g + fn and g − fn; since lim infn→∞ g + fn = g + f and
lim infn→∞ g − fn = g − f we obtain∫

g + fdµ =

∫
lim inf
n→∞

(g + fn)dµ ≤ lim inf
n→∞

∫
(g + fn)dµ = g + lim inf

n→∞

∫
fndµ ,

and ∫
g − fdµ =

∫
lim inf
n→∞

(g − fn)dµ ≤ lim inf
n→∞

∫
(g − fn)dµ = g − lim sup

n→∞

∫
fndµ .
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Subtracting
∫
gdµ from both equations, this gives∫

fdµ ≤ lim inf
n→∞

∫
fndµ ≤ lim sup

n→∞

∫
fndµ ≤

∫
fdµ ,

so the limit of
∫
fndµ must exist and equal

∫
fdµ. □

Corollary 6.8. Suppose µ(Ω) < ∞. If fn → f µ-almost everywhere and there is M > 0 such that
|fn| ≤M for all n ≥ 1, then ∫

fndµ→
∫
fdµ.

Proof. In this case the constant function g ≡ M satisfies
∫
gdµ = Mµ(Ω) < ∞, and |fn| ≤ g for

all n ≥ 1. □
Exercise 6.4. (a) Fix g ∈ L1(µ). Suppose that

∑
n≥1 fn converges µ-almost everywhere and that

|
∑n

k=1 fk| ≤ g µ-almost everywhere, for all n ≥ 1. Show that fn ∈ L1(µ) for all n ≥ 1, that∑
n≥1 fn ∈ L1(µ) and that∫ ∑

n≥1

fndµ =
∑
n≥1

∫
fndµ .

(b) Suppose that
∑

n≥1

∫
|fn|dµ < ∞. Prove that

∑
n≥1 fn is µ-a.e. absolutely convergent and that∑

n≥1

∫
fndµ =

∫ ∑
n≥1 fndµ.

6.1. Expectation and independence. All the theorems of the preceding section can be applied
to real random variables defined over a probability space (Ω,F ,P). In this setting, for a random
variable X : Ω → R we have one additional way to write the integral: EX :=

∫
XdP; in this

setting the integral is called the expected value of X .
So the theorems of the preceding section imply, for example, that if 0 ≤ Xn ↑ X almost surely

then EXn → EX as n → ∞; and if |Xn| ≤ M for all n and Xn
a.s.→ X then |X| ≤ M almost

surely and EXn → EX .
The main goal of the current section is to exhibit the strong connection between independence

of random variables and factorization of expectations into product form.

Theorem 6.9 (Independence means multiply). Let (Xi, 1 ≤ i ≤ n) be random variables
defined over a probability space (Ω,F ,P). Then (Xi, 1 ≤ i ≤ n) are independent if and only if

E

[
n∏

k=1

fk(Xk)

]
=

n∏
k=1

E [fk(Xk)] (6.1)

for any bounded Borel measurable functions fk : R → R.
This theorem gives us the chance to introduce one of the last “simplifying techniques” of the notes:
the monotone class theorem.
Theorem 6.10 (Monotone class theorem). Let (Ω,F) be a measurable space, and let P ⊂ F
be a π-system over Ω with Ω ∈ P and σ(P) = F . Let S be a collection of functions f : Ω → R
with the following properties.

(a) For all P ∈ P , 1[P ] ∈ S .
(b) For all f, g ∈ S and c ∈ R, cf + g ∈ S .
(c) If (fn, n ≥ 1) are elements of S and 0 ≤ fn ↑ f for a bounded function f , then f ∈ S .

Then S contains all bounded F/B(R)-measurable functions.

Proof. Let Λ = {F ∈ F : 1[F ] ∈ S}. Then P ⊂ Λ by definition. Moreover, if E,F ∈ Λ and
E ⊂ F then 1[F\E] = 1[F ] − 1[E] ∈ S by (b) and so F \E ∈ Λ. Also, if Fn ↑ F then 1[Fn] ↑ 1[F ]

and 1[F ] is bounded so lies in S ; thus F ∈ Λ. This means that Λ is a λ-system, containing P , so
contains F by Dynkin’s π-system lemma (Lemma 4.5).
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We now know that 1[F ] ∈ S for all F ∈ F . Since by (b), the collection S is closed under linear
combinations, it follows that S contains all simple functions. Any bounded non-negative function
is a monotone limit of simple functions by Lemma 6.3, so by (c) it follows that S contains all non-
negative bounded measurable functions. Finally, for any bounded measurable function f , we may
write f = f+ − f− as a difference of bounded measurable functions, so another application of (b)
shows that f ∈ S . □
First proof of Theorem 6.9. First suppose that (6.1) holds for any boundedmeasurable functions f1, . . . , fn.
Fix any events E1, . . . , En ∈ F with Ek ∈ σ(Xk). Since σ(Xk) = {X−1

k (B), B ∈ B(R)}, we
may write Ek = {Xk ∈ Bk} for some Bk ∈ B(R). It follows that

P

{
n⋂

k=1

Ek

}
= P

{
n⋂

k=1

{Xk ∈ Bk}

}
=E

[
n∏

k=1

1[Bk](Xk)

]

=
n∏

k=1

E
[
1[Bk](Xk)

]
=

n∏
k=1

P {Xk ∈ Bk} =
n∏

k=1

P {Ek} .

Thus X1, . . . , Xn are independent.
Conversely, suppose X1, . . . , Xn are independent. Let

Sn :=
{
f : R → R bounded, Borel : ∀ B1, . . . , Bn−1 ∈ B(R),

E
[
f(Xn) ·

n−1∏
k=1

1[Xk∈Bk]

]
= E [f(Xn)] ·

n−1∏
k=1

P {Xk ∈ Bk}
}
.

Then by assumption, Sn contains the indicator functions {1[B] : B ∈ B(R)}. Moreover, if f, g ∈ S
and c ∈ R then for any B1, . . . , Bn−1 ∈ B(R), by linearity of expectation,

E
[
(cf + g)(Xn) ·

n−1∏
k=1

1[Xk∈Bk]

]
= cE

[
f(Xn) ·

n−1∏
k=1

1[Xk∈Bk]

]
+E

[
g(Xn) ·

n−1∏
k=1

1[Xk∈Bk]

]
= cE [f(Xn)] ·

n−1∏
k=1

P {Xk ∈ Bk}+E [g(Xn)] ·
n−1∏
k=1

P {Xk ∈ Bk}

= E [(cf + g)(Xn)] ·
n−1∏
k=1

P {Xk ∈ Bk} ,

so cf + g ∈ Sn. Also, if 0 ≤ fm ↑ f with f bounded and fm ∈ Sn for all m ≥ 1, then for any
B1, . . . , Bn−1 ∈ B(R), by the monotone convergence theorem

E
[
f(Xn) ·

n−1∏
k=1

1[Xk∈Bk]

]
= lim

m→∞
E
[
fm(Xn) ·

n−1∏
k=1

1[Xk∈Bk]

]
= lim

m→∞
E [fm(Xn)] ·

n−1∏
k=1

P {Xk ∈ Bk}

= E [f(Xn)] ·
n−1∏
k=1

P {Xk ∈ Bk} .

so f ∈ Sn. Thus Sn contains all bounded measurable functions. Next let

Sn−1 :=
{
f : R → R Borel : ∀ B1, . . . , Bn−2 ∈ B(R), ∀g : R → [0,∞) Borel,

E
[
f(Xn−1)g(Xn) ·

n−2∏
k=1

1[Xk∈Bk]

]
= Ef(Xn−1) ·Eg(Xn)

n−2∏
k=1

P {Xk ∈ Bk} .
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By repeating the same arguments as forSn, we see thatSn−1 contains all boundedmeasurable func-
tions (the monotone convergence theorem can be used since we took g non-negative). Repeating
this argument (i.e. by induction), we obtain that

E

[
n∏

k=1

fk(Xk)

]
=

n∏
k=1

E [fk(Xk)]

for any non-negative bounded Borel functions f1, . . . , fn. Using linearity of expectation oncemore,
it follows that this identity indeed holds for any bounded Borel functions. □

Second proof of Theorem 6.9. This proof replaces the use of the monotone class theorem with a direct
argument (which has a similar flavour). We refer to (6.1) as “the factorization formula”. The proof
that if the factorization formula holds then X1, . . . , Xn are independent is the same as in the first
proof.

Now suppose that X1, . . . , Xn are independent. Then for all B1, . . . , Bn ∈ Bn, the events
({Xk ∈ Bk}, 1 ≤ k ≤ n) are independent, so for any constants c1, . . . , cn ∈ R, writing c =∏n

i=1 ci, we have

E

n∏
k=1

ck1[Bk](Xk) = cP

{
n⋂

k=1

{Xk ∈ Bk}

}
= c

n∏
k=1

P {Xk ∈ Bk} =

n∏
k=1

Eck1[Bk](Xk) ,

proving the factorization formula for (multiples of) indicator functions.
Now let f1, . . . , fn be simple Borel functions. Then we may write fk =

∑m
ℓ=1 ck,ℓ1[Bk,ℓ] for

some real constants (ck,ℓ, k ∈ [n], ℓ ∈ [m]) and Borel sets (Bk,ℓ, k ∈ [n], ℓ ∈ [m]). (We can always
“pad” some of the sums so that they all have the same number of terms.) Then using linearity of
expectation and the factorization formula for indicator functions,

E

n∏
k=1

fk(Xk) = E

n∏
k=1

m∑
ℓ=1

ck,ℓ1[Bk,ℓ](Xk,ℓ)

=

m∑
ℓ1,...,ℓn=1

E

n∏
k=1

ck,ℓk1[Bk,ℓk
](Xk)

=
m∑

ℓ1,...,ℓn=1

n∏
k=1

ck,ℓkE1[Bk,ℓk
](Xk)

=
n∏

k=1

E
m∑
ℓ=1

ck,ℓ1[Bk,ℓ](Xk)

=
n∏

k=1

Efk(Xk) ,

so the factorization formula holds for simple functions.
Now suppose f1, . . . , fn are non-negative Borel functions, and write Yk = fk(Xk). Then Yk

is σ(Xk)/B(R)-measurable, so Y1, . . . , Yn are independent. By Lemma 6.3, for each 1 ≤ k ≤ n
we may find simple functions (Yk,m,m ≥ 1) such that 0 ≤ Yk,m ↑ Yk and such that Yk,m is
σ(Xk)/B(R)-measurable for all m ∈ N. Then (Y1,m, . . . , Yn,m) are independent for all m, and∏n

k=1 Yk,m ↑
∏n

k=1 Yk asm→ ∞, so by the monotone convergence theorem and the factorization
formula for simple functions,

E
n∏

k=1

fk(Xk) = E
n∏

k=1

Yk = lim
m→∞

E
n∏

k=1

Yk,m = lim
m→∞

n∏
k=1

EYk,m =
n∏

k=1

EYk ,

proving the factorization formula for non-negative functions.
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Finally, if f1, . . . , fn are bounded and Borel measurable then we can again use linearity of ex-
pectation to write f(Xk) =: Yk = Y +

k − Y −
k , and we then have

E
n∏

k=1

fk(Xk) = E
n∏

k=1

(Y +
k − Y −

k )

=
∑

(σ1,...,σn)∈{−,+}n
(−1)#{k∈[n]:σk=−}E

n∏
k=1

Y σk
k

=
∑

(σ1,...,σn)∈{−,+}n
(−1)#{k∈[n]:σk=−}

n∏
k=1

EY σk
k =

n∏
k=1

E
[
Y +
k − Y −

k

]
=

n∏
k=1

Efk(Xk)

so the factorization formula holds in general. □
An extremely important corollary of Theorem 6.1 is that the factorization formula holds when the
functions f1, . . . , fn are simply the identity (this is not an immediate consequence of the theorem
as the identity function is unbounded).

Corollary 6.11. Suppose that X1, . . . , Xn are independent and either (a) Xk ≥ 0 for 1 ≤ k ≤ n or
(b) Xk ∈ L1(P) for 1 ≤ k ≤ n. If (b) holds then

∏n
k=1Xk ∈ L1(P) and if either (a) or (b) hold then

E
∏n

k=1Xk =
∏n

k=1EXk.

In the proof (and later in the notes?), we use the following notation: for a function f : Ω → R
and r > 0 we write f≤r := f1[|f |≤r].Notation f≤r

Proof. It suffices to prove the corollary when n = 2; the result then follows by induction. So suppose
X,Y are independent. If X and Y are non-negative then by the monotone convergence theorem
and by (6.1),

E [XY ] = lim
n→∞

E [X≤nY≤n] = lim
n→∞

EX≤nEY≤n = EXEY,

so if (a) holds then the factorization formula holds.
Next, if X,Y ∈ L1(P) then write X = X+ − X− and Y = Y + − Y −. Then |XY | =

(X++X−)(Y ++Y −), so by linearity of expectation and the conclusion of the previous paragraph,

E|XY | = E
[
X+Y +

]
+E

[
X+Y −]+E

[
X−Y +

]
+E

[
X−Y −]

= EX+EY + +EX+EY − +EX−EY + +EX−EY −

= E|X|E|Y | <∞ ,

so XY ∈ L1(P). We may then again use linearity of expectation to deduce that

EXY = E
[
X+Y +

]
−E

[
X+Y −]−E

[
X−Y +

]
+E

[
X−Y −]

= EX+EY + −EX+EY − −EX−EY + +EX−EY −

= EXEY . □

Exercise 6.5. Fix random variablesX,Y ∈ L1(Ω,F ,P) and let P ⊂ F be a π-system with σ(P) = F .
Show that if E

[
X1[A]

]
= E

[
Y 1[A]

]
for all A ∈ P then X a.s.

= Y .

7. An interlude: the probabilistic method.

One of the challenges of teaching a first rigorous probability course is the amount of setup that’s
required before one gets to “the real stuff ”. Billingsley’s textbook avoids this issue by focussing exclu-
sively on simple functions in the early chapters. This makes the book more engaging at the outset;
the cost is that many of the most important random variables (Gaussian, exponential, Gamma,
Beta, …) are excluded from consideration.

My approach this course has been to bite the bullet and do the necessary setup, while doing
my best to motivate its development. I’ve also postponed a few things that in most courses would
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have already been introduced or would be next on the menu: Fubini’s theorem, convergence in Lp,
Hölder, Minkowski and Cauchy-Schwartz inequalities, to name a few.

Even so, I know that the first third to half of the course can feel like a bit of a slog. To liven
things up a bit, I’ve decided to describe one of the ways in which probability has contributed to
other branches of mathematics: the probabilistic method. In a nutshell, the idea of the probabilistic
method is this. One wishes to show the existence of a mathematical object m with some property
P . Rather constructingm directly, one instead constructs a random objectM and shows that

P {M has property P} > 0.

This immediately shows that there must be at least one objectmwith propertyP , proving existence.
Example 1: existence of continuous nowhere differentiable functions. LetDn := {i/2n, 0 ≤
i ≤ 2n}, so that D :=

⋃
n≥0Dn are the dyadic rationals in [0, 1]. Note that Dn−1 ⊂ Dn for each

n ≥ 1. Let (Nx, x ∈ D) be IIDN(0, 1) random variables. Define a sequence of random functions Dn: n’th level dyadic
rationals in [0, 1].Bn from [0, 1] to R as follows.

For x ∈ [0, 1] let B1(x) = xN1. Actually, a more wordy but equivalent definition of B1

presages10 the subsequent construction more effectively. Let B1(0) = 0 and let B1(1) = N1;
then for x ∈ (0, 1) define B1(x) by linear interpolation between points ofD0 = {0, 1}.

Inductively, given Bn−1, let

Bn(x) =


Bn−1(x) if x ∈ Dn−1

Bn−1(x) +
Nx√
2n

if x ∈ Dn \Dn−1

pBn(i/2
n) + (1− p)Bn((i+ 1)/2n) if x = pi+(1−p)i+1

2n , p ∈ (0, 1) .

Then it is possible to show that11

P {(Bn, n ≥ 0) is a uniformly convergent sequence of functions} = 1 ,

so one may define a random function B∞ as the almost sure limit of the sequence Bn. The limit
B∞ is Brownian motion on the interval [0, 1]. The fact that B∞ is a.s. a uniform limit of continuous a.s.: almost surely

functions implies that B∞ is a.s. continuous. However, it turns out that

P {B∞ is nowhere differentiable} = 1.

Thus, Brownian motion provides an example of a continuous, nowhere differentiable function. In
fact, Brownian motion is (in a sense which can be made precise) a uniformly random continuous function,
so the above statement can be interpreted as stating that almost all continuous functions are nowhere
differentiable.
Example 2: small-norm signings of vectors.

This example is a bit more down-to-earth, and we may actually prove all our statements with
the machinery we currently have available to us. It is drawn from Alon and Spencer’s book “The
probabilistic method”.

Proposition 7.1. Let v1, . . . , vn be vectors in Rm (for some m) with |vi| = 1 for all i. Then there exist
σ1, . . . , σn ∈ {−1, 1} such that

|σ1v1 + . . .+ σnvn| ≤
√
n.

Proof. Let σ1, . . . , σn be independent and uniform on {−1, 1}. Set

X = |σ1v1 + . . .+ σnvn|2 = (σ1v1 + . . .+ σnvn) · (σ1v1 + . . .+ σnvn) =
n∑

i,j=1

σiσjvi · vj .

10presage, v.: 1. transitive. a. To constitute a supernatural sign of (a future event); to be an omen of, to portend. b. To
be indicative or suggestive of; to be a natural precursor of, to give warning of. –Oxford English Dictionary
11discuss measurability issues?
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Then by linearity of expectation,

EX = E

n∑
i,j=1

σiσjvi · vj =
n∑

i,j=1

E [σiσj ] vi · vj .

If i 6= j then σi and σj are independent soE [σiσj ] = EσiEσj = 0; so the above identity simplifies
to

EX =
n∑

i=1

E
[
σ2i
]
vi · vi =

n∑
i=1

1 = n

since vi · vi = |vi|2 = 1 and σ2i ≡ 1.
But if EX = n then P {X ≤ n} > 0 by monotonicity of expectations; so there must be some

choice of σ1, . . . , σn which makes X ≤ n, and for this choice

|σ1v1 + . . .+ σnvn| = X1/2 ≤
√
n . □

8. Densities and change of variables

This section is about how to actually do computations with random variables and their expec-
tations.

IfX is a random variable taking values in N, thenX = limn→∞X≤n, and this is an increasing
limit. For each n, X≤n is a simple function so by the definition of the integral of simple functions,
we have

EX = lim
n→∞

EX≤n = lim
n→∞

n∑
k=0

kP {X≤n = k} =
∑
k≥0

kP {X = k} .

More generally, if X is non-negative and takes values in a countable set N , then the same sort of
argument gives that EX =

∑
n∈N nP {X = n}. This allows us to do computations with discrete

random variables. For example, if P is Poisson(λ) then

EP =
∑
k≥0

k · λ
ke−λ

k!
= λ ·

∑
k≥1

λk−1e−λ

(k − 1)!
= λ.

But it’s not yet clear how to tackle computations involving non-discrete random variables. For
example, suppose that (Ni, i ≥ 1) are independent standard Gaussian random variables, indepen-
dent of P . How should we compute (or even approximate)

P

{
P∑
i=1

Ni ≥ 1

}
= E

[
1[

∑P
i=1 Ni≥1]

]
=

∫
Ω
1[

∑P
i=1 Ni≥1](ω)dP ?

Using the tools we now develop.

Definition 8.1. Given a measure space (Ω,F , µ) and f : Ω → R non-negative and F/B(R)-measurable,
define a new measure µf on (Ω,F) by setting

µf(A) =

∫
A
fdµ :=

∫
f1[A]dµ .

If ν = µf then we say ν has density f with respect to µ.Density

Exercise 8.1. The function µf defined above is a measure on (Ω,F).

Exercise 8.2. If f ′ µ−a.e.
= f then µf = µf ′.

We also say a real random variable X has density f with respect to Lebesgue measure if its
distribution µX has density f with respect to Lebesgue measure, or in other words if

µX(B) =

∫
B
f(x)dx
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for any Borel B ⊂ R. In this case we also say that f is the probability density function of X . These
definitions are justified by the following two results.

Proposition 8.2. Fix a σ-finite measure space (Ω,F , µ) and measurable f : Ω → [0,∞), and suppose ν
has density f with respect to µ. Then for measurable g : Ω → R,∫

gdν =

∫
gfdµ

provided that either g ≥ 0 or g ∈ L1(ν). Moreover, g ∈ L1(ν) if and only if gf ∈ L1(µ).

Proof. If g = 1[A] for some A ∈ F then the equality of the two integrals holds by definition.
The theorem then follows straightforwardly using the monotone class theorem and the monotone
convergence theorem. □

Proposition 8.3 (Change of variables formula). Let (Ω,F ,P) be a probability space, and let
X : Ω → R be a random variable. Then for all measurable g : R → R with E|g(X)| <∞,

Eg(X) =

∫
R
g(x)µX(dx) . (8.1)

Moreover, if X has density f with respect to Lebesgue measure then also Eg(X) =
∫
R g(x)f(x)dx.

Proof. Again, the assertions are true if g = 1[B] for Borel B ⊂ R, and the rest of the proof follows
using the monotone class theorem and the monotone convergence theorem. □

More generally, if (Ω,F , µ) is a σ-finite measure space and (S,S) is another measurable space,
then for an (F/S)-measurable function f : Ω → S we may define

ν(E) = µ(f−1(E))

for E ∈ S . Then for all non-negative (S/B(R))-measurable functions g : S → R, we have∫
gdν =

∫
g ◦ fdµ .

The change of variables formula (8.1) is a special case of this, but this also tells us, for example, that
if X = (X1, . . . , Xn) are random variables defined on a common space, then

Eg(X1, . . . , Xn) =

∫
Rn

g(x⃗)µX(x⃗) .

Making this a useful computational tool, even for independent random variables, will require Fu-
bini’s theorem.

Exercise 8.3. Prove that if φ : [a, b] → R is C1 (continuously differentiable) and strictly increasing then for C1

any Borel function g : [φ(a), φ(b)] → [0,∞),∫ φ(b)

φ(a)
g(y)dy =

∫ b

a
g(φ(y))φ′(y)dy .

Example: size-biasing the Poisson and folded normal distributions. Let X be a non-
negative random variable on a probability space (Ω,F ,P)with 0 < EX <∞. Then (R,B(R), µX)
is another probability space. The size-biased distribution of X is µ̂X := (µX · X/EX). In other
words, for Borel B ⊂ R,

µ̂X(A) = (µX ·X/EX)(A) = E

[
X

EX
1[X∈A]

]
.

This is another probability distribution on R, since µ̂X(R) = E [X/EX] = 1.
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Suppose P is Poisson(λ). Then EP = λ so for Borel B ⊂ R,

µ̂P (B) =

(
µP

P

λ

)
(B) = E

[
P

λ
1[P∈B]

]
=

∑
k≥1,k∈B

k

λ
P {P = k}

=
∑

k≥1,k∈B

k

λ

λke−λ

k!
=

∑
k≥1,k∈B

λk−1e−λ

(k − 1)!
= P {P + 1 ∈ B} = µP+1(B) .

In other words, the size-biased distribution of P is just the distribution of P +1. Of course, nothing
like this need hold in general.

Next suppose N is a standard Gaussian; so N has density Φ(x) = 1√
2π
e−x2/2 with respect to

Lebesgue measure. The distribution of |N | is called the folded normal distribution; it has density
ψ(x) = 2Φ(x)1[x≥0] =

√
2/πe−x2/21[x≥0] with respect to Lebesgue measure.

The size-biasing of the distribution of |N | is µ̂|N | = (µ|N | · |N |/E|N |). To find an explicit
formula for this, we first use the change of variables formula to compute

E|N | =
∫
R
xdµ|N | =

∫
[0,∞

x ·
√

2

π
e−x2/2dx =

[
−
√

2

π
e−x2/2

]∞
0

=

√
2

π
.

It follows that for B ⊂ [0,∞) Borel,

µ̂|N |(B) =

∫
1[B] ·

|N |
E|N |

dµ =

∫
B

x√
2/π

√
2

π
e−x2/2dx =

∫
B
xe−x2/2dx .

Thus, µ̂|N | has density xe−x2/21[x≥0] with respect to Lebesgue measure. This is called the Rayleigh
distribution.Rayleigh distribution

Exercise 8.4. If X,Y are independent standard Gaussians then
√
X2 + Y 2 is Rayleigh distributed.

8.1. Productmeasure and Fubini’s theorem. Let (Ω,F ,P) be a probability space. IfX,Y :
Ω → R are independent random variables and f, g : R → R are bounded Borel functions then
Ef(X)g(Y ) = Ef(X)Eg(Y ). By Exercise 5.2 (e), the pair (X,Y ) is Ω/B(R2)-measurable; in
other words, it is an R2-valued random variable. What is its distribution µ(X,Y )? Note that by the
factorization formula, if A,B ∈ B(R) then

µ(X,Y )(A×B) = P {(X,Y ) ∈ A×B} = P {X ∈ A}P {Y ∈ B} = µX(A)µY (B).

The collection B(R) × B(R) = {A × B : A,B ∈ B(R)} generates B(R2), so the preceding
formula uniquely identifies µ(X,Y ) as the product measure of measures µX and µY .

This concrete example is generalized as follows. Fix measurable spaces (M,M) and (N,N ).
Sets A×B ∈ M×N are called rectangles. Let M⊠N be the field generated by M×N .Rectangles

M ⊠ N
Exercise 8.5. It holds that

M⊠N =
{ n⋃

i=1

Ai ×Bi : n ≥ 1; ∀i ∈ [n], Ai ×Bi ∈ M×N
}

=
{ n⋃

i=1

Ai ×Bi : n ≥ 1; ∀i ∈ [n], Ai ×Bi ∈ M×N ;A1 ×B1, . . . , An ×Bn disjoint
}

The product measurable space (M ×N,M⊗N ) is defined by settingProduct measurable space
M ⊗ N

M⊗N := σ(M×N ) = σ(A×B : A ∈ M, B ∈ N ) = σ(M⊠N ).

If µ and ν are σ-finite measures on (M,M) and (N,N ) respectively, define a function µ ⊠ ν
on M⊠N by setting

µ⊠ ν
( n⋃

i=1

Ai ×Bi

)
:=

n∑
i=1

µ(Ai)ν(Bi) ,
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for disjoint rectangles A1 ×B1, . . . , An ×Bn ∈ M×N .

Exercise 8.6. The function µ ⊠ ν is well-defined, in that if P ∈ M ⊗ N may be represented as a disjoint
union of rectangles in multiple ways,

P =
n⋃

i=1

Ai ×Bi =
m⋃
i=1

Ci ×Di

then
∑n

i=1 µ(Ai)ν(Bi) =
∑m

i=1 µ(Ci)ν(Di).

Proposition 8.4. If (M,M, µ) and (N,N , ν) are σ-finite measure spaces then µ⊠ ν is a pre-measure on
M⊠N .

Assuming the proposition holds, it follows by theCarathéodory ExtensionTheorem andDynkin’s
Uniqueness theorem that µ⊠ ν extends uniquely to a measure µ⊗ ν on M⊗N . This extension
is called the product measure of µ and ν. Product measure µ ⊗ ν.

Exercise 8.7 (Product measure is commutative). Suppose (M,M, µ) and (N,N , ν) are σ-finite mea-
sure spaces. Let µ⊗ ν be product measure onM⊗N and let ν ⊗µ be product measure onN ⊗M. Prove that
for all B ∈ M⊗N , B∗ := {(b, a) : (a, b) ∈ B} ∈ N ⊗M, and (ν ⊗ µ)(B∗) = (µ⊗ ν)(B).

We extract two steps of the proof of Proposition 8.4 as separate lemmas. This proof is based on
the one given by Norris in his lecture notes on probability and measure.

Lemma 8.5. Under the hypotheses of Proposition 8.4, if f :M ⊗N → R is (M⊗N )/B(R)-measurable
then for all a ∈ M, the function fa : N → R given by fa(b) := f(a, b) is (N/B(R))-measurable.

Proof. Write

S := {f :M ×N → R : ∀a ∈ M, fa is (N/B(R))−measurable}.

We aim to show S contains all (M⊗N )/B(R)-measurable functions.
First, if f = 1[A×B] for A × B ∈ M×N then for a ∈ A, fa ≡ 1[B], and for a 6∈ A, fa ≡ 0.

In both cases fa is measurable sof ∈ S ; thus S contains indicators of rectangles.
Next, if f, g ∈ S and c ∈ R then for all a ∈ M,

(cf + g)a(b) = (cf + g)(a, b) = cf(a, b) + g(a, b) = cfa(b) + ga(b) = (cfa + ga)(b) ,

so (cf + g)a is a linear combination of (N/B(R))-measurable functions and so is (N/B(R))-
measurable. Therefore S is closed under linear combinations.

Moreover, if (f (n), n ≥ 1) is a sequence of elements of S and 0 ≤ f (n) ↑ f for some bounded
function f , then for all a ∈ M, f (n)a ↑ fa. As a monotone limit of measurable functions, fa is
(N/B(R))-measurable; thus f ∈ S .

Since rectangles form a π-system generatingM⊗N , by the monotone class theorem it follows
that S contains all bounded (M⊗N )/B(R)-measurable functions.

Finally, if f : M × N → R is any (M ⊗ N )/B(R)-measurable we may write f as a limit of
bounded measurable functions f = limn→∞ f (n) by taking f (n) = f1[|f |≤n]. For all a ∈ M we
then have fa = limn→∞ f

(n)
a so fa is a limit ofN/B(R)-measurable functions and so isN/B(R)-

measurable. Thus f ∈ S . □

Lemma 8.6. Under the hypotheses of Proposition 8.4, Let f :M ×N → R beM⊗N /B(R)-measurable
and either bounded or non-negative. Define fM :M → R ∪ {+∞} by

fM (a) :=

∫
N
f(a, b)ν(db).

If ν(N) <∞ and f is bounded then fM is bounded andM/B(R)-measurable. Also, if f is non-negative then
fM :M → [0,∞] is M/B(R∗)-measurable.
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Proof. Note that by the definition of fa we have

fM (a) :=

∫
N
fa(b)ν(db),

so the integral in the lemma statement at least makes sense by Lemma 8.5.
Suppose ν(N) <∞. We wish to show that for any boundedM⊗N/B(R)-measurable function

f , the function fM is M/B(R)-measurable.
First, if f = 1[A×B] for A×B ∈ M×N , then for a ∈ A,

fM (a) =

∫
N
1[B](b)ν(db) = ν(B) <∞,

and for a 6∈ A, fM (a) =
∫
N 0ν(db) = 0. Thus fM ≡ ν(B)1[A] is bounded and M/B(R)-

measurable. Next, if f, g are bounded functions such that fM and gM are M/B(R)-measurable
and c ∈ R then (cf + g)M = cfM + gM by linearity of integration, so (cf + g)M is bounded and
M/B(R)-measurable. Finally, if 0 ≤ f (n) ↑ f then by the monotone convergence theorem,

fM (a) =

∫
N
fa(b)ν(db) = lim

n→∞

∫
N
f (n)a (b)ν(db) = lim

n→∞
f
(n)
M (a),

so fM is an increasing limit of measurable functions and thus measurable. The first assertion of the
lemma follows by the monotone class theorem.

The second assertion of the lemma follows by a similar argument. □

In the course of the preceding proof, we derived that if f = 1[A×B] for a rectangle A×B, then
fM = ν(B)1[A], which implies that∫

M

∫
N
f(a, b)ν(db)µ(da) =

∫
M
fM (a)µ(da) =

∫
M
ν(B)1[A](a)µ(da) = ν(B)µ(A) ; (8.2)

we will use this in the next proof.

Proof of Proposition 8.4. The function µ⊠ν is obviously non-negative, and it is additive by definition.
To prove µ⊠ ν is a pre-measure, it suffices to show that it is countably additive.

So suppose that
⋃k

i=1Ai ×Bi ∈ M⊠N is a finite disjoint union of rectangles which may also
be represented as an infinite disjoint union of rectangles,

k⋃
i=1

Ai ×Bi =
⋃
i≥1

Ci ×Di.

Using (8.2), we have

µ⊗ ν
( k⋃

i=1

Ai ×Bi

)
=

k∑
i=1

µ(Ai)ν(Bi) =
k∑

i=1

∫
M

∫
N
1[Ai×Bi](a, b)µ(da)ν(db) .

Wemay use linearity of integration twice to bring the sum inside the two integrals in the final term.
Since

∑k
i=1 1[Ai×Bi] = 1[

∪k
i=1 Ai×Bi]

, it follows that

µ⊗ ν
( k⋃

i=1

Ai ×Bi

)
=

∫
M

∫
N
1[

∪k
i=1 Ai×Bi]

dµdν =

∫
M

∫
N
fdµdν ,

where we have taken f := 1[
∪k

i=1 Ai×Bi]
.

Now write f (n) = 1[
∪n

i=1 Ci×Di]. Repeating the above logic gives

µ⊗ ν
( n⋃

i=1

Ci ×Di

)
=

∫
M

∫
N
1[

∪n
i=1 Ci×Di]dµdν =

∫
M

∫
N
f (n)dµdν ,
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Also, f (n) ↑ f since
⋃∞

i=1Ci × Di =
⋃k

i=1Ai × Bi, so for all a ∈ M , f (n)a ↑ fa, so by the
monotone convergence theorem,

f
(n)
M (a) =

∫
N
f (n)a (b)ν(db) ↗

∫
N
fa(b)ν(db) = fM (a) .

Since this convergence is monotone, another application of the monotone convergence theorem
gives that∫

M

∫
N
f (n)dνdµ =

∫
M
f
(n)
M dµ→

∫
M
fdµ =

∫
M

∫
N
fdνdµ = µ⊗ ν

(⋃
i≥1

Ci ×Di

)
.

But also∫
M

∫
N
f (n)dνdµ = µ⊗ ν

( n⋃
i=1

Ci ×Di

)
=

n∑
i=1

µ(Ci)ν(Di) →
∞∑
i=1

µ(Ci)ν(Di) .

Comparing the two preceding displays, we see that

µ⊗ ν
(⋃

i≥1

Ci ×Di

)
=

∞∑
i=1

µ(Ci)ν(Di) =
∑
i≥1

µ⊗ ν(Ci ×Di) ;

thus µ⊗ ν is indeed a pre-measure. □

Theorem 8.7 (Fubini’s theorem). Let (M,M, µ) and (N,N , ν) be σ-finite measure spaces,
and let f :M ×N → R be (M⊗N )/B(R)-measurable.

(a) If f ≥ 0 then ∫
fd(µ⊗ ν) =

∫
M

∫
N
fdνdµ . (8.3)

(b) If f ∈ L1(µ ⊗ ν) then with F := {a ∈ M :
∫
N |f(a, b)|ν(db) < ∞}, it holds that

µ(M \ F ) = 0. Moreover, setting

f̂M (a) =

{∫
N f(a, b)ν(db) if a ∈ F

0 if a 6∈ F

then f̂M ∈ L1(µ), and ∫
f̂Mdµ =

∫
fd(µ⊗ ν).

Part (b) of the theorem implies the following. Set Z = F × N . Then (µ ⊗ ν)(Zc) = µ(M \
F )ν(N) = 0 · ν(N) = 0, so f1[Z] :M ×N → R is (µ⊗ ν)-a.e. equal to f , and∫

fd(µ⊗ ν) =

∫
f1[Z]d(µ⊗ ν) =

∫
M

∫
N
f(a, b)1[Z](a, b)ν(db)µ(da) . (8.4)

The only thing preventing us from removing the indicator from the double integral is that otherwise
there can exist points a ∈M where the inner integral is not defined.

Proof. We first assume both measure spaces are finite. First, if f = 1[A×B] for A × B ∈ M×N
then the identity holds by (8.2). Write

S =
{
f :M ×N → R :

∫
fd(µ⊗ ν) =

∫
M

∫
N
fdνdµ

}
.

Using linearity of integration and the monotone convergence theorem, it is not hard to check the
conditions to see that S satisfies the conditions of the monotone class theorem. It then follows that
(8.2) holds for all bounded (M⊗N )/B(R)-measurable functions f :M ×N → R.
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Next, suppose f is non-negative, and for n ≥ 1 write f (n) = min(f, n). Then f (n) ↑ f so by
the monotone convergence theorem∫

f (n)dµ⊗ ν ↑
∫
fdµ⊗ ν.

Writing f (n)a (b) = f (n)(a, b), for all a ∈M , we also have f (n)a ↑ fa, so

f
(n)
M (a) =

∫
N
f (n)a (b)ν(db) ↗

∫
N
fa(b)ν(db) ,

so ∫
M

∫
N
f (n)dνdµ→

∫
M

∫
N
f (n)dνdµ .

Since f (n) is bounded, we have∫
f (n)d(µ⊗ ν) =

∫
M

∫
N
f (n)dνdµ

for all n, so it follows that
∫
fd(µ⊗ ν) =

∫
M

∫
N fdνdµ, proving (a).

Next suppose f ∈ L1(µ⊗ ν) and let

|f |M (a) :=

∫
N
|f(a, b)|ν(db), f (+)

M (a) :=

∫
N
f+(a, b)ν(db), and f (−)

M (a) =

∫
N
f−(a, b)ν(db) .

Note that all three functions are (M ⊗ N )/B(R)-measurable by Lemma 8.6; the lemma only
guarantees this with B(R) replaced by B(R∗), but the condition that f ∈ L1(µ ⊗ ν) ensures that
everything stays finite. Since |f | ≥ 0, we may apply part (a) of the theorem to deduce that∫

M
|f |Mdµ =

∫
M

∫
N
|f |dνdµ =

∫
|f |d(µ⊗ ν) <∞.

Thus |f |M is µ-almost everywhere finite; i.e., µ(M \ F ) = 0.
Finally, f̂M = (f+M − f−M )1[F ], at least if we are willing to accept the convention that (∞−∞) ·

0 = 0, and so∫
fd(µ⊗ ν) =

∫
f+d(µ⊗ ν)−

∫
f−d(µ⊗ ν) linearity of integration

=

∫
f
(+)
M dµ−

∫
f
(−)
M dµ by part (a)

=

∫
(f

(+)
M − f

(−)
M )dµ linearity of integration

=

∫
(f

(+)
M − f

(−)
M )1[F ]dµ since 1[F ]

µ−a.e.
= 1

=

∫
f̂Mdµ ,

proving (b).
The extension to the case that (M,M, µ) and (N,N , ν) are σ-finite follows by letting (Mk, k ≥

1) be measurable sets in M with µ(Mk) < ∞ andMk ↑ M , and (Nk, k ≥ 1) be measurable sets
in N with µ(Nk) < ∞ and Nk ↑ N . The finite measure case of Fubini’s theorem can be applied
to the restriction (Mk ×Nk,Mk ⊗Nk, µk ⊗ νk), where Mk = M|Mk

and µk = µ|Mk
, and Nk

and νk are defined accordingly. The conclusions of Fubini’s theorem in the σ-finite case can then
be deduced by letting k → ∞ and applying the monotone convergence theorem and linearity of
integration. □
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By an exactly parallel development to the above, we may obtain an analogue of Fubini’s theo-
rem for the product measure ν ⊗ µ, where the iterated integral has

∫
M as the inner integral. By

Exercise 8.7, it follows that (8.3) extends to the identity∫
fd(µ⊗ ν) =

∫
M

∫
N
fdνdµ =

∫
N

∫
M
fdµdν, .

Proposition 8.8. Under the conditions of Fubini’s theorem, if f ∈ L1(µ⊗ν) then there existsE ∈ M⊗N
with µ⊗ ν(Zc) = 0 such that∫

fd(µ⊗ ν) =

∫
M

∫
N
f(a, b)1[E](a, b)ν(db)µ(da) =

∫
N

∫
M
f(a, b)1[E](a, b)ν(da)µ(db) .

Proof. Applying Fubini’s theorem, we may obtain sets ZM and ZN as in (8.4), i.e., so that µ ⊗
ν(Zc

M ) = µ⊗ ν(Zc
N ) = 0 and so that∫

fd(µ⊗ ν) =

∫
M

∫
N
f(a, b)1[ZM ](a, b)ν(db)µ(da)

and ∫
fd(µ⊗ ν) =

∫
N

∫
M
f(a, b)1[ZN ](a, b)ν(db)µ(da) .

Taking E = ZM ∩ ZN , the result follows. □
Corollaries added Oct 22

Corollary 8.9. Let (Ω,F ,P) and (M,M), (N,N ) be measurable spaces, and let X : Ω → M and
Y : Ω → N be independent random variables (M -valued and N -valued, respectively), with distributions µ and
ν. If h :M ×N → R is (M⊗N /B(R))-measurable and either h ≥ 0 or E|h(X,Y )| <∞, then

Eh(X,Y ) =

∫
M

∫
N
h(x, y)ν(dy)µ(dx) .

Proof. For all A ∈ M and B ∈ N , by independence,
P {(X,Y ) ∈ A×B} = P {X ∈ A}P {Y ∈ B} = µ(A)ν(B).

SinceM×N is a π-system generatingM⊗N , it follows that the distribution of (X,Y ) is µ⊗ ν.
If either h ≥ 0 orE|h(X,Y )| <∞, it then follows by the change of variables formula and Fubini’s
theorem that

Eh(X,Y ) =

∫
M×N

h(x, y)d(µ⊗ ν) =

∫
M

∫
N
h(x, y)ν(dy)µ(dx) . □

Corollary 8.10. In the setting of Corollary 8.9, for any E ∈ M⊗N ,

P {(X,Y ) ∈ E} =

∫
M

P {(x, Y ) ∈ E}µ(dx) .

Proof. Apply Corollary 8.9 to the non-negative function h(x, y) = 1[(x,y)∈E] to get

P {(X,Y ) ∈ E} = Eh(X,Y ) =

∫
M

∫
N
1[(x,y)∈E]ν(dy)µ(dx) =

∫
M

P {(x, Y ) ∈ E}µ(dx) ,

the last equality holding by change of variables. □
Exercise 8.8. IfX and Y are independent real random variables, andX and Y have respective densities f and
g with respect to Lebesgue measure on R, then (X,Y ) has density h(x, y) = f(x)g(y) with respect to Lebesgue
measure on R2.

The final exercise of the section describes an important instance of the “independence means
multiply” heuristic, and provides a natural segue to the following section, which is about sums of
independent random variables. Given a random variable X with distribution µX = µ, the moment
generating function of X is Moment generating

function. Notation disagrees
with that later.

GX(s) := E
[
e−sX

]
=

∫
R
e−sxµ(dx) ∈ (0,∞] .

Exercise 8.9. If X,Y are independent random variables then GX+Y = GXGY .
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9. Sums of independent random variables
Everything in this section
works for random variables
taking values in a separable
Banach space, but we
restrict to R for
concreteness.

9.1. Convolutions. If µ, ν are Borel measures onR then the convolution µ∗ν is the Borel measure
on R given by

µ ∗ ν(B) =

∫
R
ν(B − x)µ(dx) ,

for Borel B, where B− x := {b− x : b ∈ B}. (Exercise: to check that this definition makes sense,
verify that x 7→ ν(B − x) is a Borel function.)

Proposition 9.1. If X,Y are independent random variables with respective laws µ and ν then X + Y has
law µ ∗ ν.

Proof. For any Borel A ⊂ R, by Fubini’s theorem,

P {X + Y ∈ A} =

∫
R

∫
R
1[x+y∈A]ν(dy)µ(dx) =

∫
R
ν(A− x)µ(dx) . □

If f, g : R → [0,∞) are Borel functions then we likewise define the convolution of f and g as

f ∗ g(x) =
∫
R
f(x− y)g(y)dy.

The next exercise states that the connection between convolution and sums of independent random
variables also holds at the level of densities.

Exercise 9.1. IfX and Y are independent real random variables, andX and Y have respective densities f and
g with respect to Lebesgue measure on R, then X + Y has density f ∗ g with respect to Lebesgue measure on R.

Exercise 9.2. Let µ, ν be Borel measures on R and let f, g : R → [0,∞) be Borel functions. Prove that
µ ∗ ν = ν ∗ µ and that f ∗ g = g ∗ f .

It’s worth seeing an example. For α, γ > 0, the Gamma(α, λ) density is

γ(x) = γα,λ(x) :=
λαxα−1e−λx

Γ(α)
1[x≥0].

HereΓ(α) :=
∫
[0,∞] x

α−1e−xdx is theGamma function. A real random variableX isGamma(α, λ)-
distributed if it has density γα,λ with respect to Lebesgue measure. The next exercise describes a
scaling property of Gamma random variables in the second coordinate.

Exercise 9.3. If X is Gamma(α, λ)-distributed then λX is Gamma(α, 1)-distributed.

Suppose X and Y are independent, X is Gamma(α, λ)-distributed and Y is Gamma(β, λ)-
distributed. We claim that Z = X + Y is Gamma(α+ β, λ)-distributed.

To see this, first note that by Exercise 9.3 we may assume λ = 1. (I.e. it suffices to show that
λX+λY is Gamma(α+β, 1)-distributed.) We restrict to this case, and then note that by the above
exercise, the density of Z with respect to Lebesgue measure is

fZ(x) =

∫
[0,x]

γα,1(y)γβ,1(x− y)dy

=

∫
[0,x]

yα−1e−y

Γ(α)

(x− y)β−1e−(x−y)

Γ(β)
dy

=
e−x

Γ(α)Γ(β)

∫ x

0
yα−1(x− y)β−1dy .

Making the change of variables u = y/x, this becomes

fZ(x) =
xα+β−1e−x

Γ(α)Γ(β)

∫ 1

0
uα−1(1− u)β−1du.
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Since
∫
[0,∞] fZ(x)dx = P {Z ≥ 0} = 1 and, by definition,

∫
[0,∞] x

α+β−1e−x = Γ(α + β), it
follows that

1 =
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
uα−1(1− u)β−1du,

which combined with the preceding display gives that

fZ(x) =
xα+β−1e−x

Γ(α+ β)
,

so Z is indeed Gamma(α+ β, 1)-distributed.
Another important example is introduce din the next exercise. For α ∈ R and σ > 0, the

N(α, σ2) density is given by

φα,σ2(x) :=
1√
2πσ2

e−(x−α)2/(2σ2) .

Exercise 9.4. (a) Use change of variables and Fubini’s theorem to prove that (
∫
R e

−x2
dx)2 = π. (You’ve

perhaps seen this before and know how the proof goes. If not: look for an integral over R2, and consider a
switch to polar coordinates.)

(b) Show that if X and Y are independent normals with densities φα,σ2(x) and φβ,τ2 respectively, then
X + Y has density φα+β,σ2+τ2 ; in particularX + Y is again a normal random variable.

10. Laws of large numbers

In the previous section we saw that summing independent random variables corresponds to
convolution of their distributions. What happens if there are large number of summands? If
X1, . . . , Xn are independent random variables with a common distribution µ, then by Proposi-
tion 9.1, their sum Sn := X1 + . . . + Xn has distribution µ∗n, the n-fold convolution of µ with
itself. Laws of large numbers describe the first-order asymptotic behaviour of Sn (or equivalently of
µ∗n) when n→ ∞.

Rather than jumping straight to the most general results, we start with a result that has an easy
proof, and has the advantage of introducing one of the most important techniques for controlling
the behaviour of random variables, namely moment methods. These are essentially all variants of the
following simple inequality

Proposition 10.1 (Markov’s inequality). If X is a non-negative random variable then P {X ≥ t} ≤
EX/t for all t > 0.

Proof. Since X ≥ X1[X≥t], by monotonicity and by linearity of expectation,

EX ≥ E
[
X1[X≥t]

]
≥ E

[
t1[X≥t]

]
= tP {X ≥ t} . □

Here are some important special cases. For a random variable X with E|X| < ∞, we write
Var (X) := E

[
(X −EX)2

]
∈ [0,∞]; the quantity Var (X) is called the variance of X . Variance of a random

variable

Corollary 10.2 (Chebyshev’s inequality). For any random variableX with E|X| <∞, for all t > 0,

P {|X −EX| ≥ t} ≤ Var (X)

t2
.

Proof. Note that |X−EX| ≥ t if and only if (X−EX)2 ≥ t2; then apply Markov’s inequality. □

Corollary 10.3 (Chernoff bound). For any random variableX , for all t ∈ R ,

P {X ≥ t} ≤ inf
a>0

E
[
eaX

]
eat

.
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Proof. Fix c > 0. Then by Markov’s inequality,

P {X ≥ t} = P
{
eaX ≥ eat

}
≤

E
[
eaX

]
eat

.

Since this bound holds for each a > 0, the result follows. □

In general, ifX is a random variable taking values in a (possibly unbounded) interval I ⊆ R and
ϕ : I → [0,∞ is strictly increasing, then for any we may use Markov’s inequality to obtain that for
any t ∈ I ,

P {X ≥ t} = P {ϕ(X) ≥ ϕ(t)} ≤ Eϕ(X)

ϕ(t)
;

both Chebyshev’s inequality and the Chernoff bound are special cases of this general bound.
We next use Chebyshev’s inequality and the Chernoff bound to control the deviations of sums

of independent random variables from their expected values. Before giving the details, we make a
few simple observations.

Let X be a random variable with and let 0 ≤ q ≤ p. Then

E [|X|q] ≤ E [max(1, |X|q)] ≤ E [max(1, |X|p)] ≤ E [1 + |X|p] , (10.1)

so if E [|X|p] <∞ then E [|X|q] <∞. In particular, if E
[
X2
]
<∞ then X ∈ L1(P) and so by

linearity of expectation,

Var (X) = E
[
(X −EX)2

]
= E

[
X2 − 2XEX + (EX)2

]
= E

[
X2
]
− (EX)2 ≤ E

[
X2
]
.

(10.2)
Also, if a random variableX almost surely satisfies a ≤ X ≤ b then we always have |X−EX| ≤

b− a, and so
Var (X) = E

[
(X −EX)2

]
≤ |b− a|2 .

Exercise 10.1. Strengthen the above bound to |b− a|2/4.

Example: Gaussian tails for sums of bounded random variables. Fix C > 1 and let
(Xi, i ≥ 1) be independent random variables with |Xi| ≤ C for all i. As before, write xi = EXi,
let Sn := X1 + . . .+Xn and let sn = ESn =

∑n
i=1 xi. Then by the Chernoff bound,Issue with absolute value in

this ex.

P {|Sn − sn| ≥ t} ≤ inf
a>0

e−atE
[
ea(Sn−sn)

]
= inf

a>0
e−atE

[
n∏

i=1

ea(Xi−xi)

]

= inf
a>0

e−at
n∏

i=1

E
[
ea(Xi−xi)

]
,

where we have used the factorization formula in the last step. We now use that if |y| ≤ 1 then
|ey − 1− y| ≤ y2. Since |Xi| ≤ C, necessarily |Xi − xi| ≤ 2C, so if a ≤ 1/(2C) then

ea(Xi−xi) ≤ 1 + a(Xi − xi) + a2(Xi − xi)
2.

Taking t = xn1/2 and a = x/(2C2n1/2), we then obtain

P
{
|Sn − sn| ≥ xn1/2

}
≤ e−x2/2C2

n∏
i=1

(
E
[
1 + a(Xi − xi) + a2(Xi − xi)

2
])

For each i ∈ [n], by linearity of expectation and since E [Xi − xi] = 0 and Var (Xi) ≤ C2,

E
[
1 + a(Xi − xi) + a2(Xi − xi)

2
]
= 1 + a2E

[
(Xi − xi)

2
]
≤ 1 + a2C2 = 1 +

x2

4C2n
.
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Combining this with the preceding bound gives

P
{
|Sn − sn| ≥ xn1/2

}
≤ e−x2/2C2

(
1 +

x2

4C2n

)n

≤ e−x2/2C2
ex

2/4C2

= e−x2/4C2
,

where in the second inequality we used that 1 + x ≤ ex.

The next example introduces the notation of covariance of random variables. IfX,Y are random
variables withE|X|,E|Y |,E|XY | <∞, the covariance ofX and Y is defined to beCov(X,Y ) =
E [(X −EX)(Y −EY )]. If Cov(X,Y ) is defined and equals zero, then X and Y are said to be
uncorrelated. Chebyshev’s inequality gives clean bounds for sums of uncorrelated random variables, Covariance, uncorrelated

random variablesthat are useful frequently enough to be stated as a separate corollary.

Corollary 10.4 (Chebyshev’s inequality for sums). Let (Xi, i ≥ 1) be uncorrelated random variables
with E|Xi| <∞ for all i ≥ 1. Let Sn := X1 + . . .+Xn and let sn = ESn. Then for all t > 0,

P {|Sn − sn| ≥ t} ≤
∑n

i=1Var (Xi)

t2
.

Proof. Write xi = EXi, so sn = x1 + . . .+ xn. Then

Var (Sn) = E
[
(Sn − sn)

2
]

= E

[(
(X1 − x1) + . . .+ (Xn − xn)

)2]
=

n∑
i=1

E
[
(Xi − xi)

2
]
+

∑
1≤i ̸=j≤n

E [(Xi − xi)(Xj − xj)] .

Since the random variables are uncorrelated, for i 6= j we haveE [(Xi − xi)(Xj − xj)] = E [Xi − xi]E [Xj − xj ] =
0, so the second sum vanishes. The first sum is simply

∑n
i=1Var (Xi), so the result follows by

Chebyshev’s inequality. □

Example: weak law of large numbers for uncorrelated random variables. Using Cheby-
shev’s inequality for sums, we can easily prove a first law of large numbers.

Theorem10.5 (Weak law of large numbers for sums of uncorrelated random variables with bounded
variance). Let (Xi, i ≥ 1) be independent random variables with supi≥1E

[
X2

i

]
= C < ∞. Write

xi = EXi, let Sn := X1 + . . .+Xn and let sn = ESn. Then
Sn − sn

n
→ 0 (10.3)

in probability.

Proof. By Chebyshev’s inequality for sums we have

P {|Sn − sn| > t} ≤ 1

t2

n∑
i=1

Var (Xi) ≤
Cn

t2
.

In the last line we have used that Var (Xi) ≤ E
[
X2

i

]
≤ C for each 1 ≤ i ≤ n. For any ϵ > 0,

taking t = ϵn above gives

P

{∣∣∣∣Sn − sn
n

∣∣∣∣ > ϵ

}
= P {|Sn − sn| > ϵn} ≤ Var (Sn)

ϵ2n2
≤ C

ϵ2n
→ 0

as n→ ∞; thus (Sn − sn)/n→ 0 in probability as claimed. □

Remarks.
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• We have just proved a weak law of large numbers for independent random variables with
bounded second moments. We’ll next see how to combine this with truncation and Markov’s
inequality to prove that Sn/sn → 1 under only a first-moment assumption, but additionally
assuming that the random variables are identically distributed.

• If the random variables (Xi, i ≥ 1) are also identically distributed, then sn = nEX1, in
which case (10.3) asserts that Sn/n → EX1 in probability; this is a more classical way to
state a law of large numbers.

Exercise 10.2. Modify the above proof to show that, under the same assumptions, if f : N → [0,∞) and
f(n) → ∞ as n→ ∞ then

Sn − sn

f(n)n1/2
→ 0

in probability, as n→ ∞.

We now use the same idea for random variables with possibly infinite variance (but additionally
assuming the random variables are identically distributed). We obviously can’t directly use the same
proof in this case; we will instead argue by truncation.

Theorem 10.6. Let (Xn, n ≥ 1) be independent identically distributed random variables withE|Xn| <∞,
and write Sn = X1 + . . .+Xn. Then for all ϵ > 0,

P

{∣∣∣∣Snn −EX1

∣∣∣∣ ≥ ϵ

}
→ 0 ,

as n→ ∞.

Proof. For fixed N > 0, we define X≤N
k and X>N

k as follows: X≤N
k = Xk1|Xk|≤N and X>N

k =

Xk −X≤N
k .

We then have that |X≤N
1 | increases to |X1| as N → ∞, so by monotone convergence

E|X≤N
1 | → E|X1|,

again asN → ∞. Since |X1| = |X≤N
1 |+ |X>N

1 | (check if it isn’t obvious to you), it follows that as
N → ∞ we also have

E|X>N
1 | = E|X1| −E|X≤N

1 | → 0.

Now fix ϵ > 0, and let N be large enough that E|X>N
1 | < ϵ2/8. By Chebyshev’s inequality for

sums, we then have

P
{
|S̄≤N

n −ES̄≤N
n | > ϵ/2

}
≤ 1

(ϵ/2)2n
Var(X≤N

1 ) ≤ 4N2

ϵ2n
,

the last inequality since−N ≤ X≤N
1 ≤ N soVar{X≤N

1 } ≤ (2N)2/4 = N2. The last expression
is less than ϵ/2 for n > 8N2/ϵ3. We then have

P
{
|S̄>N

n −ES̄>N
n | > ϵ/2

}
≤

E
[
|S̄>N

n −ES̄>N
n |

]
(ϵ/2)

(Markov’s inequality)

≤
E
[
|S̄>N

n |
]
+ |ES̄>N

n |
(ϵ/2)

(Triangle inequality)

≤
4E
[
|S̄>N

n |
]

ϵ
(Move absolute value inside expectation)

≤ ϵ

2
(Since E|S̄>N

n | ≤ E|X>N
1 | < ϵ2/8).

It follows that for n > 8N2/ϵ3,

P
{
|S̄n −E [X1] | > ϵ

}
≤ P

{
|S̄≤N

n −ES̄≤N
n | > ϵ/2

}
+P

{
|S̄>N

n −ES̄>N
n | > ϵ/2

}
< 2ϵ.

Since ϵ > 0 was arbitrary this shows convergence in probability. □
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This argument was straightforward enough that it’s worth seeing if we can squeeze a little more
out of it. Our goal is to end up proving a strong law of large numbers; we want to prove that

Sn
n

a.s.→ EX1,

strengthening the convergence in probability shown above. How might we naturally proceed?
Well, we did see one way to deduce almost sure convergence from convergence in probability:

Proposition 5.8, which states that if (Zn, 1 ≤ n ≤ ∞) are a sequence of random variables with
Zn

p→ Z∞, then there exists a subsequence (nk, k ≥ 1) such that Znk

a.s.→ Z∞ as k → ∞. It is
reasonable to ask how “dense” a subsequence we can pick, without working too hard, and obtain
a subsequential strong law of large numbers using nothing more than the bounds we proved in the
course of proving the weak law.

We say a sequence (nk, k ≥ 1) is lacunary if it is increasing and there exists c > 1 such that
nk+1 > cnk for all k sufficiently large. We will prove the following theorem.
Theorem 10.7 (Lacunary Strong Law of Large Numbers). Let (Xn, n ≥ 1) be independent identically
distributed random variables with E|Xn| < ∞, and write Sn = X1 + . . . + Xn. Then for any lacunary
sequence of positive integers (nk, k ≥ 1),

P
(

lim
k→∞

Snk

nk
= EX1

)
= 1.

Proof. Let (nk, k ≥ 1) be a lacunary sequence, and let c > 1 be such that nk+1 ≥ cnk for k ≥ k0.
As before, for any ϵ > 0, N > 0 and n ≥ 1 we have

P
{
|S̄≤N

n −ES̄≤N
n | > ϵ/2

}
≤ 1

(ϵ/2)2n
E
[
(X≤N

1 )2
]
≤ 4N2

ϵ2n
.

We could have used Var
(
X≤N

1

)
rather than E

[
(X≤N

1 )2
]
above, and obtained a better upper

bound; but using E
[
(X≤N

1 )2
]
will make things a little cleaner later. From the preceding bound it

follows that∑
k≥1

P
{
|S̄≤N

nk
−ES̄≤N

nk
| > ϵ/2

}
≤ k0 +

∑
k>k0

P
{
|S̄≤N

nk
−ES̄≤N

nk
| > ϵ/2

}

≤ k0 +
∑
k>k0

E
[
(X≤N

1 )2
]

(ϵ/2)2nk

≤ k0 +
∑
k>k0

4N2

ϵ2ck−k0nk0

<∞ , (10.4)
the last bound holding since the summands of the final sum are geometrically decreasing. It fol- Say something about the

fact that IIDness is key here?lows by the first Borel-Cantelli lemma that with probability 1, for all k sufficiently large, |S̄≤N
n −

ES̄≤N
n | ≤ ϵ/2.
That worked out well. But the situation isn’t so good when we turn to the unbounded summands.

There we have the bound

P
{
|S̄>N

n −ES̄>N
n | > ϵ/2

}
≤ 4E|S̄>N

n |
ϵ

.

We can make E
[
|S̄>N

n |
]
as small as we like by choosing N large, but there are infinitely many

summands, so a fixed positive bound on E
[
|S̄>N

n |
]
isn’t good enough to let us apply the Borel-

Cantelli lemma. Can we find a more explicit/more useful bound? Well, the triangle inequality is a
reasonable attack:

|S̄>N
n | = 1

n
|X>N

1 + . . .+X>N
n | ≤ 1

n
|X>N

1 |+ . . .+ |X>N
n | ,
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and the summands on the right are IID, so this gives

P
{
|S̄>N

n −ES̄>N
n | > ϵ/2

}
≤ 4E|X>N

1 |
ϵ

. (10.5)

We can make E|X>N
1 | small by taking N large. But we can’t make it zero, so this doesn’t give a

finite bound on summation.
Are we stuck? Well, if a fixed positive bound isn’t good enough, maybe we can let N vary. Let’s

look back at the control we achieved for the bounded summands. If instead of picking a single value
N we choose a sequence of different values (Nk, k ≥ 1), then we obtain

∑
k≥1

P
{
|S̄≤Nk

nk
−ES̄≤Nk

nk
| > ϵ/2

}
≤ k0 +

∑
k>k0

E
[
(X≤Nk

1 )2
]

(ϵ/2)2nk
.

If we can show that the last sum is finite, then by the first Borel-Cantelli lemma we again obtain
that almost surely |S̄≤Nk

nk
−ES̄≤Nk

nk
| ≤ ϵ/2 except for finitely many values of k. We’d like to make

this argument work for a sequence (Nk, k ≥ 1) growing as quickly as possible, since the larger the
values Nk the easier our work will be when we turn to controlling the unbounded summands.

At this point the first natural thing to do is to use the bound E
[
(X≤Nk

1 )2
]
≤ N2

k . If we do that
then we will end up with a finite bound provided we choose Nk such that (N2

k/nk) is summable.
For example, taking Nk = n

1/4
k would yield the bound

k0 +
∑
k>k0

1

(ϵ2/2)2n
1/2
k

≤ k0 +
∑
k>k0

4

ϵ2c(k−k0)/2n
1/2
k0

<∞ .

This already looks promising. But we can squeeze out a slightly stronger result, and simultaneously
simplify our notation, by explicitly considering which values of k have X≤Nk

1 6= 0. That is, let
J = J(ω) = min{k : Nk ≥ |X1(ω)|}. Then X≤Nk

1 = 0 for k < J , so

∞∑
k=k0

E
[
(X≤Nk

1 )2
]

nk
= E

 ∞∑
k=k0

X2
11|X1|≤Nk

nk

 = E

 ∞∑
k=max(k0,J)

X2
1

nk

 ≤ c

c− 1
E

[
X2

1

nmax(k0,J)

]
.

In the last bound we used that nk+1

nk
≥ c for k > k0, so

∑∞
k=max(k0,J)

n−1
k ≤ nmax(k0,J) ·

∑
i≥0 c

−1.
How can we make this bound finite? Well, if Nk ≤ nk then by the definition of J we have

nmax(k0,J) ≥ Nmax(k0,J) ≥ |X1|, so E
[
X2

1/nmax(k0,J)

]
≤ E|X1| < ∞. We want to choose Nk

to be as large as possible, since this should make our lives easier when it comes to controlling the
unbounded summands; so let’s take Nk = nk henceforth.12 Summarizing the story to date, we
now have that∑

k≥1

P
{
|S̄≤nk

nk
−ES̄≤nk

nk
| > ϵ/2

}
≤ k0 +

∑
k>k0

E
[
(X≤nk

1 )2
]

(ϵ/2)2nk
≤ k0 +

4c

ϵ2(c− 1)
E|X1| <∞ ,

so by the first Borel-Cantelli lemma,

P
{
|S̄≤nk

nk
−ES̄≤nk

nk
| > ϵ/2 i.o.

}
= 0 . (10.6)

We are in good shape for the sums of the bounded parts. For the unbounded summands, from
(10.5) we have

P
{
|S̄>nk

nk
−ES̄>nk

nk
| > ϵ/2

}
≤

4E
[
|X>nk

1 |
]

ϵ
.

What happens if we sum the right-hand side over k ≥ k0?

12To makeNk even bigger we could takeNk = Ank for some constant A > 1, but given that our proof has to work for
all lacunary sequences, it’s not hard to see that such a change would not make any difference to the success or failure of
our argument.
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Well, bad news, friends: the sum may be infinite. For example, it could be that nk = 2k (in
which case k0 = 1). By linearity of expectation, we would then have

∑
k≥k0

E
[
|X>nk

1 |
]
= E

∑
k≥1

|X1|1[|X1|>2k]

 = E [|X1|blog2max(1, |X1| − 1)c]

≤ E [|X1| log2(X1 + 1)] .

We assumed E|X1| < ∞, but E [|X1| log(|X1|+ 1)] need not be, so this bound may be useless.
On the other hand, it’s worth recording now that if nk is any lacunary sequence then similar logic
would yield the bound

∑
k≥k0

E
[
|X>nk

1 |
]
= O(E [|X1| log(|X1|+ 1)]) ,

so if E [|X1| log(|X1|+ 1)] <∞ then we can actually finish the proof along these lines.
At this point the situation may seem bleak. We are stuck trying to bound

P
{
|S̄>nk

nk
−ES̄>nk

nk
| > ϵ/2

}
,

and our tricks have all failed. But our sleeves are not yet empty. We will go back to the very basics
and try to exploit subadditivity of probabilities. By this I mean the following. Since

S̄>nk
nk

=
1

nk
S>nk
nk

=
1

n

nk∑
i=1

X>nk
nk

,

by the triangle inequality,

|S̄>nk
nk

−ES̄>nk
nk

| ≤ 1

nk

n∑
i=1

|X>nk
nk

−EX>nk
nk

| ,

so if |S̄>nk
nk

− ES̄>nk
nk

| > ϵ/2 then there must be 1 ≤ i ≤ nk such that |X>nk
nk

− EX>nk
nk

| > ϵ/2.
We thus have

P
{
|S̄>nk

nk
−ES̄>nk

nk
| > ϵ/2

}
≤ P

{
∃i ∈ [nk] : |X>nk

nk
−EX>nk

nk
| > ϵ/2

}
≤ nkP

{
|X>nk

1 −EX>nk
1 | > ϵ/2

}
.

But nk → ∞ as k → ∞, so EX>nk
1 → 0, and so there is k1 ≥ k0 such that |EX>nk

1 | < ϵ/2

for k ≥ k1. For such k, if |X>nk
1 − EX>nk

1 | > ϵ/2 then in particular X>nk
1 6= 0, in which case

necessarily |X1| > nk. Using this observation to bound the final probability above, we obtain

P
{
|S̄>nk

nk
−ES̄>nk

nk
| > ϵ/2

}
≤ P

{
∃i ∈ [nk] : |X>nk

nk
−EX>nk

nk
| > ϵ/2

}
≤ nkP {|X1| > nk} .
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This is excellent news. Because (nk, k ≥ 1) is a lacunary sequence, this expectation is actually
finite! To see this, recall that J = min{k : nk ≥ |X1|}; then |X1| > nk only for k < J , so

∞∑
k=k1

nkP {|X1| > nk} = E

 J−1∑
k=k1

nk1X1>nk


= E

 J−1∑
k=k1

nk

 (1X1>nk
= 0 for i ≥ J )

≤ E

 J−1∑
k=k1

c−(J−1−k)X1

 (lacunarity)

≤ E

[ ∞∑
k=0

c−kX1

]
=

c

c− 1
E [X1] <∞.

Thus
∑

k≥1P
{
|S̄>nk

nk
−ES̄>nk

nk
| > ϵ/2

}
<∞, so again by the first Borel-Cantelli lemma,

P
{
|S̄>nk

nk
−ES̄>nk

nk
| > ϵ/2 i.o.

}
= 0.

But if |S̄nk
−ES̄nk

| > ϵ infinitely often then either the bounded or unbounded partial sums must
differ from their mean by at least ϵ/2 infinitely often; so the theorem follows from the preceding
equality and (10.6) □

Let’s summarize the situation. We proved the weak law of large numbers, stating conditions
which guarantee that Sn/n→ E [X1] in probability. Under these conditions, Proposition 5.8 then
guarantees the existence of subsequences (nk, k ≥ 1) along which Sn/n

a.s.→ E [X1]. The lacunary
law of large numbers gave a quantitative strengthening of Proposition 5.8 in this setting, by showing
that (nk, k ≥ 1) can be taken to be any lacunary sequence.

This quantitative bound was not trivial to prove, but it was worth the effort, as the general strong
law of large numbers ends up being a quite straightforward consequence. Its proof will proceed
by first reducing to the case that the summands are non-negative, then using the monotonicity of
the partial sums to relate convergence along lacunary subsequences to convergence of the whole
sequence. For the second step, the key analytic fact is described in the following exercise.

Exercise 10.3. Let (sn, n ≥ 0) be a non-decreasing sequence with s0 = 0. Fix µ > 0, ϵ ∈ (0, 1/3), and
define a sequence by nk = d(1 + ϵ)ke.

(a) Show that for all n sufficiently large (i.e. n ≥ n0(ϵ)), if sn ≥ µn(1 + 3ϵ) then letting k be such that
nk−1 < n ≤ nk, we have snk

≥ µnk(1 + ϵ).
(b) Show that for all n sufficiently large, if sn ≤ µn(1− 3ϵ) then letting k be such that nk−1 < n ≤ nk,

we have snk−1
≤ µnk−1(1− ϵ).

(c) Conclude that if lim supn |sn − µn|/n > 3ϵµ then lim supk |snk
− µnk|/nk > ϵµ.

Theorem 10.8. Let (Xn, n ≥ 1) be independent identically distributed random variables with E|X1| <∞.
Write Sn = X1 + . . .+Xn for n ≥ 1. Then

Sn
n

a.s.→ EX1 .

Proof. Write Xn = X+
n −X−

n and S+
n = X+

1 + . . .+X+
n and S−

n = X−
1 + . . .+X−

n . If ω ∈ Ω
is such that S+

n (ω)/n→ EX+
1 and S−

n (ω)/n→ EX−
1 then

Sn(ω)

n
=
S+
n (ω) + S−

n (ω)

n
→ EX+

1 +EX−
1 = EX1.
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So we see that to prove Sn/n→ E(X1) almost surely, it suffices to prove that

S+
n

n

a.s.−→ E(X+
1 ),

and that S−
n /n

a.s.→ E
[
X−

1

]
. The point of this reduction is that summands (X+

n , n ≥ 1) are all
non-negative, and likewise for (X−

n , n ≥ 1).
So we may now assume (by replacing (Xi, i ≥ 1) by either (X+

i , i ≥ 1) or (X−
i , i ≥ 1)) that

P {X1 ≥ 0} = 1; in this case (Sn, n ≥ 1) is almost surely non-decreasing. Fix ϵ ∈ (0, 1/3) and
for k ≥ 1 let nk = nk(ϵ) := d(1 + ϵ)ke. Then by Exercise 10.3,{

ω : lim sup
n→∞

∣∣∣Sn(ω)
n

−EX1

∣∣∣ > 3ϵ

}
⊆
{
ω : lim sup

k→∞

∣∣∣Snk
(ω)

nk
−EX1

∣∣∣ > ϵ

}
.

By Theorem 10.7, we have P {lim supk→∞ |Snk
/nk −EX1| > ϵ} = 0; it follows that

lim sup
n→∞

P

{∣∣∣Sn
n

−EX1

∣∣∣ > 3ϵ

}
= 0.

Since this holds for all ϵ > 0, it follows that

Sn
n

a.s.→ EX1 . □.

11. Convexity, inequalities, and Lp spaces

We begin with convexity. A function f : R → R is convex if f(px+ (1− p)y) ≤ pf(x) + (1−
p)f(y) for all x, y ∈ R and p ∈ [0, 1].

Exercise 11.1. If f : R → R is convex then it is continuous, so Borel measurable.

Theorem 11.1 (Jensen’s inequality). If X is a real random variable with E|X| < ∞, and f : R → R
is convex and Ef(X) is defined, then f(EX) ≤ Ef(X).

Proof. Fix h > 0 and 0 < p < 1. For any x ∈ R we have x+ hp = (1− p)x+ p(x+ h) so

f(x+ hp) ≤ (1− p)f(x) + pf(x+ h),

which after rearrangement gives

f(x+ hp)− f(x)

hp
≤ f(x+ h)− f(x)

h
,

In other words, (f(x+ h)− f(x))/h is increasing in h for all x ∈ R; we define

f ′+(x) := lim
h↓0

f(x+ h)− f(x)

h
.

Likewise, (f(x)− f(x− h))/h is decreasing in h, so the limit

f ′−(x) := lim
h↓0

f(x)− f(x− h)

h
.

Convexity also gives
f(x)− f(x− h) ≤ f(x+ h)− f(x),

from which it follows that f ′−(x) ≤ f ′+(x).
Now let c := Ef(X), and fix a ∈ R with f ′−(c) ≤ a ≤ f ′+(c). Then the line ℓ given by

ℓ(x) = f(c) + a(x− c) has ℓ ≤ f and ℓ(c) = f(c). By linearity of expectation and monotonicity,



MATH 587/589 COURSE NOTES 53

it follows that

f(E(X)) = f(c)

= ℓ(c)

= f(c) + a(EX − c)

= E [f(c) + a(X − c)]

= Eℓ(X)

≤ Ef(X) ,

as required. □

For X a random variable and p ≥ 0 we write ‖X‖p := (E [|X|p])1/p, and call ‖X‖p the Lp-
norm of X . Jensen’s inequality immediately yields monotonicity of the Lp norms: if 0 ≤ p ≤ q

then using the convexity of the function x 7→ xq/p,

‖X‖qq = E [|X|q] = E
[
(|X|p)q/p

]
= lim

n→∞
E
[
(|X≤n|p)q/p

]
≥ lim

n→∞
(E
[
|X≤n|p

]
)q/p = E [|X|p]q/p = ‖X‖qp ,

which in a sense strengthens (10.1). (We had to use the monotone convergence theorem because
it’s possible that E [|X|q] = ∞, in which case Jensen’s inequality doesn’t apply directly.)

Given random variables (Xn, 1 ≤ n ≤ ∞) defined over a common probability space (Ω,F ,P),
we say that Xn → X∞ in Lp(P), and write Xn

Lp−→ X∞, if Xn ∈ Lp(P) for all 1 ≤ n ≤ ∞ and
‖Xn −X∞‖p → 0 as n→ ∞.

Exercise 11.2. For any p > 0 and any random variables (Xn, n ≥ 1), X, Y ∈ Lp(P), if Xn → X in
Lp(P) and Xn → Y in Lp(P) then X a.s.

= Y .

The monotonicity of the Lp norms immediately implies that for 0 < q ≤ p, ifXn
Lp−→ X∞ then

Xn
Lq−→ X∞. The next proposition states that convergence inLp is at least as strong as convergence

in probability.

Proposition 11.2. Let (Xn, 1 ≤ n ≤ ∞) be real random variables defined on a common space. For any
p > 0, if Xn

Lp−→ X∞ then Xn
p→ X∞.

Proof. If Xn
Lp−→ X∞ then for any ϵ > 0,

P {|Xn −X∞| ≥ ϵ} = P {|Xn −X∞|p ≥ ϵp} ≤ E [|Xn −X∞|p]
ϵp

→ 0 ,

as n→ ∞. □

The next exercise asks you to analyze examples which show that convergence in probability does
not imply convergence in Lp(P), which in turn does not imply almost sure convergence.

Exercise 11.3. Let (Bn, n ≥ 1) be independent random variables with Bn Bernoulli(1/n)-distributed. Fix
p > 0 and for n ≥ 1 let Xn = n1/pBn. Show that Bn

Lp−→ 0 but that Bn does not converge to 0 almost
surely. Show further thatXn

p→ 0 but that Xn does not converge to 0 in Lp.

Jensen’s inequality also allows us to prove Hölder’s inequality, which provides a tool for showing
that a product of random variables is integrable.

Theorem 11.3 (Hölder’s inequality). Fix p, q ≥ 1 with 1 ≤ p, q ≤ ∞. If 1/p+1/q = 1 then for any
random variablesX,Y defined on a common probability space,

‖XY ‖1 ≤ ‖X‖p‖Y ‖q .
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Proof. Wemay assume that ‖X‖1 > 0 and that ‖Y ‖1 > 0 or else the left-hand side is zero. Similarly,
we may assume that ‖X‖p <∞ and that ‖Y ‖q <∞ or else the right-hand side is infinite. Finally,
we may assume that X ≥ 0 and Y ≥ 0 since the values of both the left- and right-hand sides are
unchanged if we replace X by |X| and Y by |Y |.

We now write

E|XY | = E
[
elog(XY )

]
= E

[
elogX+log Y

]
= E

[
e

1
p
log(Xp)+ 1

q
log(Y q)

]
Since u 7→ log u is concave, 1

p log(X
p) + 1

q log(Y
q) ≤ log(1pX

p + 1
qY

q), so □

The Cauchy-Schwarz inequality is the case p = q = 2 of Hölder’s inequality.

Corollary 11.4 (Cauchy-Schwarz inequality for random variables). For any random variables X,Y
defined on a common probability space, ‖XY ‖1 ≤ ‖X‖2‖Y ‖2.

The next exercise asks you to verify the “p = 1, q = ∞” case of Hölder’s inequality. Given a
random variable X we write ess supX := sup{c ∈ R : P {X > c} > 0} and call ess supX the
essential supremum of X . We write ‖X‖∞ := ess sup |X|, and let

L∞(Ω,F ,P) := {X : Ω → R : X is (F/B(R))-measurable and ‖X‖∞ <∞} .
L∞(Ω,F,P).

Exercise 11.4. Let X,Y be random variables defined on a common space. Show that ess sup |X| =
limp→∞ ‖X‖p. Then show that

‖XY ‖1 ≤ ‖X‖∞‖Y ‖1 .

A clever application of Hölder’s inequality yields Minkowski’s inequality, which is the triangle in-
equality for Lp spaces.

Theorem 11.5 (Minkowski’s inequality). Let X,Y be random variables in L1(P). Then for all p ≥ 1,
‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p.

Proof. When p = 1 this follows frommonotonicity of expectation, since |X+Y | ≤ |X|+ |Y | by the
triangle inequality. For p > 1 we may assume that X,Y ∈ Lp(P) since otherwise the right-hand
side is infinite. We now use the triangle inequality, as follows:

‖X+Y ‖pp = E [|X + Y |p] = E
[
|X + Y ||X + Y |p−1

]
≤ E

[
|X||X + Y |p−1

]
+E

[
|Y ||X + Y |p−1

]
.

Applying Hölder’s inequality to each of the above expectations gives

E
[
|X||X + Y |p−1

]
≤ (E [|X|p])1/p(E [|X + Y |p])(p−1)/p = ‖X‖p‖X + Y ‖(p−1)/p

p

and

E
[
|Y ||X + Y |p−1

]
≤ (E [|Y |p])1/p(E [|X + Y |p])(p−1)/p = ‖Y ‖p‖X + Y ‖(p−1)/p

p ,

so
‖X + Y ‖pp ≤ (‖X‖p + ‖Y ‖p)‖X + Y ‖(p−1)/p

p .

Dividing by ‖X + Y ‖(p−1)/p
p completes the proof. □

We would like to think of Lp(Ω,F ,P) as a metric space, but this isn’t quite right because a
metric space (M,d) is supposed to satisfy that d(x, y) = 0 if and only if x = y. But ‖X−Y ‖p = 0

provided that X a.s.
= Y , and almost sure equality is not the same as equality.

There are two ways to deal with this. The first approach, which is the most standard in prob-
ability, is to simply accept that instead of a metric space we only have a pseudo-metric space. (A
pseudo-metric space is a pair (M,d) where d :M×M → [0,∞) is a symmetric function satisfying
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the triangle inequality. In a pseudo-metric space it is possible to have d(x, y) = 0 for distinct points
x, y.) The other is to quotient by almost sure equality. In other words, for X ∈ Lp(Ω,F ,P) we
may write [X] = {Y ∈ Lp(Ω,F ,P) : X

a.s.
= Y } and [Lp(Ω,F ,P)] = {[X] : X ∈ Lp(Ω,F ,P)}.

Exercise 11.5. • Check that almost sure equality is an equivalence relation.
• Check that ifX,Y ∈ Lp(Ω,F ,P) andX ′ ∈ [X] and Y ′ ∈ [Y ], then ‖X ′−Y ′‖p = ‖X−Y ‖p.
That is, Lp distance is a class function for the “almost sure equality” equivalence relation.

The next theorem implies that [Lp(Ω,F ,P)] is a complete metric space for any probability space
(Ω,F ,P).

Theorem 11.6. Fix a probability space (Ω,F ,P) and p ≥ 1, and let (Xn, n ≥ 1) be a Cauchy sequence
in Lp(P). Then there is X ∈ Lp(P) such that Xn

Lp−→ X . Moreover, for any other random variable
X ′ : Ω → R, if ‖Xn −X ′‖p → 0 then X ′ a.s.= X .

Proof. Since (Xn, n ≥ 1) is Cauchy, we can find an increasing sequence of integers (n(k), k ≥ 1)
such that for allm,n ∈ N, ifm,n ≥ n(k) then ‖Xm − Xn‖p ≤ 2−k.

Then write Yk = Xn(k). By our choice of the sequence (n(k), k ≥ 1) we have ‖Yk+1−Yk‖p ≤
2−k, so

E

∑
k≥1

|Yk+1 − Yk|

 =
∑
k≥1

E|Yk+1 − Yk| =
∑
k≥1

‖Yk+1 − Yk‖1 ≤
∑
k≥1

‖Yk+1 − Yk‖p ≤ 1 .

It follows that P
{∑

k≥1 |Yk+1 − Yk| <∞
}
= 1, or in other words that (Yk+1 − Yk, k ≥ 1) is al-

most surely absolutely convergent. LettingY := lim supk→∞ Yk, it follows thatP {limk→∞ Yk = Y } =
1.

Now, for n ≥ n(k), note that

Xn(k) +
∑
ℓ≥k

(Yℓ+1 − Yℓ) = Yk +
∑
ℓ≥k

(Yℓ+1 − Yℓ)
a.s.
= Y,

so for n ≥ n(k),

‖Xn − Y ‖p = ‖Xn −Xn(k) −
∑
ℓ≥k

(Yℓ+1 − Yℓ)‖p

≤ ‖Xn −Xn(k)‖p +
∑
ℓ≥k

‖Yℓ+1 − Yℓ‖p

≤ 1

2k
+
∑
ℓ≥k

1

2ℓ
=

1

2k−2
.

Thus ‖Xn − Y ‖p → 0 as p → ∞. Since ‖Y ‖p = ‖Xn − Y − Xn‖p ≤ ‖Xn − Y ‖p + ‖Xn‖p,
it follows that ‖Y ‖p < ∞, so Xn

Lp−→ Y . Finally, the almost sure uniqueness of the limit is
Exercise 11.2. □

11.1. The geometric structure of L2. The space L2(P) is special because it can be endowed
with a natural inner product structure, which allows us to harness the power of geometry. For
X,Y ∈ L2(P), let 〈X,Y 〉 := E [XY ]; that the right-hand side is defined follows from the Cauchy-
Schwarz inequality. You should check that 〈·, ·〉 : L2(P) × L2(P) satisfies the axioms of an inner
product (up to almost sure equivalence): it is symmetric and bilinear, and 〈X,X〉 = 0 if and only
if X a.s.

= 0. (The “true” inner product space is [L2(Ω,F ,P)], but we will continue working with
random variables, at the cost of occasionally having to use the phrase “almost sure”.)
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If X > 0 and Y > 0 are random variables in L2(P) then we may use the inner product to
define an angle θXY ∈ [0, π] by the formula

cos θXY =
〈X,Y 〉

‖X‖2‖Y ‖2
.

Note that cos θXX = E
[
X2
]
/‖X‖22 = 1, so θXX = 0. This geometric structure is closely related

to the covariance of the random variables: recall that forX,Y ∈ L2(P),

Cov(X,Y ) = E [(X −EX)(Y −EY )] = 〈X,Y 〉 −EXEY .

In the case that EX = 0 or EY = 0, it follows that X and Y are uncorrelated if and only if
〈X,Y 〉 = 0 or equivalently if and only if θX,Y = π/2. We also have that picture?

‖X + Y ‖22 = E
[
(X + Y )2

]
= E

[
X2
]
+ 2E [XY ] +E

[
Y 2
]
= ‖X‖22 + 〈X,Y 〉+ ‖Y ‖22 ,

so ‖X + Y ‖22 = ‖X‖22 + ‖Y ‖22 if and only if 〈X,Y 〉 = 0.

Exercise 11.6 (Parallelogram Law). For U, V ∈ L2(P) we have

‖U + V ‖22 + ‖U − V ‖22 = 2‖U‖22 + 2‖V ‖22.

Covariance has a very direct relation to the geometric structure ofL2(Ω,F ,P). Another feature
of the geometry which we will exploit is the ability to perform projections onto subspaces. Consider a
probability space (Ω,F ,P) and a sub-σ-field G of F . IfX : Ω → R is (G/B(R))-measurable then
it is (F/B(R))-measurable, so for any p ≥ 1, if Z ∈ Lp(Ω,G,P) then Z ∈ Lp(Ω,F ,P). In other We are abusing notation by

writing (Ω,G,P) rather
than (Ω,G,P|G), but this
shouldn’t cause confusion.

words, “up to almost sure equality” the space Lp(Ω,G,P) is a complete subspace of Lp(Ω,F ,P).
In the case p = 2, the existence of a notion of orthogonality then allows us to consider projections
onto Lp(Ω,G,P).

Theorem 11.7. Fix a probability space (Ω,F ,P) and a sub-σ-field G of F . Fix X ∈ L2(Ω,F ,P) and
let ∆ = inf{‖X − Y ‖2 : Y ∈ L2(Ω,G,P)}. Then there is an almost surely unique Z ∈ L2(Ω,G,P)
such that ‖X − Z‖2 = ∆.

Proof. Let (Yn, n ≥ 1) be elements of L2(Ω,G,P) with ‖X − Yn‖2 ≤ ∆ + 1/n. For m,n ≥ 1,
we apply the parallelogram law with U + V = X − Yn and U − V = X − Ym. This means
2U = 2X − (Yn + Ym) and 2V = Ym − Yn, so we obtain

‖X − Yn‖22 + ‖X − Ym‖22 = 2‖X − (Yn + Ym)/2‖22 +
1

2
‖Ym − Yn‖22.

The left-hand side is at most 2∆2+1/m+1/n by our choice of Ym and Yn. Also, (Yn+Ym)/2 ∈
L2(Ω,G,P), so by the definition of ∆ we have ‖X − (Yn + Ym)/2‖22 ≥ ∆2. From the above
equality combined with these two bounds we obtain

1

2
‖Ym − Yn‖22 ≤

1

m
+

1

n
,

so (Yn, n ≥ 1) is a Cauchy sequence. By Theorem 11.6, it follows that there is Y ∈ L2(Ω,G,P)
such that ‖Yn − Y ‖2 → 0. For any n ≥ 1, by the triangle inequality, we then have

‖X − Y ‖2 ≤ ‖X − Yn‖2 + ‖Yn − Y ‖2 ≤ ∆+
1

n
+ ‖Yn − Y ‖2 ,

and taking n → ∞ shows that ‖X − Y ‖2 ≤ ∆; by the definition of ∆ we must then have ‖X −
Y ‖2 = ∆.

Finally, suppose Z is another random variable with ‖X − Z‖2 = ∆. Then apply the parallelo-
gram law with U + V = X − Y and U − V = X − Z. We then obtain

2∆2 = ‖X − Y ‖22 + ‖X − Z‖22 = 2‖X − (Y + Z)/2‖2 +
1

2
‖Y − Z‖22 ≥ 2∆2 +

1

2
‖Y − Z‖22 ,

so it must be that ‖Y − Z‖2 = 0. □
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Let’s call the (a.s. unique) minimizer Z in the above theorem the closest G-measurable random variable
to X . (This is cumbersome - we’ll introduce a shorter name shortly.)

Corollary 11.8. With the setup of Theorem 11.7, for Z ∈ L2(Ω,G,P) we have ‖X − Z‖2 = ∆ if and
only if 〈Y,X − Z〉 = 0 for all Y ∈ L2(Ω,G,P).

Proof. First, suppose that Z ∈ L2(Ω,G,P) is such that 〈Y,X − Z〉 = 0 for all Y ∈ L2(Ω,G,P).
Then for any Z ′ ∈ L2(Ω,G,P) we have

E
[
(X − Z ′)2

]
= E

[
(X − Z − (Z − Z ′))2

]
= E

[
(X − Z)2

]
− 2〈X − Z,Z − Z ′)〉+E

[
(Z − Z ′)2

]
= E

[
(X − Z)2

]
+E

[
(Z − Z ′)2

]
≥ E

[
(X − Z)2

]
.

Conversely, suppose that ‖X − Z‖2 = ∆, and fix any Y ∈ L2(Ω,G,P). Then for any t ∈ R we
have Z + tY ∈ L2(Ω,G,P) so

∆2 ≤ E
[
(X − Z − tY )2

]
= E

[
(X − Z)2

]
− 2tE [Y (X − Z)] + t2E

[
Y 2
]

= ∆2 − 2t〈Y,X − Z〉+ t2E
[
Y 2
]
.

The only way this can hold for small t is if 〈Y,X − Z〉 = 0. □

The condition that 〈Y,X − Z〉 = 0 for all Y ∈ L2(Ω,G,P) may be rewritten as saying that

E [Y (X − Z)] = 0

for all Y ∈ L2(Ω,G,P). This is easy enough to verify that we can start doing examples.

Examples. The first several examples will relate to a sequence (Xi, i ≥ 1) of independent random
variables in L2(Ω,F ,P).
1. Suppose that E [Xi] = 0 for all i. Fix n ≥ 1, letX =

∑n
i=1Xi, and let G = σ(X1, . . . , Xn−1).

We claim that Z = X1 + . . . + Xn−1 is the closest G-measurable random variable to X . To see
this, we fix any Y ∈ L2(Ω,G,P) and compute

E [Y (X − Z)] = E [Y Xn] = E [Y ]E [Xn] = 0.

The second equality holds since G = σ(X1, . . . , Xn−1) and σ(Xn) are independent, so Y andXn

are independent.
2. Again take X =

∑n
i=1Xi, but this time don’t assume the random variables have zero mean.

Write E [Xi] = ci, fix some set S ⊂ [n] and let G = σ(Xi, i ∈ S). If Z0 =
∑

i∈S Xi then for
Y ∈ L2(Ω,G,P) we have

E [Y (X − Z0)] = E

Y (
∑
i ̸∈S

Xi

 = E [Y ]E

∑
i ̸∈S

Xi

 = E [Y ] ·
∑
i ̸∈S

ci.

This need not be zero - we should recenter Z0 to take account of what direction the remaining sum-
mands are heading in. Taking Z = Z0 +

∑
i ̸∈S ci, we then get

E [Y (X − Z)] = E [Y (X − Z0)]−E

Y ·
∑
i ̸∈S

ci

 = 0 ,

so the closest G-measurable random variable to X is
∑

i∈S Xi +
∑

i ̸∈S ci.
3. Let X =

∏n
i=1Xi and take G = σ(X1, . . . , Xn−1). Then with c = EXn, the closest G-

measurable random variable toX is Z = c ·
∏n−1

i=1 Xi. To see this, choose Y ∈ L2(Ω,G,P). Since
the random variables X1, . . . , Xn are independent, both X and Z are in L2(Ω,F ,P) (exercise!).



58 LOUIGI ADDARIO-BERRY

It follows by Cauchy-Schwarz that Y Z ∈ L1(Ω,F ,P); sinceXn is independent of Y Z and Y X =
Y ZXn/c, we thus have

E [Y X] = E [Y ZXn/c] = E [Y Z]E [Xn] /c = E [Y Z] .

4. Fix c ∈ R and suppose thatEXi = c and (to avoid integrability issues) thatXi ≥ 0 for all i ≥ 1.
Let N be a positive integer random variable independent of (Xi, i ≥ 1), and take X =

∑N
i=1Xi

and G = σ(N). We claim that Z = cN . To see this, we transform the random sum into a
deterministic sum by writing

X =

N∑
i=1

Xi =

∞∑
n=1

(1[N=n] ·
n∑

i=1

Xi) .

For Y ∈ L2(Ω,G,P) we then have

E [Y X] = E

[
Y ·

∞∑
n=1

(1[N=n] ·
n∑

i=1

Xi)

]

=

∞∑
n=1

E

[
Y 1[N=n] ·

n∑
i=1

Xi

]
.

Now, G = σ(N) and σ(Xi, i ≥ 1) are independent, so the random variables Y 1[N=n] and∑n
i=1Xi are independent. Applying the factorization formula to the right-hand side above then

gives

E [Y X] =
∞∑
n=1

E
[
Y 1[N=n]

]
·E

[
n∑

i=1

Xi

]

=
∞∑
n=1

E
[
Y 1[N=n]

]
· cn

= E

[ ∞∑
n=1

Y 1[N=n] · cn

]
= E [Y · cN ] .

5. This example is chattier. The idea behind it is a bit different from the others, and is quite
important. Let Ω be the set of all individuals who filed an income tax return in Canada in 2018,
and let P be the uniform measure on (Ω, 2Ω). Define a random variable X : Ω → R by taking
X(ω) to be the amount of income tax paid by individual ω.

Define another random variable R : Ω → {1, . . . , 13} by taking R(ω) to be the province or
territory of residence of individual ω in 201813, and let G = σ(R). This means that (for example)
Ω1 := R−1(1) is the set of taxpayers in Alberta, and Ω13 := R−1(13) is the set of taxpayers in the
Yukon.

Note that G is generated by the sets Ω1, . . . ,Ω13. That means a random variable U : Ω → R
is (G/B(R))-measurable if and only if for any B ∈ B(R), the set U−1(B) is a union of some or
all of the sets Ω1, . . . ,Ω13. In other words, whether U(ω) ∈ B must only depend on the value of
R(ω), so U(ω) must be the same for every taxpayer in a given province.

What is the closest G-measurable random variable to X? We seek a random variable Z which
assigns the same value to every taxpayer in a province, and satisfies

E [XY ] = E [ZY ]

13Order the provinces and territories in some way...
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for any other random variable Y which also assigns the same value to every taxpayer in a province.
Suppose Y has that property, so we may represent Y as Y (i) =

∑13
i=1 yi1[ω∈Ωi]. Then

E [XY ] =
1

|Ω|
∑
ω∈Ω

X(ω)Y (ω) =
1

|Ω|

13∑
i=1

yi ·
∑
ω∈Ωi

X(ω) .

If Z =
∑13

i=1 zi1[ω∈Ωi] then

E [ZY ] =
1

|Ω|
∑
ω∈Ω

Z(ω)Y (ω) =
1

|Ω|

13∑
i=1

|Ωi|yizi .

To make the last two expressions equal, we see that we should take zi = |Ωi|−1
∑

ω∈Ωi
Xi(ω).

This last value is just the average tax paid by taxpayers in province/territory i! Calling that value
µi, we then have

Z(ω) =

13∑
i=1

µi1[Ωi](ω) .

It’s worth comparing this example to the previous ones. In examples 1, 2 and 3, the closest G-
measurable random variable to X ended up being obtained by essentially “replacing the part not
lying in the subspace by its expected value”. In example 4, the “expectation of the independent
part” also came into the picture, but in a more involved way, asX did not separate as cleanly as in
the first three cases. In example 5, the random variable Z is a sort of “coarsening” of X , obtained
by taking expectations over subsets whenever G gives us no information about the behaviour of
X within those subsets. If you think of X as a lookup table where the first column lists taxpayers
and the second lists the amount they paid, then Z is a table which only lists the average (expected)
amount paid per province or territory.

This motivates the name we will use for such random variables for the rest of the class; rather
than calling Z the closest G-measurable random variable toX , we call it the conditional expectation of
X given G, and denote it E [X | G].

This notation takes some time to get used to. The conditional expectation E [X | G] is not a
number: it is a random variable, which “tries to be like X” but is forced to be simpler than X by
the constraint that it must be (G/B(R))-measurable. The next section is devoted to conditional
expectation and its properties.

12. Conditional expectation

Let (Ω,F ,P) be a probability space and let G ⊂ F be a sub-σ-algebra. For a random variable
X ∈ L1(Ω,F ,P), we say that Z : Ω → R is a version of E [X | G] if

(a) Z ∈ L1(Ω,G,P), and
(b) For all E ∈ G, E

[
X1[E]

]
= E

[
Z1[E]

]
.

We will momentarily show existence and (almost sure) uniqueness of conditional expectations of L1

random variables. First, however, we establish a monotonicity property of conditional expectations.
We use the result of the following easy exercise.

Did I already state this
exercise or a close variant
earlier? Exercise 12.1. Suppose that random variables U and V have P {U ≥ V } = 1 and EU ≤ EV . Then

U
a.s.
= V .

Proposition 12.1 (Monotonicity of conditional expectation). Suppose that X,X ′ ∈ L1(Ω,F ,P)
satisfy P {X ≤ X ′} = 1, and that Z,Z ′ are versions of E [X | G] and E [X ′ | G], respectively. Then
P {Z ≤ Z ′} = 1.

Proof. Since Z,Z ∈ L1(Ω,G,P) we have Z−Z ′ ∈ L1(Ω,F ,P) so {Z ≥ Z ′} = {Z−Z ′ ≥ 0} ∈
G. Thus, by the defining property (b) of conditional expectation and monotonicity of expectation,

E
[
Z1[Z≥Z′]

]
= E

[
X1[Z≥Z′]

]
≤ E

[
X ′1[Z≥Z′]

]
= E

[
Z ′1[Z≥Z′]

]
.
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But Z1[Z≥Z′] ≥ Z ′1[Z≥Z′], so it follows by the above exercise that P
{
Z1[Z≥Z′] = Z ′1[Z≥Z′]

}
=

1, which is equivalent to the assertion that P {Z ≤ Z ′} = 1. □

Theorem 12.2 (Existence of conditional expectation). For any random variable X ∈ L1(Ω,F ,P)
and any sub-σ-algebra G ⊂ F , there exists a version of E [X | G]. Moreover, if Y and Y ′ are two versions of
E [X | G] then Y a.s.

= Y ′.

Proof. We first prove the uniqueness claim. Suppose that Z,Z ′ are two versions of E [X | G]. Ap-
plying Proposition 12.1 with X ′ = X we have P {Z ≤ Z ′} = 1; by symmetry we then have
P {Z = Z ′} = 1, establishing the uniqueness claimed in the theorem statement.

To prove existence, first suppose X ∈ L2(Ω,F ,P). Then by Corollary 11.8, there is Z ∈
L2(Ω,G,P) such that

E [XY ] = E [ZY ]

for all Y ∈ L2(Ω,G,P). In particular this holds when Y = 1[E] for E ∈ G, so Z is a version of
E [X | G].

Now suppose X ∈ L1(Ω,F ,P) is non-negative. Then for for each n ≥ 1, since X≤n is
bounded it is in L2(Ω,F ,P), so we may find a version Zn of E

[
X≤n | G

]
. By monotonicity

of conditional expectation, the random variables (Zn, n ≥ 1) are almost surely increasing. Set
Z = lim supn→∞ Zn, so that Zn almost surely increases to Z. Then for any event E ∈ G, by two
applications of the monotone convergence theorem we then have

E
[
X1[E]

]
= lim

n→∞
E
[
X≤n1[E]

]
= lim

n→∞
E
[
Zn1[E]

]
= E

[
Z1[E]

]
,

so Z is a version of E [X | G].
Finally, for arbitrary X ∈ L1(Ω,F ,P) we may write X = X+ − X− and let Z+ and Z− be

versions ofE [X+ | G] andE [X− | G], respectively. Then forE ∈ G, using linearity of expectation
we have

E
[
X1[E]

]
= E

[
X+1[E]

]
−E

[
X−1[E]

]
= E

[
Z+1[E]

]
−E

[
Z−1[E]

]
= E

[
(Z+ − Z−)1[E]

]
,

so Z+ − Z− is a version of E [X | G]. □

It is immediate from the definition that in the five examples with which we concluded the preced-
ing section, the “closest G-measurable random variables to X” were in fact versions of E [X | G].

Exercise 12.2. Use the monotone class theorem to show that if Z is a version of E [X | G] then for any Y ∈
L∞(Ω,G,P), E [XY ] = E [ZY ].

We’ll sometimes start writing E [X | G] rather than referring to versions of E [X | G]. Also, if
G = σ(V ) for some random variable V , it’s standard to write E [X | V ] rather than E [X | G] or
E [X | σ(V )].
More examples.
1. Our first example generalizes the last example from the previous section. SupposeX ∈ L1(Ω,F ,P).
Let (Ωn, n ≥ 1) be a partition of Ω with all parts in F , and let G = σ({Ωn, n ≥ 1}). Write
zn = E

[
X1[Ωn]

]
/P {Ωn}. Then the random variable Z =

∑
n≥1 zn1[Ωn] is a version of

E [X | G]. To see this is easy: any event E in G may be written as

E =
∑
i∈S

Ωi

for some S ⊂ N, and then

E
[
X1[E]

]
=
∑
n∈S

E
[
X1[Ωn]

]
=
∑
i∈S

znP {Ωn} =
∑
n∈S

znE
[
1[Ωn]

]
= E

[∑
n∈S

Z1[Ωn]

]
= E

[
Z1[E]

]
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2. Say thatX,Y ∈ L1(Ω,F ,P) have joint density f if f : R2 → [0,∞) is a Borel function which is
a density for the R2-valued random variable (X,Y ); that is, for any B ∈ B(R2),

P {(X,Y ) ∈ B} =

∫
B
f(x, y)dx⊗ dy ,

where we use dx⊗dy to denote Lebesgue measure on R2. SupposeX and Y have joint density f .
The “natural formula” for E [X | Y = y] would be

E [X | Y = y] =

∫
R xf(x, y)dx∫
R f(x, y)dx

.

The top is just the integral along the slice, and the bottom is a normalization factor. If we
Now, cast yourmind back to the development of productmeasure and Fubini’s theorem. Lemma 8.5

tells us that f(x, y) is a Borel function of x; Lemma 8.6 tells us that∫
R
f(x, y)dx

is a Borel function of y, and Fubini’s theorem tells us that∫
R
|f(x, y)|dx <∞

almost everywhere. We can thus define

ϕ(y) =

{∫
R f(x, y)dx if

∫
R |f(x, y)|dx <∞

0 otherwise,

and by Fubini’s theorem, for A ∈ B(R) we have

P {Y ∈ A} = P {(X,Y ) ∈ R×A} =

∫
R×A

f(x, y)dx⊗ dy =

∫
A
ϕ(y)dy .

In other words, ϕ is a density for Y . Now let

f(x|y) =

{
f(x,y)
ϕ(y) if ϕ(y) > 0

0 otherwise.

This is a Borel function from R2 to R (exercise!), and so is a Borel function in either coordinate
(when the other is held fixed).

We now want to define E [X | Y ] =
∫
R xf(x|Y )dx. We really need to work on the set that

the integral is defined, so let Z =
∫
R xf(x|Y )dx · 1[Y ∈F ]. Then Z is a composition of Y with a

Borel map, so is G/B(R)measurable, and using the change of variables formula and monotonicity
of probability (or Jensen’s inequality),

E|Z| = E

[∣∣∣∣∫
R
xf(x|Y )dx

∣∣∣∣1[Y ∈F ]

]
=

∫
R

∣∣∣∣∫
F
xf(x|y)dx

∣∣∣∣ϕ(y)dy
=

∫
R

∣∣∣∣∫
F
xf(x, y)dx

∣∣∣∣ dy
≤
∫
R

∫
R
xf(x, y)dxdy

= E|X| <∞ .

Thus Z ∈ L1(Ω,G,P).
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Finally, for any E ∈ σ(Y ) we can write E = {Y ∈ A} for some A ∈ B(R), so by two
applications of the change of variables formula,

E
[
X1[Y ∈A]

]
=

∫
R×A

xf(x, y)dx⊗ dy

=

∫
A

∫
R
xf(x, y)dxdy

=

∫
A

∫
R
xf(x|y)ϕ(y)dxdy

=

∫
A

∫
R
xf(x|y)dxϕ(y)dy

= E

[∫
R
xf(x|Y )1[Y ∈A]

]
.

Thus
∫
R xf(x|Y )dx is indeed a version of E [X | Y ].

3. Suppose that X and Y are independent and that ϕ : R2 → R is a Borel function with
E|ϕ(X,Y )| < ∞. Let F = {y ∈ R : E|ϕ(X, y)| < ∞} and set g(y) := (Eϕ(X, y))1[y∈F ].
We claim that g(Y )

a.s.
= Eϕ(X,Y ) | Y .

To see this, first note that by the change of variables formula and monotonicity of integration,

E|g(Y )| =
∫
F
|Eϕ(X, y)|dµY

=

∫
F

∣∣∣∣∫
R
ϕ(x, y)dµX

∣∣∣∣ dµY
≤
∫
F

∫
R
|ϕ(x, y)|dµXdµY .

Since X and Y are independent, the pair (X,Y ) has joint law dX ⊗ dY , so by Fubini’s theorem
and another application of the change of variables formula,∫

F

∫
R
|ϕ(x, y)|dµXdµY =

∫
R2

|ϕ(x, y)|d(µX ⊗ µY )

= E|ϕ(X,Y )| <∞ ,

so g(Y ) ∈ L1(Ω, σ(Y ),P). Next, for any A ∈ B(R), again using change of variables and Fubini
we have

E
[
g(Y )1[Y ∈A]

]
=

∫
F
Eϕ(X, y)1[A](y)dµY

=

∫
F

∫
R
ϕ(x, y)1[A](y)dµXdµY

=

∫
A×R

ϕ(x, y)d(µX ⊗ µY )

= E
[
ϕ(X,Y )1[Y ∈A]

]
,

as required.
4. This example is a straightforward generalization of the previous one to more than two ran-
dom variables, and a detailed justification is omitted (only the construction is given). Suppose
(X1, . . . , Xn) are independent random variables on a probability space(Ω,F ,P). Fix any Borel
function ϕ : Rn → R such that ϕ(X1, . . . , Xn) ∈ L1(Ω,F ,P). Fix 1 ≤ i ≤ n and let
G = σ(X1, . . . , Xi).

Let
F = {(x1, . . . , xi) ∈ Ri : E|ϕ(x1, . . . , xi, Xi+1, . . . , Xn)| <∞}.
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Define g : Ri → R by

g(x1, . . . , xi) = E [ϕ(x1, . . . , xi, Xi+1, . . . , Xn)]1[(x1,...,xi)∈F ] .

Then g(X1, . . . , Xi) is a version ofE [ϕ(X1, . . . , Xn) | G]. This construction subsumes14 examples
1 through 4 from Section 11.1.

Exercise 12.3. Revisit the examples of Section 11.1, considering the projections from the perspective of conditional
expectations. Check that you see why the projections satisfy the defining properties of conditional expectation for their
respective random variables.

12.1. Properties of conditional expectation. In this section we record a litany15 of basic prop-
erties satisfied by conditional expectation. We always assume (Ω,F ,P) is a probability space, that
X,Y ∈ L1(Ω,F ,P) and that G is a sub-σ-field of F .

(i) E [E {X | G}] = EX

(ii) If σ(X) ⊂ G then E {X | G} a.s.
= X .

Proving the first two properties is an exercise in understanding and applying the definition of con-
ditional expectation.

(iii) If σ(X) and G are independent then E {X | G} a.s.
= EX .

Proof: For all A ∈ G, by the independence assumption,

E
[
X1[A]

]
= EX ·E

[
1[A]

]
= E

[
(EX) · 1[A]

]
. □

(iv) Linearity of conditional expectation. For all a ∈ R,E {aX + Y | G} a.s.
= aE {X | G}+

E {Y | G}.

(v) Montonicity. If X ≤ Y almost surely then E {X | G} ≤ E {Y | G} almost surely.
The last fact is just a restatement of Proposition 12.1.

For the next three properties, we additionally require a sequence (Xn, n ≥ 1) of random vari-
ables over (Ω,F ,P). The first is left as an exercise.

(v) Conditional Monotone Convergence Theorem. If 0 ≤ Xn ↑ X almost surely then
E {Xn | G} ↑ E {X | G} almost surely.

(vi) Conditional Fatou’s Lemma. If Xn ≥ 0 for all n then E { lim infn→∞Xn | G} ≤
lim infn→∞E {Xn | G}.
Proof: For any n ≥ 1, for all n′ ≥ n we have Xn′ ≥ infm≥nXm, and it follows by
monotonicity of conditional expectation that

inf
m≥n

E {Xm | G}
a.s.
≥ E

{
inf
m≥n

Xm

∣∣∣∣ G} .

Taking n→ ∞ on both sides gives

lim inf
n→∞

E {Xn | G}
a.s.
≥ lim

n→∞
E

{
inf
m≥n

Xm

∣∣∣∣ G} a.s.
= E

{
lim inf
n→∞

Xn

∣∣∣ G} ,
where the almost sure equality follows from the conditional monotone convergence theo-
rem. □

(vii) Conditional Dominated Convergence Theorem. If Xn
a.s.→ X almost surely and

|Xn| ≤ Y almost surely for all n, then E {Xn | G} a.s.→ E {X | G}.

14Subsume, v.: 6. transitive. a. To take up or absorb (a concept, thing, person, etc.) into another, esp. one which is larger
or higher; to include in. b. To bring (an idea, principle, etc.) under another; to instance or include (a case, term, etc.)
under a rule, category, etc. –Oxford English Dictionary
15Litany, n.: 2. transferred. A form of supplication (e.g. in non-Christian worship) resembling a litany; also, a continuous
repetition or long enumeration resembling those of litanies. –Oxford English Dictionary
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The conditional dominated convergence theorem follows from the conditional Fatou’s lemma in
essentially the same way as the dominated convergence theorem follows from Fatou’s lemma.

We next turn to inequalities related to convexity.
(viii) Conditional Jensen’s inequality. If φ : R → R is convex and φ(X) ∈ L1(Ω,F ,P),

then φ(E {X | G})
a.s.
≤ E {φ(X) | G}.

Proof: Wemay fix a sequence of linear functions ℓn(x) = anx+bn such that for all x ∈ R,
φ(x) = supn≥1(anx+ bn). We then have φ(X) ≥ anX+ bn for all n, so by monotonicity
and linearity of conditional expectation,

E {φ(X) | G}
a.s.
≥ E {anX + bn | G} a.s.

= anE {X | G}+ bn.

Taking a supremum over n ≥ 1 gives

E {φ(X) | G}
a.s.
≥ sup

n≥1
(anE {X | G}+ bn) = φ(E {X | G}). □

(ix) For all p ≥ 1, ‖E {X | G} ‖p ≤ ‖X‖p.
Proof: This is obvious if ‖X‖p = ∞. Otherwise, by the conditional Jensen’s inequality
applied to the function ϕ(x) = |x| with the random variable Xp ∈ L1(Ω,F ,P) we have
|E {X | G} |p ≤ E {|X|p | G}. It follows by monotonicity and the definition of condi-
tional expectation that

‖E {X | G} ‖pp = E [|E {X | G} |p]
a.s.
≤ E [E {|X|p | G}]
= E

[
E {|X|p | G}1[Ω]

]
= E

[
|X|p1[Ω]

]
= ‖X‖pp. □

(x) ConditionalHölder’s inequality. For p, q ≥ 1with 1/p+1/q = 1. IfX ∈ L1(Ω,F ,P)
and Y ∈ L1(Ω,F ,P) then XY ∈ L1(Ω,F ,P) and

E {|XY | | G} ≤ (E {|X|p | G})1/p(E {|X|q | G})1/q.
We briefly delay the proof of Hölder’s inequality as it uses a property of conditional expec-
tation we have not yet seen.

The next three properties are perhaps less “intuitive”, as they are not simply conditional versions
of facts you have already seen. The first is related to the fact that the projection operation is idem-
potent. The second says that if σ(Y ) ⊂ G then Y “acts like a constant” with respect to conditional
expectations given G. The third says (informally) that conditioning a conditional expectation on
another independent σ-field doesn’t change anything.

(xi) The tower property. If H ⊂ G is another σ-field, then

E {E {X | G} | H} a.s.
= E {X | H} a.s.

= E {E {X | H} | G} .
Proof: First, E {X | H} is H/B(R)-measurable, and H ⊂ G, so by property (ii),

E {E {X | H} | G} a.s.
= E {X | H} .

Next, let Z be a version of E {E {X | G} | H}. Then by definition, Z ∈ L1(Ω,H,P)
and for all A ∈ H,

E
[
Z1[A]

]
= E

[
E {X | G}1[A]

]
.

By the definition ofE {X | G}, we also haveE
[
E {X | G}1[A]

]
= E

[
X1[A]

]
. It follows

that E
[
Z1[A]

]
= E

[
X1[A]

]
, so Z is a version of E {X | H}. □

(xii) Moving variables out of conditional expectations. For any random variable Z ∈
L∞(Ω,G,P) it holds that E {XZ | G} a.s.

= E {X | G}Z.
Proof: Let

S =
{
Z ∈ L∞(Ω,G,P) : E {XZ | G} a.s.

= E {X | G}Z
}
.
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We aim to show that S = L∞(Ω,G,P). First suppose Z = 1[B] for some B ∈ G. Then
for all A ∈ G,
E
[
E {X | G}Z1[A]

]
= E

[
E {X | G}1[A∩B]

]
= E

[
X1[A∩B]

]
= E

[
XZ1[A]

]
,

so by the definition of conditional expectation, E {X | G}Z is a version of E {XZ | G}
and therefore Z ∈ S .

Next, if Z,Z ′ ∈ S and a ∈ R then by linearity of conditional expectation,

E {X | G} (aZ + Z ′) = aE {X | G}Z +E {X | G}Z ′

a.s.
= E

{
aXZ +XZ ′ ∣∣ G} = E

{
X(aZ + Z ′)

∣∣ G} ,
so aZ + Z ′ ∈ S .

Next, if 0 ≤ Zn ∈ S for n ≥ 1 and Zn ↑ Z as n→ ∞, thenX+Zn ↑ X+Z as n→ ∞,
so by the conditional monotone convergence theorem,

E
{
X+

∣∣ G}Z = lim
n→∞

E
{
X+

∣∣ G}Zn
a.s.
= lim

n→∞
E
{
X+Zn

∣∣ G} a.s.
= E

{
X+Z

∣∣ G} .
Likewise E {X− | G}Z a.s.

= E {X−Z | G}, so by linearity of conditional expectation,

E {X | G}Z a.s.
= (E

{
X+

∣∣ G}+E
{
X− ∣∣ G})Z a.s.

= E
{
X+Z +X−Z

∣∣ G} = E {XZ | G} .
Thus Z ∈ S . It follows by the monotone class theorem that S = L∞(Ω,G,P). □

(xiii) Adding an independent conditioning changes nothing. If H ⊂ F is another σ-
algebra and σ(X,G) := σ(σ(X) ∪ G) is independent of H then E {X | σ(G,H)} =
E {X | G}.

The last property is left as an exercise. We also state the following strengthening of (xiii) as an
exercise.

Exercise 12.4. Prove that if Z : Ω → R is G/B(R)-measurable and X,XZ ∈ L1(Ω,F ,P) then
E {XZ | G} a.s.

= E {X | G}Z .

Proof of Holder’s inequality. To avoid issues of integrability and dividing by zero, for ϵ ≥ 0

write Uϵ = (E {|X|p | G} + ϵ)1/p and Vϵ = (E {|Y |q | G} + ϵ)1/q. Then let Xϵ = |X|
Uϵ

and
Yϵ =

Y
Uϵ
.

For ϵ > 0 we then have

XϵYϵ = exp

(
1

p
log(Xp

ϵ ) +
1

q
log(Y q

ϵ )

)
≤ exp

(
log

Xp
ϵ

p
+
Y q
ϵ

q

)
=
Xp

ϵ

p
+
Y q
ϵ

q
,

so

E {XϵYϵ | G} ≤ 1

p
E {Xp

ϵ | G}+ 1

p
E {Y q

ϵ | G}

=
1

p
E
{
|X|pU−p

ϵ

∣∣ G} 1

q
E
{
|Y |qV −q

ϵ

∣∣ G}
The termsU−p

ϵ and V −q
ϵ are inL∞(Ω,G,R), so by (xiii) wemaymove them outside the conditional

expectations. The previous bound then beomes

E {XϵYϵ | G}
a.s.
≤ 1

p

E {|X|p | G}
Up
ϵ

+
1

q

E {|Y |q | G}
V q
ϵ

=
1

p

Up
0

Up
ϵ
+

1

q

V q
0

V q
ϵ

≤ 1 .

Again using that U−p
ϵ and V −q

ϵ are in L∞(Ω,G,R), we also have

E {XϵYϵ | G}
a.s.
=

E {|XY | | G}
UϵVϵ

,

which combined with the previous inequality gives

E {|XY | | G}
a.s.
≤ UϵVϵ.
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Taking ϵ ↓ 0, the result follows. □
We conclude the section with a slight extension of the domain of definition of conditional expec-

tations. When defining conditional expectation, in the proof of Theorem 12.2, for a non-negative
random variable X ∈ L1(Ω,F ,P) we defined E {X | G} as the almost sure increasing limit of
E
{
X≤n

∣∣ G}. More generally, if X : Ω → [0,∞) is F/B(R))-measurable (even if EX = ∞),
we let Z = lim infn→∞E

{
X≤n

∣∣ G}. We call Z, or any random variable in its almost sure
equivalence class, a version of E {X | G}.

It is important to note if we do not insist that E [X] <∞ then it can occur that that E {X | G}
takes the value +∞ with positive probability. For example, suppose that P {X = k} = 1

ζ(2)
1
k2

for
k ≥ 1. Let G = σ({X = 1}) = {∅, {X = 1}, {X > 1},Ω}. Noting thatP {X = k | X > 1} =
ζ(2)−1
ζ(2)

1
k2

for k > 1, it follows that

E
{
X≤n

∣∣ G} (ω) = {1 ifX(ω) = 1
ζ(2)−1
ζ(2)

∑n
k=2

1
k ifX(ω) > 1 ,

so

E {X | G} (ω) =

{
1 ifX(ω) = 1

∞ ifX(ω) > 1 .

Having accepted the fact that conditional expectations of non-negative random variables can
take the value +∞, we can even go a little further. If X : Ω → [0,∞] is F/B(R)-measurable, so
X is a non-negative extended real random variable, then we define

E {X | G} = E
{
X1[X<∞]

∣∣ G}+∞ ·E
{
1[X=∞]

∣∣ G}
= lim

n→∞
E
{
X1[X<n]

∣∣ G}+∞ ·E
{
1[X=∞]

∣∣ G} .
The preceding equalities should be understood at the level of almost sure equivalence classes. This
definition generalizes the definition given for non-negative real random variables and agrees with
that definition when P {X = ∞} = 0. It will come up later, in particular when exploring the
connection between martingales and the Radon-Nikodym theorem.

Proposition 12.3 (Conditional monotone convergence theorem). If 0 ≤ Xn ↑ X ≤ ∞ then
limn→∞E [Xn | G] = E [X | G] almost surely.

Proof. Bymonotonicity of conditional expectations, there exists an a.s. increasing limitY = limn→∞E [Xn | G].
For any event E ∈ G,

E
[
Y 1[E]

]
= E

[
lim
n→∞

E [Xn | G]1[E]

]
= lim

n→∞
E
[
E [Xn | G]1[E]

]
(Monotone convergence)

= lim
n→∞

E
[
E
[
Xn1[E] | G

]]
(Since E ∈ G)

= lim
n→∞

E
[
Xn1[E]

]
(Def. of cond. expectation)

= E
[
lim
n→∞

Xn1[E]

]
(Monotone convergence)

= E
[
X1[E]

]
.

Thus Y is a version of E [X | G]. □

Exercise 12.5 (Conditional extended Fatou’s lemma). If (Xn, n ≥ 0) is any sequence of non-negative
extended real-valued random variables, then E [lim infn→∞Xn | G] ≤ lim infn→∞E [Xn | G].
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12.2. Conditional expectations, tightness and uniform integrability. Fix a probability
space (Ω,F ,P) and a collection X = (Xi, i ∈ I) of random variables in L1(Ω,F ,P). tight

Write µi for the distribution of Xi. The family (µi, i ∈ I) of probability measures is tight if for tight

all ϵ > 0 there is a compact setK ⊂ R

sup
i≥1

µi(R \K) < ϵ.

The collectionX is uniformly integrable with respect toP if for all ϵ > 0 there is a compact setK ⊂ Runiformly integrable

such that
sup
i∈I

E
[
|Xi|1[|Xi|̸∈K]

]
< ϵ.

The two conditions are syntactically similar. They are connected by using the size-biasing operation
introduced earlier. Write µ̂i for the size-biasing of µi, so

µ̂i(B) =

(
µi ·

|Xi|
E|Xi|

)
(B) = E

[
|Xi|1[Xi∈B]

]
.

Exercise 12.6. A collection X = (Xi, i ∈ I) of random variables in L1(Ω,F ,P) is uniformly integrable if
and only if (µ̂i, i ∈ I) is tight.

Exercise 12.7. Let (µn, n ≥ 1) be a tight family of probability measures. Then there exists a subsequence
(nk, k ≥ 1) such that µnk

converges in distribution. (I.e. such that if Xnk
has distribution µnk

then Xnk

converges in distribution.)

Exercise 12.8. Let (Xn, 1 ≤ n ≤ ∞) be random variables in L1(Ω,F ,P) such that Xn
p→ X∞.

Prove that the following are equivalent: (a) Xn
L1−→ X∞; (b) (Xn, 1 ≤ n ≤ ∞) is uniformly integrable; (c)

E|Xn| → E|X∞|.

The next proposition connects uniform integrability and conditional expectations, and is the first
step toward martingales and martingale convergence theorems.

Proposition 12.4. Fix a probability space (Ω,F ,P) and a random variable X ∈ L1(Ω,F ,P). Then
{E {X | G} : G ⊂ F a sub-σ-field} is a uniformly integrable collection of random variables.

Lemma 12.5. If X ∈ L1(Ω,F ,P) then for all ϵ > 0 there is δ > 0 such that for all A ∈ F , if
P {A} ≤ δ then E

[
|X|1[A]

]
< ϵ.

Proof. Suppose that the assertion of the lemma is false. Then wemay find ϵ > 0 and events (An, n ≥
1) in F with P {An} ≤ 2−n such that E

[
|X|1[An]

]
≥ ϵ for all n.

We now show this implies thatE
[
|X|1[An i.o.]

]
≥ ϵ. By definition, {An i.o.} =

⋂
n≥1

⋃
m≥nAm,

so 1[An i.o.] = 1[
∩

n≥1

∪
m≥n Am] = limn→∞ 1[

∪
m≥n Am]

For any event E ∈ F we have |X|1[E] ≤ |X|, so by the dominated convergence theorem,

E
[
X1[An i.o.]

]
= E

[
lim
n→∞

|X|1[∪m≥n Am]

]
= lim

n→∞
E
[
|X|1[∪m≥n Am]

]
≥ ϵ .

On the other hand,
∑

n≥1P {An} = 1 <∞, so by the first Borel-Cantelli lemma,P {An i.o.} =

0 and thus E
[
X1[An i.o.]

]
= 0, a contradiction. □

Proof of Proposition 12.4. Fix ϵ > 0 and let δ > 0 be such thatE
[
|X|1[A]

]
< ϵwheneverP {A} ≤ δ;

such δ exists by the lemma. Then for any sub-σ-field G ⊂ F , by the conditional Jensen’s inequality

|E {X | G} | ≤ E {|X| | G} ,

so
E [|E {X | G} |] ≤ E [E {|X| | G}] = E|X|,
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TakingK = [−E|X|/δ,E|X|/δ], it follows that

P {|E {X | G} | 6∈ K} = P {|E {X | G} | > E|X|/δ}
≤ E [|E {X | G} |]E|X|/δ
≤ δ.

It follows that

E
[
|E {X | G} |1[|E{X | G}|̸∈K]

]
≤ E

[
E {|X| | G}1[|E{X | G}|̸∈K]

]
= E

[
E
{
|X|1[|E{X | G}|̸∈K]

∣∣ G}]
= E

[
|X|1[|E{X | G}|̸∈K]

]
≤ ϵ ,

the last bound holding since P {|E {X | G} | 6∈ K} ≤ δ. □

13. Martingales

A stochastic process is simply a family of random variables (Xi, i ∈ I) defined over a common
probability space (Ω,F ,P). Martingales are stochastic processes which model “fair games”, or
random systems which evolve in time without a bias in any particular direction. They are one of
the most important general classes of stochastic processes; the next part of these notes is devoted to
defining martingales and understanding their properties.

A filtration is an increasing sequence of σ-algebras (Fn)n≥0 over a common ground set. A filtered
probability space is a tuple (Ω,F , (Fn)n≥0,P), where (Fn)n≥0 is a filtration over Ω and Fn ⊂ F for
all n ≥ 0.

A sequence X = (Xn)n≥0 of random variables is (Fn)-adapted if Xn is Fn/B(R)-measurable
for all n ≥ 0. It is integrable if Xn ∈ L1(Ω,F ,P) for all n ≥ 1. Finally, it is an (Fn)-martingale (or
just a martingale for short) if it is integrable and adapted and satisfies the martingale property: for all
n > 0,

E {Xn | Fn−1} = Xn−1.

If you think of (Xn)n≥1 as a stock value (for example), then the martingale property states that the
best prediction for the stock’s future value given its past performance is simply its present value.16
Example: Simple random walk. Let (Zi, i ≥ 1) be iid random variables in L1(Ω,F ,P) with
EZ1 = 0 and let Xn = Z1 + . . .+ Zn. Then with

Fn = σ(Z1, . . . , Zn) = σ(X1, . . . , Xn),

the sequence X = (Xn, n ≥ 0) is an (Fn)-martingale.
Example: branching processes. Let µ be a probability measure on R with µ(N) = 1.

231

∅

321

232221

233232

⋆ Start from the root (call it ∅), let B∅ have law µ.
⋆ Give ∅ children 1, . . . , B∅.
⋆ Independently for each i = 1, . . . , B∅, let Bi have law µ.
⋆ Give i children i1, i2, . . . , iBi.
⋆ Repeat forever or until done; call the resulting random
tree TB .

LetZn be the number of individuals in the n’th generation (the individuals of the n’th generation
are those whose name is n characters long), and write |TB| =

∑∞
n=0 Zn for the total number of

individuals. We say the survival occurs if Zn > 0 for all n, and otherwise that say that extinction
occurs. Equivalently, survival occurs if |TB| = ∞, and extinction occurs if |TB| <∞.

16The efficient markets hypothesis in economics is essentially a statement that stocks behave like martingales.
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For n ≥ 0 let Fn = σ(Z0, . . . , Zn). Now fix n ≥ 0 and let S be the set of nodes in the n’th
generation of TB ; for n ≥ 1 this is a random subset of Nn = {b1b2 . . . bn : bi ∈ N, 1 ≤ i ≤ n}.
Then Zn+1 =

∑
v∈S Bv, so for any fixed subset S of Nn,

E {Zn+1 | S = S} = E

{∑
v∈S

Bv

∣∣∣∣∣ S = S

}
=
∑
v∈S

EB = |S| ·EB.

The second inequality holds by linearity of expectation and since E {Bv | S = S} = EB. (We
have been a bit informal about the last fact but it should be intuitively clear; we will be more precise
about this later in the notes.) SinceZn = |S|, it follows thatE {Zn+1 | Fn} = Zn ·EB. Therefore,
if EB = 1 then (Zn, n ≥ 0) is an Fn-martingale. More generally, settingMn = Zn/(EB)n, then
(Mn, n ≥ 0) is always an Fn-martingale. We will analyze this example further in Section 14.

Exercise 13.1. Let (Ω,F , (Fn)n≥0,P) be a filtered probability space and let X ∈ L1(Ω,F ,P). Write
Xn

a.s.
= E {X | Fn}. Show that (Xn, n ≥ 0) is a martingale relative to the filtration (Fn, n ≥ 0).

The main goal of the section is to find conditions which guarantee that a martingale (Xn)n≥0

converges to some limit X in some sense. However, the convergence theory is not the only point
and, in fact, the theory will be easier to understand and will appear better motivated if we first
approach the subject from a more applied point of view.

Continuing the analogy with stock prices, suppose thatX = (Xn)n≥0 is an (Fn)-adapted process,
and think of it as tracking a stock price over time. At time n you can choose to invest some amount
money Cn+1 for the next unit of time, based on your observation of the stock’s behaviour to date.
In the next unit of time your profit/loss will then be Cn+1(Xn+1 −Xn).

An integrable stochastic process (Cn)n≥1 is (Fn)-previsible ifCn+1 ∈ L1(Ω,Fn,P) for all n ≥ 0.
In the stock market analogy, saying that that Cn+1 should be chosen based on past observations
precisely means that means that (Cn)n≥1 should be (Fn)-previsible. If this is the case, then by the
properties of conditional expectation (and assuming the random variables Cn are bounded), the
profit/loss in the time unit from n to n+ 1 is

E [Cn+1(Xn+1 −Xn)] = E [E {Cn+1(Xn+1 −Xn) | Fn}]
= E [E {Cn+1Xn+1 | Fn}]−E [E {Cn+1Xn | Fn}]
= E [Cn+1E {Xn+1 | Fn}]−E [Cn+1Xn] .

We’ve used that Cn+1 and Xn are (Fn/B(R))-measurable to extract them from the conditional
expectation. If X is an (Fn)-martingale then by the martingale property, the last line equals zero,
which means that gambling on this stock yields no expected profit or loss.

In the above setup, the total profit/loss by time n is
n∑

i=1

Ci(Xi −Xi−1)

which is our first glimpse at stochastic integration; it looks like a discrete analogue of an integral∫ n
0 XidCi. This perspective has been fruitfully developed into an entire academic discipline.
The theory of martingales is, among other things, a computational tool. Basic facts about mar-

tingales allow some expected values to be identified by appeal to general theory rather than via
ad hoc calculations. For example, imagine that (Rn)n≥0 tracks the dollar value of your current
bankroll17 in a gambling game. You may choose to stop gambling at the first time T that either
Rn ≥ 1000 or Rn = 0. You will then return home with RT dollars, and may care to know the
expected value E [RT ]. The optional stopping theorem says that, if you were playing a fair game, then
E [RT ] = R0; you expect to walk out with whatever you brought in. Of course, most casinos don’t

17Bankroll, n. originally and chiefly U.S. A roll of banknotes; (in extended use) the money a person possesses; funds,
financial resources; (Gambling) the amount of money a person sets aside for a given session or period of gambling.
Frequently with possessive. –Oxford English Dictionary
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offer fair games. (If you are inclined to split hairs18, there are other issues with this as a model for
gambling play; what is the meaning of Rn for n > T , for example?)

To state the optional stopping theoremwe first need to define stopping times, and take the oppor-
tunity to state some elementary facts about them. Given a filtered probability space (Ω,F , (Fn)n≥0,P)
a random variable T : Ω → N∪ {+∞} is an (Fn)-stopping time (or just “stopping time”) if for all stopping time

n ∈ N, the event {T ≤ n} ∈ Fn. The idea to have in mind is, if Fn is the information available to
you at time n, then saying T is a stopping time means that, if you are trying to stop at time T , then
enough information is available to you that you will know when to stop (gambling, riding the bus,
owning a stock,. . .).

In the gambling example from two paragraphs ago, we could take T ∗ = inf{n : Rn ∈ R \
(0, 1000)}, which could also be written as T ∗ = min(T0, T1), where T0 = inf{n : Rn ≤ 0} and
T1 = inf{n : Rn ≥ 1000}. All three of T0, T1 and T ∗ are stopping times. An example of a non-
stopping time would be this: “I’ll play for 100 rounds and stop whenever my bankroll is largest”.
This corresponds to the random variable T2 = argmax(Rn, 0 ≤ n ≤ 100); 19 but to stop at time
T2 would require foreknowledge of (Rn, T2 ≤ n ≤ 100). Laws against insider trading are in a
sense legislating that decisions about when to buy and sell stocks must be stopping times.

Exercise 13.2. Show that T0, T1 and T ∗ defined above are all stopping times with respect to the filtration
Fn = σ(Rm, 0 ≤ m ≤ n).

Given an (Fn)-stopping time T , we define the stopped σ-field as follows: let F∞ = σ(
⋃

n≥0Fn), F∞

and let
FT := {A ∈ F∞ : ∀n ≥ 0, A ∩ {T ≤ n} ∈ Fn}.

For example, the event A that (Rn) first exceeds 1000 before first reaching 0 is in FT ∗ , since (in-
formally) at time T ∗ we know which of 0 and 1000 was first reached by (Rn). The next exercise is
a special case of a fact from the subsequent proposition, but is perhaps worth doing separately to
make sure you’re comfortable with these basic ideas.

Exercise 13.3. Let A = {T1 ≤ T0}. Show that A is in FT0 ,FT1 , and FT ∗ .

Proposition 13.1 (Basic facts about stopping times). Let (Ω,F , (Fn)n≥0,P) be a filtered probability
space, let (Xn)n≥0 be an (Fn)-adapted process, and let S, T be two (Fn)-stopping times. Then the following all
hold.

(1) min(S, T ) is a stopping time.
(2) FT is a σ-field.
(3) If S ≤ T then FS ⊆ FT .
(4) XT1[T<∞] is FT /B(R)-measurable.
(5) The process (Xmin(T,n), n ≥ 0) is (Fn)-adapted.20
(6) If (Xn)n≥0 is integrable then (Xmin(T,n))n≥0 is integrable.

The proofs of the facts stated in the proposition are left as exercises.
An (Fn)-adapted integrable process (Xn)n≥0 is a supermartingale if E {Xn | Fm}

a.s.
≤ Xm for all

0 ≤ m ≤ n. It is a submartingale if E {Xn | Fm}
a.s.
≥ Xm for all 0 ≤ m ≤ n. You might expect Submartingale,

supermartingalethe inequalities to go the other way; in its current form it is more in line with the definitions of
sub/superharmonic functions, but this is hard to explain rigorously without a large digression. So
for the time being you’ll just have to find your own way to remember.

Theorem 13.2 (Optional stopping theorem). Let (Ω,F , (Fn)n≥0,P) be a filtered probability space
and let (Xn)n≥0 be an Fn-supermartingale. Then for any bounded stopping times 0 ≤ S ≤ T , it holds that
EXT ≤ EXS .

18Couper les cheveux en quatre (fr)/Fendre les cheveux en quatre (qc)/S’enfarger dans les fleurs du tapis (qc)
19Given a finite collection (xi, i ∈ I) of real numbers, argmax(xi, i ∈ I) returns the value of i for which xi is largest.
20Hairs unsplit.
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Before proving the theorem, we note its immediate corollary for martingales.

Corollary 13.3. Suppose (Xn)n≥0 is in fact an Fn-martingale. Then for any bounded stopping times 0 ≤
S ≤ T , it holds that EXT = EXS .

To prove the corollary, note that if (Xn)n≥0 is a martingale then both (Xn)n≥0 and (−Xn)n≥0

are supermartingales; then apply Theorem 13.2. The optional stopping theorem is a consequence
of the following theorem, which lists three necessary and sufficient conditions for an adapted inte-
grable process to be a supermartingale.

Theorem13.4. Let (Ω,F , (Fn)n≥0,P) be a filtered probability space and let (Xn)n≥0 be an (Fn)-adapted
integrable process. Then the following are equivalent.

(a) (Xn)n≥0 is an (Fn)-supermartingale.
(b) For any bounded (Fn)-stopping time T and any (Fn)-stopping timeS,E {XT | FS}

a.s.
≤ Xmin(S,T ).

(c) For any (Fn)-stopping time T , the process (Xmin(T,n))n≥0 is an (Fn)-supermartingale.

(d) For any bounded (Fn)-stopping times S and T with S
a.s.
≤ T , EXT ≤ EXS .

Proof. [(c)⇒ (a)]. Let T be the constant function which is identically equal to n. ThenXmin(T,n) =
Xn and Xmin(T,n−1) = n− 1, so by the assumption in (c),

E {Xn | Fn−1} = E
{
Xmin(T,n)

∣∣ Fn−1

} a.s.
≤ Xmin(T,n−1) = Xn−1,

so X is an (Fn)-supermartingale.
[(b)⇒ (c)]. Let T be a stopping time, fix n ≥ 1 and take S ≡ n− 1. Then FS = Fn−1 (exercise),
and min(T, n) is a bounded stopping time, so by (b),

E
{
Xmin(T,n)

∣∣ Fn−1

}
= E

{
Xmin(T,n)

∣∣ FS

} a.s.
≤ Xmin(min(T,n),S) = Xmin(T,n−1) ,

a.s.
≤

so (Xmin(T,n))n≥0 is an (Fn)-supermartingale.

[(b) ⇒ (d)]. If S and T are both bounded stopping times with S
a.s.
≤ T then (b) gives us that

E {XT | FS}
a.s.
≤ Xmin(S,T )

a.s.
= XS .

Taking expectations on both sides, it follows that EXT ≤ EXS .
[(a)⇒ (b)]. Suppose (Xn)n≥0 is a supermartingale, let S be a stopping time and T be a bounded
stopping time, and choose n ∈ N such that P {T ≤ n} = 1. Then we can write

XT = Xmin(S,T ) +

n∑
k=0

(Xk+1 −Xk)1[S≤k<T ].

For any event A ∈ FS and k ∈ N, by definition we have A ∩ {S ≤ k} ∈ Fk. Also, {T ≤
k} ∈ Fk so {T > k} ∈ Fk. Using this measurability together with the tower law, and then using
supermartingale property, it follows that

E
[
(Xk+1 −Xk)1[S≤k<T ]1[A]

]
= E

[
E
{
(Xk+1 −Xk)1[T>k]1[A∩{S≤k}]

∣∣ Fk

}]
= E

[
E {Xk+1 −Xk | Fk}1[T>k]1[A∩{S≤k}]

]
≤ E

[
0 · 1[T>k]1[A∩{S≤k}]

]
= 0 .

Combined with the previous identity for XT , it follows that for any event A ∈ FS ,

E
[
XT1[A]

]
≤ E

[
Xmin(S,T )1[A]

]
.

From this and the definition of conditional expectation, it follows that

E
[
E {XT | FS}1[A]

]
= E

[
XT1[A]

]
≤ E

[
Xmin(S,T )1[A]

]
.
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Since bothE {XT | FS} andXmin(S,T ) areFS/B(R)-measurable, it follows thatE {XT | FS}
a.s.
≤

Xmin(S,T ), so (b) holds.
[(d) ⇒ (a)]. We must show that for all n ≥ 1

E {Xn | Fn−1}
a.s.
≤ Xn−1

To establish this inequality, it suffices to show that for any event A ∈ Fn−1,

E
[
E {Xn | Fn−1}1[A]

]
≤ E

[
Xn−11[A]

]
.

So fix n ≥ 1 and A ∈ Fn−1. Let T ≡ n and let S = (n − 1)1[A] + n1[Ac]. It is not hard to see
that S is a stopping time exercise. Since S ≤ T , it follows from (d) that

EXn = EXT ≤ EXS .

But XS = Xn−11[A] +Xn1[Ac], so this gives

EXn ≤ E
[
Xn−11[A]

]
+E

[
Xn1[Ac]

]
;

rearranging givesE
[
Xn1[A]

]
≤ E

[
Xn−11[A]

]
. But by definition,E

[
Xn1[A]

]
= E

[
E {Xn | Fn−1}1[A]

]
,

so the required inequality follows. □

13.1. Martingale convergence theorems. Let (Ω,F , (Fn)n≥0,P) be a filtered probability
space, and letX = (Xn, n ≥ 0) be an Fn-martingale. Then for any bounded stopping time T , the
optimal stopping theorem tells us that EXT = EX0. In gambling or stock market terminology,
this says that we should not expect to increase our initial fortune during any fixed time window (our
lifetime, say).

Here is a potential counterargument: what about “buy low, sell high”, the oldest trading principle
in the book? In other words, what prevents a trader from fixing two values a < b, then buying
whenever the stock price dips below a, and selling whenever the price rises above b? If it isn’t given
too much thought, this strategy seems pretty good. Let T0 = 0, and for k ≥ 0 let Sk+1 = inf{m ≥
Tk : Xm < a} and Tk+1 = inf{m ≥ Sk+1 : Xm > b}. For i ≥ 1 the interval [Si, Ti] is the i’th
upcrossing of the interval [a, b] by the martingale X. Our hypothetical trader earns b − a for each upcrossing

upcrossing they can apply their strategy to.
The next theorem is the reason why this strategy isn’t as great as it looks. For n ≥ 0 write

Un[a, b] = max(i : Ti ≤ n) for the number of upcrossings of [a, b] by X by time n, and let
U [a, b] = limn→∞ Un[a, b] be the total number of upcrossings of [a, b] by X.

Theorem 13.5 (Doob’s upcrossing inequality). Let (Ω,F , (Fn)n≥0,P) be a filtered proba-
bility space, and let X = (Xn, n ≥ 0) be an Fn-supermartingale, and fix a < b ∈ R. Then

E [U [a, b]] ≤ 1

b− a
sup
k≥0

E
[
(Xk − a)−

]
≤ 1

b− a
sup
k≥0

(EX−
k + a) .

Proof. First, note that the number of upcrossings of [a, b] byX is the same as the number of upcross-
ings of [0, b − a] by X − a := (Xn − a, n ≥ 0); we can thus assume a = 0, and must then prove
that

E [U [a, b]] ≤ 1

b
sup
n≥0

E
[
X−

n

]
.

The idea is thatXTi −XSi ≥ b for all i, so
∑

i≥1XTi −XSi ≥ bU [0, b]. On the other hand,X is a
supermartingale and Si ≤ Ti, so the expectations of the terms XTi −XSi should be non-positive.
This doesn’t quite work as written because the stopping times Si and Ti need not be bounded. To
make the idea work, we need to “localize” – work with the bounded stopping times Si ∧ n and
Ti ∧ n – and then taking a limit.
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For any n ∈ N, by the optional stopping theorem we do have E [XTi∧n −XSi∧n] ≤ 0. Below
writem = Un[0, b] = max i : Ti ≤ n for the number of upcrossings completed before time n. For
i ≤ m we have

XTi∧n −XSi∧n = XTi −XSi ≥ b.

For i > m+ 1 we have Si > Tm+1 > n so
XTi∧n −XSi∧n = Xn −Xn = 0.

Similarly, if i = m + 1 and Si ≥ n then XTi∧n −XSi∧n = 0. Finally, if i = m + 1 and Si ≤ n
then since XSi ≤ 0 we have (draw a picture!)

XTi∧n −XSi∧n = Xn −XSi ≥ −X−
n . (13.1)

Combining the above bounds we obtain that∑
i≥0

(XTi∧n −XSi∧n) ≥ bUn[0, b]−X−
n ;

taking expectations, the optimal stopping theorem then gives that bE [Un[0, b]] ≤ E [X−
n ] ≤

supk≥0E
[
X−

k

]
. The result now follows by the monotone convergence theorem. □

Note that at (13.1) there was some flexibility how to boundXTi∧n −XSi∧n from below. A natural
approach would have been to simply throw away the term −XSi and use Xn as a lower bound.
You can check that this leads to the bound

E [U [a, b]] ≤ 1

b− a
sup
k≥0

E [a−Xk] .

Here is an easy corollary of Doob’s upcrossing inequality.

Corollary 13.6. Let (Ω,F , (Fn)n≥0,P) be a filtered probability space, and let X = (Xn, n ≥ 0) be an
Fn-martingale with supk≥0E|Xk| <∞. Then E [U [a, b]] <∞ for all a < b ∈ R.

Proof. By the upcrossing inequality we have
(b− a)E [U [a, b]] ≤ sup

k≥0
(EX−

k + a) ≤ sup
k≥0

(E|Xk|+ a) = a+ sup
k≥0

E|Xk| <∞. □

This allows us to quickly prove our first martingale convergence theorem.

Theorem 13.7 (L1 martingale convergence theorem). Let (Ω,F , (Fn)n≥0,P) be a filtered
probability space, and letX = (Xn, n ≥ 0) be anFn-martingale with supk≥0E|Xk| <∞. Then
there exists aF∞/B(R)-measurable random variableX∞ withE|X∞| ≤ supk≥0E|Xk| such that
Xn

a.s.→ X∞ as n→ ∞.
The next exercise contains a straightforward analytic fact we will use in the course of the proof.

Exercise 13.4. A sequence (xn, n ≥ 0) of real numbers converges (possibly to ±∞) if and only if for all
a < b ∈ Q, the number of upcrossings of [a, b] by (xn, n ≥ 0) is finite.

Proof of Theorem 13.7. For a < b ∈ Q let Ea,b be the event that U [a, b] < ∞. By Corollary 13.6
and countable subadditivity we have

P

 ⋂
a<b∈Q

Ea,b

 = 1 ,

so by Exercise 13.4 (a), the sequence of random variables (Xn, n ≥ 0) converges almost surely.
Write X = lim infn→∞Xn; then Xn

a.s.→ X . Moreover, since each Xn is F∞/B(R)-measurable,
it follows from Exercise 5.2 (b) that X is F∞/B(R∗)-measurable.

Since Xn
a.s.→ X , also |Xn|

a.s.→ |X|, so by Fatou’s lemma,
E|X| ≤ lim inf

n→∞
E|Xn| ≤ sup

k≥0
E|Xk| <∞ ,
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so |X| is a.s. finite. Taking X∞ = X1[|X|<∞], we then have that Xn
a.s.→ X∞ as well, and X∞ is

F∞/B(R)-measurable. □
Here is a quite important special case.

Corollary 13.8 (Non-negative martingale convergence theorem). Let (Ω,F , (Fn)n≥0,P) be a fil-
tered probability space, and let X = (Xn, n ≥ 0) be a non-negative Fn-martingale. Then there exists a non-
negative F∞/B(R)-measurable random variableX∞ withEX∞ ≤ EX0 such thatXn

a.s.→ X∞ as n→ ∞.
Proof. Since Xn ≥ 0 almost surely for all n, necessarily the limit in the martingale convergence
theorem is almost surely non-negative. For the expectation bound, simply note that since all the
random variables are non-negative, we have supn≥0E|Xn| = supn≥0EXn = EX0, where we
have used the martingale property for the last equality. □
Examples.
1. (Branching processes.) Will be developed at some length, below.
2. (Simple random walk stopped at zero.) Let (Sn, n ≥ 0) be a symmetric simple random
walk started from S0 = 1. Let N = min{n : Sn ≤ 0} and letMn = SN∧n. Then (Mn, n ≥ 0) is
a non-negative martingale so has an almost sure limitM∞ with EM∞ ≤ 1.

An integer-valued sequence which converges to a finite value is eventually constant, so it must
be thatMn = M∞ for all sufficiently large n. This implies thatM∞

a.s.
= 0, since ifMn 6= 0 then

|Mn+1 −Mn| = 1. SoMn
a.s.→ 0; however, EMn = EM0 = 1 for all n.

3. (Expected boundary value of a Markov chain.) Fix a finite or countable set V . A Markov
chain with state space V is a sequence of V -valued random variables (Xn, n ≥ 0) with the property
that for all n ≥ 0 and any sequence (v0, . . . , vn, vn+1) of elements of V ,

P {Xn+1 = vn+1 | Xi = vi, i ≤ n} = P {Xn+1 = vn+1 | Xn = vn } .
In other words, at each time n we can specify a V -by-V matrix of time-n transition probabilities
(Pn(u, v))u,v∈V , and whatever the values (v0, . . . , vn+1) above we will have

P {Xn+1 = vn+1 | Xi = vi, i ≤ n} = Pn(vn, vn+1).

The matrices Pn must have all row-sums equal to one for this to make sense:
∑

w∈V Pn(v, w) = 1.
By far the most commonly studied Markov chains are time-homogeneous: there is a single transition
probability matrix P such that Pn = P for all n ≥ 0.

Now fix a boundary S ⊂ V , and boundary values b : S → R. Let X = (Xn, n ≥ 0) be a
time-homogeneous Markov chain with transition matrix P , and let τ = inf{n ≥ 0 : Xn ∈ S}.
If we think of b(v) as a reward (or penalty) associated with the state v ∈ S, then a natural way to
extend b to all of V is

b(v) := E
{
b(Xτ )1[τ<∞]

∣∣ X0 = v
}
;

the is the expected reward starting from state v. (As usual, b(Xτ )1[τ<∞] is to be interpreted as taking
the value 0 if τ = ∞.) Note that

b(v) =
∑
w∈V

E
{
b(Xτ )1[τ<∞]

∣∣ X0 = v,X1 = w
}
P {X1 = w | X0 = v}

=
∑
w∈V

E
{
b(Xτ )1[τ<∞]

∣∣ X0 = w
}
P (v, w)

=
∑
w∈V

P (v, w)b(w) ;

the expected reward starting from v is a weighted average of the expected rewards of other sites,
weighted according to the likelihood of moving to those sites.

SetMn = b(Xn∧τ ). This is adapted to the filtration (Fn)n≥0 generated by X. Moreover,

E {Mn+1 | Fn} =

{
b(Xn∧τ ) if τ ≤ n

E {b(Xn+1) | Fn} if T > n .
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But
E {b(Xn+1) | Xn = v} =

∑
w∈V

P (v, w)b(w) = b(v),

so on the event τ > n we have E {b(Xn+1) | Fn} = b(Xn) = b(Xn∧τ ) = b(Mn). When τ ≤ n
we have b(Xn∧τ ) = b(Mn), so the above identities show that (Mn, n ≥ 0) is an Fn-martingale.
4. Product of IID.Let (Xn, n ≥ 1) be IID non-negativemean-one random variables inL1(Ω,F ,P).
SetM0 = 1 and for n ≥ 1 letMn =

∏n
i=1Xi. Then (Mn, n ≥ 1) is a martingale with respect to

the filtration generated by (Xn, n ≥ 1), and E|Mn| = E
∏n

i=1Xi = 1 for all n ≥ 1, soMn has
an almost sure limitM∞ with EM∞ ≤ 1, by the martingale convergence theorem.

Let Yn = logXn. If Yn ∈ L1(Ω,F ,P) then it follows by the law of large numbers that
n−1 logMn = n−1

∑n
i=1 Yi → EY1. Jensen’s inequality tells us that EY1 ≤ logEX1 = 0,

and the inequality is strict unless X1 is a.s. constant. Provided that X1 are not a.s. constant, it
follows that logMn → −∞, soM∞

a.s.
= 0.

Exercise 13.5. Let (Xn, n ≥ 1) be IID non-negative mean-one random variables in L1(Ω,F ,P). Suppose
that logX1 is not in L1(Ω,F ,P). Show that n−1 log

∏n
i=1Xi → −∞ almost surely.

Exercise 13.6. Let (Xn, n ≥ 0) be a time-homogeneous Markov chain with finite state space V and transition
probability matrix P = (P (u, v))u,v∈V . Fix a boundary S ⊂ V and boundary values b : S → (0,∞),
and extend b to V as in the above example. Say that P is irreducible if for any A ⊂ V there exist u ∈ A and
v ∈ V \A such that P (u, v) > 0.

(a) Suppose P is irreducible. Prove that b(u) > 0 for all u ∈ V .
(b) Write T = {v ∈ V : b(v) = max(b(w) : w ∈ V )} for the sites with maximum expected reward.

Prove that T ∩ S is non-empty.
(c) Suppose that for any A ⊂ V \ S there exist u ∈ A and v ∈ (V \ S) \ A such that P (u, v) > 0.

Prove that under this condition, either bV \S is a constant function or else T ⊂ S. This is a discrete version
of the maximum principle for harmonic functions.

Define a matrix Q = Q(P, b) as follows: for u, v ∈ V let

Q(u, v) =



1 if u = v and b(u) = 0

0 if u 6= v and b(u) = 0

1 if u = v and u ∈ S

0 if u 6= v and u ∈ S
P (u,v)b(v)

b(u) otherwise .

(d) Show that Q = Q(P, b) is a transition probability matrix.
(e) More to come. The idea is to iterate this and see what happens (extend b to V using Q instead of P , then

repeat).

Uniform integrability. We’ve now seen a couple of examples of martingales which converge
almost surely but which do not converge in expectation. The missing ingredient for convergence
in expectation is uniform integrability. Let (Ω,F ,P) be a probability space and let X = (Xi, i ∈ I)
be (F/B(R))-measurable random variables. We say the collection F is uniformly integrable if

lim
M→∞

sup
i∈I

E
[
|Xi|1[|Xi|>M ]

]
= 0 .

Exercise 13.7.
(a) Prove that if X ∈ L1(Ω,F ,P) then limM→∞E

[
|X|1[|X|>M ]

]
= 0.

(b) Prove that ifX ∈ L1(Ω,F ,P) then for any ϵ > 0 there is δ = δ(ϵ,X) > 0 such that for all B ∈ F with
P(B) < δ,

E
[
X1[B]

]
:=

∫
B
XdP < ϵ.
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(c) Prove that X = (Xi, i ∈ I) is uniformly integrable if and only if (i) supi∈I E|Xi| < ∞ and (ii) for all
ϵ > 0 there is δ = δ(ϵ) > 0 such that for all B ∈ F with P(B) < δ,

E
[
X1[B]

]
< ϵ.

(d) Show by example that neither (i) nor (ii) in part (c) implies the other.

Proposition 13.9. Let (Ω,F ,P) be a probability space and let (Xn, n ≥ 1) be uniformly integrable random
variables over (Ω,F ,P). If Xn

d→ X∞ then X∞ ∈ L1(Ω,F ,P) and EXn → EX∞.

In the proof we’ll use the notation introduced in the proof of Theorem 10.6: for a random
variable Y and for real C > 0 we write Y ≤C := Y 1[|Y |≤C], and likewise define Y <C , Y ≥C and
Y >C .

Proof. We first suppose that in fact Xn
a.s.→ X ; we’ll explain how to remove this assumption at the

end.
LetM be large enough that supn≥1E

[
|Xn|1[|Xn|>M ]

]
< 1. Then

E|X∞| ≤ lim inf
n≥1

E|Xn| ≤ sup
n≥1

E|Xn| ≤ sup
n≥1

(E
[
|Xn|1[|Xn|≤M ]

]
+ 1) ≤M + 1 ,

so X∞ ∈ L1(Ω,F ,P).
Next, for any C > 0 with P {|X∞| = C} = 0, we have X≤C

n
a.s.→ X≤C , so by the bounded

convergence theorem E
[
|X≤C

n −X≤C |
]
→ 0 as n→ ∞. For any such C, writing

|Xn −X∞| = |X≤C
n −X≤C

∞ +X>C
n −X>C

∞ | ≤ |X≤C
n −X≤C

∞ |+ |X>C
n |+ |X>C

∞ |,

we obtain that
lim sup
n→∞

E [|Xn −X∞|] ≤ lim sup
n→∞

E
[
|X>C

n |+ |X>C
∞ |

]
.

For any ϵ > 0 we may find C with P {|X∞| = C} = 0 large enough that sup1≤n≤∞E|X>C
n | <

ϵ/2, so that the preceding equation is less than ϵ. It follows that E [|Xn −X∞|] → 0 as n → ∞,
so EXn → EX∞.

This handles the case that Xn
a.s.→ X∞. In general, provided that Xn

d→ X∞ then by the
Skorohod representation theorem, Theorem 5.10, there exists a coupling (Yn, 1 ≤ n ≤ ∞)

of (Xn, 1 ≤ n ≤ ∞) so that Yn
a.s.→ Y∞. By the result already proved we then have that

limn→∞EXn = limn→∞EYn = EY∞ = EX∞. □

Corollary 13.10 (UI martingale convergence theorem). Let (Ω,F , (Fn)n≥0,P) be a filtered prob-
ability space, and let X = (Xn, n ≥ 0) be a uniformly integrable Fn-martingale. Then there exists X∞ ∈
L1(Ω,F∞,P) with EX∞ = EX0 such that Xn

L1−→ X∞ as n→ ∞.

Proof. By the L1 martingale convergence theorem, there exists X∞ ∈ L1(Ω,F∞,P) such that
Xn

a.s.→ X∞. We then also have |Xn|
a.s.→ |X∞| and the family (|Xn|, 1 ≤ n ≤ ∞) is also uniformly

integrable, so by the proposition, E|Xn| → E|X∞|. It follows by Exercise 12.8 that Xn
L1−→ X∞,

which also implies that

|EX0 −EX∞| = lim
n→∞

|EXn −EX∞| ≤ lim sup
n→∞

E|Xn −X∞| = 0.

□

Corollary 13.11. Let (Ω,F , (Fn)n≥0,P) be a filtered probability space, let X = (Xn, n ≥ 0) be a
uniformly integrable Fn-martingale, and let X∞ be the a.s. and L1 limit of X. Then E {X∞ | Fn}

a.s.
= Xn

for all 0 ≤ n <∞. Moreover, for any Y ∈ L1(Ω,F∞,P), E {Y | Fn} → Y almost surely and in L1.
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Proof. For any 0 ≤ n ≤ m we have Xn
a.s.
= E {Xm | Fn}, so by linearity of expectation and

Jensen’s inequality (both conditional),

‖Xn −E {X∞ | Fn} ‖1 = ‖E {Xm | Fn} −E {X∞ | Fn} ‖1
= ‖E {Xm −X∞ | Fn} ‖1
= E|E {Xm −X∞ | Fn} |1
a.s.
≤ E [E {|Xm −X∞| | Fn}]
= E|Xm −X∞| .

Takingm→ ∞, the right-hand side tends to zero, fromwhich it follows thatXn
a.s.
= E {X∞ | Fn}.

Next suppose that Y ∈ L1(Ω,F∞,P), and write Yn = E {Y | Fn} for n ≥ 0. Then (Yn, n ≥
0) is a uniformly integrable martingale so there is Y∞ ∈ L1(Ω,F∞,P) such that Yn → Y∞ almost
surely and in L1. Moreover, by the first assertion of the corollary we know that E {Y∞ | Fn}

a.s.
=

Yn, so E {Y∞ | Fn}
a.s.
= E {Y | Fn}, for all n ≥ 0.

Now write P =
⋃

n≥0Fn; note that P is a π-system generating F∞. Fix A ∈ P and let n ∈ N
be large enough thatA ∈ Fn. Using the definition of conditional expectation and the fact that 1[A]

is Fn/B(R)-measurable, we then have

E
[
Y∞1[A]

]
= E

[
E
{
Y∞1[A]

∣∣ Fn

}]
= E

[
E {Y∞ | Fn}1[A]

]
= E

[
E {Y | Fn}1[A]

]
= E

[
E
{
Y 1[A]

∣∣ Fn

}]
= E

[
Y 1[A]

]
Thus E

[
Y∞1[A]

]
= E

[
Y 1[A]

]
for all A ∈ P . Exercise 6.5 now yields that Y∞

a.s.
= Y . □

This corollary is important. Proposition 12.4 already told us that for any random variable X
and filtration (Fn, n ≥ 0), the martingale (E {X | Fn} , n ≥ 0) is uniformly integrable. Corol-
lary 13.11 tells us that every uniformly integrable martingale has this form. In other words, we
have characterized the UI martingales: they are precisely those that may be obtained from a single
L1 random variable by taking conditional expectations along a filtration.

Uniform integrability gives us precisely the control we need to extend the optional stopping
theorem to unbounded stopping times (i.e. stopping times which may take arbitrarily large values).
This is the content of the optional sampling theorem.

Theorem 13.12 (Optional sampling theorem). Let X = (Xn, n ≥ 0) be a uniformly integrable mar-
tingale relative to a filtration (Fn, n ≥ 0). Then for any almost surely finite Fn-stopping times 0 ≤ S ≤ T , it
holds that E {XT | FS}

a.s.
= XS , and E [XT ] = E [X0].

Proof. The idea of the proof is to localize and then use Fatou’s lemma; the uniform integrability is
simply what we need for Fatou’s lemma to be effective.

So fix stopping times S ≤ T as in the theorem statement. For any n ≥ 0, by Theorem 13.4 (b)
applied to X and to −X (which are both supermartingales), we have that

E {XT∧n | FS}
a.s.
= X(T∧n)∧S .

Since T is almost surely finite, X(T∧n)∧S
a.s.→ XT∧S , and Fatou’s lemma then gives that

E|XT∧S −E {XT | FS} | = E
[
lim inf
n→∞

|X(T∧n)∧S −E {XT | FS} |
]

≤ lim inf
n→∞

E
[
|X(T∧n)∧S −E {XT | FS} |

]
= lim inf

n→∞
E [|E {XT∧n | FS} −E {XT | FS} |] .
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To prove the first assertion of the theorem, it thus suffices to establish that E {XT∧n | FS}
L1−→

E {XT | FS}, and we now turn to this.
By the UI martingale convergence theorem there exists X∞ ∈ L1(Ω,F∞,P) such that Xn →

X∞ almost surely and in L1, and E {X∞ | Fn}
a.s.
= Xn for all n ≥ 0.

Next, note that that P {XT∧n = XT } ≥ P {T ∧ n = T} → 1 as n → ∞, so XT∧n
a.s.→ XT as

n→ ∞. Moreover, since X is a martingale, by Theorem 13.4 (b) we have that

XT∧n
a.s.
= E {Xn | FT∧n}

a.s.
= E {E {X∞ | Fn} | FT∧n}

a.s.
= E {X∞ | FT∧n} ,

the last equality holding by the tower law since FT∧n ⊂ FT . This implies that (XT∧n, n ≥ 0) is a
uniformly integrable martingale, so XT∧n

L1−→ XT as n→ ∞. It follows that

E [|E {XT∧n | FS} −E {XT | FS} |] ≤ E|XT∧n −XT | → 0 ,

so E {XT∧n | FS}
L1−→ E {XT | FS} as required.

Finally, since T ∧ n is a bounded stopping time, by the optional stopping theorem we have
EXT∧n = EX0. Taking n→ ∞ and using that XT∧n

L1−→ XT gives that EXT = EX0. □

13.2. Maximal inequalities and the Lp martingale convergence theorem. Given a se-
quence X = (Xn, n ≥ 0) of random variables defined on a common probability space, write
X∗ = sup(|Xn|, n ≥ 0), and for n ≥ 0 let X∗

n = sup(|Xk|, 0 ≤ k ≤ n). Doob’s maximal in-
equalities provide a way to control the tail behaviour ofX∗ andX∗

n for martingales. The intuition
is this: if X is a martingale then (|Xn|, n ≥ 0) is a submartingale. So if |Xk| is large for some k,
then by the submartingale property |Xn| should will also be large in expectation for n ≥ k; so the
conditional expectation of |Xn|, given that X∗

n is large, should also be large.

Theorem 13.13 (Doob’s maximal inequality). Let X = (Xn, n ≥ 0) be a martingale or a non-negative
submartingale defined on a probability space (Ω,F ,P). Then for all λ > 0,

λ ·P {X∗ ≥ λ} ≤ sup
n≥0

E|Xn| ,

and for all n ≥ 0,
λ ·P {X∗

n ≥ λ} ≤ sup
0≤k≤n

E|Xk| .

Proof. First note thatX∗
n ↑ X∗ almost surely, so by themonotone convergence theoremλP {X∗

n ≥ λ} →
λP {X∗ ≥ λ}. Moreover, sup0≤k≤nE|Xk| → supn≥0E|Xn|. Together these two convergence
facts yield that the first inequality is implied by the second, so it suffices to prove the second bound.

Next, note that if X is a martingale then |X| = (|Xn|, n ≥ 0) is a non-negative submartingale,
by the conditional version of Jensen’s inequality. Replacing X by |X| doesn’t change the value of
X∗

n, so we may assume that X is itself a non-negative submartingale (this is just so we don’t have to
carry absolute value signs around).

Now fix n ≥ 0, and let T = n ∧ inf(m ≥ 0 : Xm ≥ λ). We can bound EXT from below
as follows. Write XT = XT (1[X∗

n<λ] + 1[X∗
n≥λ]). If X∗

n < λ then T = n so XT1[X∗
n<λ] =

Xn1[X∗
n<λ]. If X∗

n ≥ λ then inf(m ≥ 0 : Xm ≥ λ) ≤ n, so XT1[X∗
n≥λ] ≥ λ1[X∗

n≥λ]. It follows
that

EXT = E
[
XT (1[X∗

n<λ] + 1[X∗
n≥λ])

]
≥ E

[
Xn1[X∗

n<λ]

]
+ λP {X∗

n ≥ λ} .

On the other hand, since T ≤ n, by the optional stopping theorem EXT ≤ EXn; combining this
with the previous inequality and rearranging gives

λP {X∗
n ≥ λ} ≤ EXn −E

[
Xn1[X∗

n<λ]

]
= E

[
Xn1[X∗

n≥λ]

]
≤ EXn .

Since X is a submartingale, EXn = sup0≤k≤nEXk, so the result follows. □
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Corollary 13.14 (Doob’s Lp inequality). Under the hypotheses of Theorem 13.13, for all p > 1

‖X∗‖p ≤
p

p− 1
sup
n≥0

‖Xn‖p,

and for all n ∈ N,
‖X∗

n‖p ≤
p

p− 1
‖Xn‖p =

p

p− 1
sup
k≤n

‖Xk‖p .

Proof. It again suffices to consider the case that X is a non-negative submartingale. The first bound
again follows from the second by the monotone convergence theorem. Also, equality in the second
display clearly holds, and we focus our attention on proving the first.

Fixn ∈ N. For anym ∈ N andx ≥ 0we have (x∧m)p =
∫ x∧m
0 pλp−1dλ =

∫m
0 pλp−11[x≥λ]dλ,

so by Fubini’s theorem,

‖X∗
n ∧m‖pp = E [(X∗

n ∧m)p]

= E

[∫ m

0
pλp−11[X∗

n≥λ]dλ

]
=

∫ m

0
pλp−1P {X∗

n ≥ λ} dλ .

By Doob’s maximal inequality the integrand is at most pλp−2E
[
Xn1[X∗

n≥λ]

]
, so by monotonicity

and another application of Fubini’s theorem we have

‖X∗
n ∧m‖pp ≤ E

[∫ m

0
pλp−2Xn1[X∗

n≥λ]dλ

]
= E

[
p

p− 1
Xn(X

∗
n ∧m)p−1

]
.

Finally, by Hölder’s inequality,

E
[
Xn(X

∗
n ∧m)p−1

]
≤ ‖Xn‖p‖(X∗

n ∧m)p−1‖p/(p−1)

= ‖Xn‖p
(
E
[
((X∗

n ∧m)p−1)p/p−1
] )(p−1)/p

= ‖Xn‖p‖(X∗
n ∧m)‖p−1

p .

Combining the above bounds gives that ‖X∗
n ∧ m‖pp ≤ p

p−1‖Xn‖p. Since X∗
n is non-negative,

X∗
n ∧ m ↑ X∗

n as m → ∞, so it follows by the monotone convergence theorem that ‖X∗
n‖

p
p ≤

p
p−1‖Xn‖p. □

The preceding inequality allows us to show that Lp-bounded martingales in fact converge in Lp.

Theorem 13.15 (Lp martingale convergence theorem). Fix p > 1. Let (Ω,F , (Fn)n≥0,P) be a
filtered probability space and let letX = (Xn, n ≥ 0) be anFn-martingale such that supn≥0E [|Xn|p] <∞.

Then X is a uniformly integrable martingale, its a.s. limitX∞ is in Lp(Ω,F∞,P), and Xn
Lp−→ X∞.

Proof. First, for all n ∈ N and all λ > 0,

E
[
|Xn|1[|Xn|≥λ]

]
≤ 1

λp−1
E
[
|Xn|p1[|Xn|≥λ]

]
≤ 1

λp−1
sup
n≥1

E [|Xn|p] <∞,

so for any ϵ > 0, if λp−1 ≥ supn≥1E [|Xn|p] /ϵ then E
[
|Xn|1[|Xn|≥λ]

]
≤ ϵ. It follows that X

is uniformly integrable, so there is X∞ ∈ L1(Ω,F∞,P) such that Xn → X∞ almost surely and
in L1.

To obtain the Lp convergence claimed in the theorem, write X∗ = supn≥0 |Xn| as before. For
all n ≥ 0,

|Xn −X∞|p ≤ (|Xn|+ |X∞|)p ≤ (2X∗)p .
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Doob’s Lp inequality gives

E [(2X∗)p] = 2p‖X∗‖pp ≤ 2p
(

p

p− 1
sup
n≥0

‖Xn‖p
)p

<∞,

so by the dominated convergence theorem it follows that

lim
n→∞

E [|Xn −X∞|p] = E
[
lim
n→∞

|Xn −X∞|p
]
= 0 . □

Exercise 13.8 (UI, conditional expectations and Lp convergence). Fix a probability space (Ω,F ,P)
and a real number p ≥ 1. Let S be the set of all sub-σ-fields of F .

(a) Prove that for any random variable X ∈ Lp(Ω,F ,P), the collection {E [X | G]p : G ∈ S} is a UI
family.

(b) Prove that for any sequence (Xn, n ≥ 1) of non-negative random variables such that (Xp
n, n ≥ 0) is

uniformly integrable, if Xn → X in probability for some random variableX , then also Xn
LpX−→.

(c) Under the hypotheses of the Lp martingale convergence theorem, prove that for any random variable Y ∈
Lp(Ω,F∞,P) it holds that E {Y | Fn}

Lp−→ Y as n→ ∞.

13.3. Filtrations and changes of measure.

Recall that if µ� ν are two σ-finite measures on (Ω,F), the Radon-Nikodým derivative X =
dµ/dν : Ω → [0,∞) is the ν-a.e. uniqueF/B(R)-measurable functionX such that for allE ∈ F ,

µ(E) =

∫
E
dµ =

∫
E
Xdν. (13.2)

Some useful notation. Write µ = Xν if X satisfies (13.2). Of course, this means X is a version
of dµ/dν; but proving the existence and uniqueness of that derivative (via martingales) is the point
of this section.

Theorem 13.16 (Radon-Nikodým theorem). Let (Ω,F ,P) be a probability space, Suppose that Q is a
finite measure on (Ω,F) such that Q � P, in that for all F ∈ F , if P {F} = 0 then Q(F ) = 0. Then
there exists a P-a.s. unique, nonnegative random variableX ∈ L1(Ω,F ,P) such thatQ = XP.

Note. We often use probabilistic “expectation” notation, writing e.g. EQ {X} :=
∫
XdQ, even if

Q is not a probability measure.
We only prove Theorem 13.16 in the case that F is separable, in that there exists a countable

collection {Fn, n ≥ 0} ⊂ F such that F = σ({Fn, n ≥ 0}).
Write Fn = σ({F1, . . . , Fn}) for n ≥ 0, and Pn = P|Fn , Qn = Q|Fn . Say a set E is an atom

of Fn if E = G1 ∩ G2 ∩ . . . ∩ Gn where each Gi is either Fi or F c
i . There are at most 2n atoms

(the representations need not be unique). List the atoms as

An,1, . . . , An,r(n) ;

then each set of Fn is a union of some collection of atoms.
Define Xn : Ω → R by setting, for ω ∈ An,k

Xn(ω) =

{
0 if P {An,k = 0}
Q(An,k)
P(An,k)

if P {An,k > 0} .

Lemma 13.17. We have Qn = XnPn.

Proof. Clearly Xn ∈ L1(Ω,F ,P), since Xn only takes finitely many values. Now fix any F ∈
Fn; there is a unique representation of F as F =

⋃k
j=1An,i(j), for some k ≤ r(n) and i(1) <
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i(2) . . . < i(k) ≤ r(n). We then have

EPn

{
Xn1[F ]

}
= EP

{
Xn1[F ]

}
=

k∑
j=1

EP

{
Xn1[An,k]

}
=

∑
j≤k:P{An,k}>0

Q(An,k)

P(An,k)
EP

{
1[An,k]

}
=

∑
j≤k:P{An,k}>0

Q(An,k)

= Q(F )

= Qn(F ).

Since F ∈ Fn was arbitrary, the result follows. □

It is straightforward that (Xn, n ≥ 0) is an Fn-martingale for P; see Exercise 13.9, below.
Moreover, it is non-negative, so defining X∞ = lim supn→∞Xn, it follows that P-almost surely
Xn → X∞.

Lemma 13.18. For all ϵ > 0 there exists δ > 0 such that P {F} < δ ⇒ Q(F ) < ϵ.

Proof. Otherwise, there exists ϵ > 0 and a sequence of sets Fn with P {Fn} ≤ 2−n such that
Q(Fn) ≥ ϵ for all n. Let F = lim supFn =

⋂
n≥1

⋃
m≥n Fm. Then by (reverse) Fatou’s lemma,

Q(F ) ≥ lim supnQ(Fn) ≥ ϵ. But
∑

n≥0P {Fn} < ∞ so by the first Borel-Cantelli lemma,
P {F} = 0, contradicting the assumption thatQ � P. □

Proof of Theorem 13.16, separable case. We first claim that (Xn, n ≥ 0) is a uniformly integrable mar-
tingale for P. To see this, fix any ϵ > 0 and let δ > 0 be as in Lemma 13.18. Then for
K > Q(Ω)/δ, for all n ≥ 0, since Qn = XnPn we have

P {Xn > K} ≤ EP {Xn}
K

=
EQ {1}
K

=
Q(Ω)

K
< δ.

Using again that Qn = XnPn gives

EP

{
Xn1[Xn>K]

}
= EQ

{
1[Xn>K]

}
= QXn > K < ϵ,

the last inequality by Lemma 13.18. This proves that (Xn, n ≥ 0) is UI; the martingale conver-
gence theorem then gives thatXn → X in L1(Ω,F ,P).

It follows that for all F ∈
⋃

n≥0Fn,

EP

{
X1[F ]

}
= lim

n→∞
EP

{
Xn1[F ]

}
= Q(F )

In other words, the measures XP and Q agree on
⋃

n≥0Fn. Since
⋃

n≥0Fn is a π-system gener-
ating F , it follows that XP = Q as claimed. □

The next theorem describes how the dichotomy between absolute continuity and mutual singu-
larity of measures manifests when observed along a filtration.

Theorem 13.19. Fix an increasing sequence of sub-σ-field (Fn)n≥1 with σ(
⋃

nFn) = F . Write Pn :=
P|Fn and Qn := Q|Fn . Suppose that Qn � Pn for all n, and write Xn = dQn/dPn : Ω → [0,∞)
for the corresponding Radon-Nikodym derivatives. Then settingX = lim supn→∞Xn, it holds that

Q = XP+Q1[X=∞]. (13.3)

Exercise 13.9. In the notation of Theorem 13.19, show that (Xn, n ≥ 1) is an Fn-martingale for P.
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Remark. Since theXn are non-negative, Exercise 13.9 implies thatXn convergesP-almost surely,
so we must have P {limn→∞Xn = X} = 1. But it is standard that if Zn

p→ Z∞ and E|Zn| <∞
for all n, thenE|Zn| → E|Z| if and only if (Zn, n ≥ 1) is uniformly integrable. (See Exercise 12.8.)
This means that there is another equivalent property which may be added to (1) in Theorem 13.19:
that (Xn, n ≥ 1) is P-uniformly integrable.

Lemma 13.20. In the setting of Theorem 13.19, if Q � P then Q = XP.

Recall thatQ = XP is shorthand for the statement that for all E ∈ F ,

Q(E) =

∫
E
dQ =

∫
E
XdP = EP

{
X1[E]

}
.

Proof. First suppose Q is absolutely continuous with respect to P. Then the Radon-Nikodým de-
rivative X̃ = dQ/dP exists and satisfies Q(X̃ = ∞) = 0, so we just want to show that for all
E ∈ F ,

Q(E) = EP

{
X1[E]

}
.

For all E ∈ F , by the definition of the Radon-Nikodým derivative,

EQ

{
1[E]

}
=

∫
E
1dQ =

∫
E
X̃dP = EP

{
X̃1[E]

}
. (13.4)

For all E ∈ Fn, we also have

EP

{
Xn1[E]

}
=

∫
E
XndP

=

∫
E
XndPn (Homework)

=

∫
E
1dQn (Since Xn = dQn/dPn)

=

∫
E
1dQ

= EQ

{
1[E]

}
,

so Xn is a version of E
[
X̃ | Fn

]
. Since F∞ := σ(

⋃
n→∞Fn) = F , the non-negative martingale

convergence theorem then gives that P-almost surely

Xn → E
[
X̃ | F∞

]
= E

[
X̃ | F

]
= X̃.

But X = lim supn→∞Xn by definition, so P-almost surely X = X̃ . Thus EP

{
X̃1[E]

}
=

EP

{
X1[E]

}
, and the result follows from (13.4). □

Proof of Theorem 13.19. Let π be the average ofP andQ, so π(E) = (P(E)+Q(E))/2 forE ∈ F .
For n ≥ 1 let πn = π|Fn = (Pn + Qn)/2. Then both P and Q are absolutely continuous with
respect to π, and likewise Pn and Qn are absolutely continuous with respect to πn for all n ≥ 1.

WriteUn = dQn/dπn andVn = dPn/dπn and letU = lim supn→∞ Un andV = lim supn→∞ Vn.
SinceQ � π it follows by Lemma 13.20 (applied with π in place ofP) that π-almost surelyUn → U
and that Q = Uπ. Likewise, applying Lemma 13.20 with π in place of P and P in place of Q, it
follows that π-almost surely Vn → V and that P = V π.

Next, π-almost surely we have

Un + Vn =
dQn

dπn
+
dPn

dπn
= 2

dπn
dπn

= 2.

It follows that
π(U + V = 0) = π(lim sup

n
(Un + Vn) = 0) = 0,
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so π-almost surely, U/V is well-defined (and equal to∞ if U = ∞ and V = 0), and

U

V
=

limn→∞ Un

limn→∞ Vn

= lim
n→∞

Un

Vn
= lim

n→∞
Xn (chain rule)

= X.

Finally, we already know Q = Uπ and P = V π. We may also write U = XV + U1[V=0] =
XV + U1[X=∞], so

Q = Uπ = XV π + 1[X=∞]Uπ = XP+ 1[X=∞]Q ,

as claimed. □

Corollary 13.21. In the setting of Theorem 13.19, we have the following.
(1) Q � P ⇔ Q(X = ∞) = 0 ⇔ EPX = 1.
(2) Q ⊥ P ⇔ Q(X = ∞) = 1 ⇔ EPX = 0.

Proof. If Q � P then by Lemma 13.20 we have Q = XP so clearly Q(X = ∞) = 0. We now
repeatedly use (13.3). If Q(X = ∞) = 0 then by (13.3) we have

EP {X} = EQ {1} −EQ

{
1[X=∞]

}
= 1.

If EP {X} = 1 then again by (13.3),Q(X = ∞) = 0 soQ = XP and thusQ � P. This proves
the first line of equivalences of the theorem.

Note that by Exercise 13.9,Xn is anFn-martingale forP soEP {X} ≤ lim infn→∞EP {Xn} <
∞. It follows that P(X = ∞) = 0.

If Q ⊥ P then Q has no absolutely continuous part with respect to P. On the other hand,
XP � P, so by (13.3) we must have Q = 1[X=∞]Q; this in turn implies that Q(X = ∞) = 1.

If Q(X = ∞) = 1 then by (13.3), EP {X} =
∫
XdP = XP = 0. Finally, if XP = 0 then by

(13.3) we have Q(X = ∞) = 1. But PX = ∞ = 0, which implies Q ⊥ P. □

14. Branching process limits

14.1. Branching process recap. It’s useful to have a fixed way to label the nodes of our trees.
We do so using the Ulam-Harris tree U , which has nodes labelled by

⋃
n≥0Nn, where N0 := {∅}.

The node ∅ is the root. In general, a node at level n is labeled by a string v = v1v2 . . . vn; it has
parent par(v) = v1v2 . . . vn−1 and children (vi, i ≥ 1) = (v1 . . . vni, i ≥ 1). We think of the
children of v as being born one-at-a-time: first v1, then v2 and so on. If i < j we say vi is an older
sibling of vj.

We writeU =
⋃

n≥0Nn, identifyingU with the set of labels of its nodes. (This is a bit sloppy, since
the Ulam-Harris tree is not the only graph with these node labels, but in this context it shouldn’t
cause any confusion.)

A subtree of U is a set t ⊂ U with the following properties:
(a) ∅ ∈ t.
(b) If v ∈ t then par(v) ∈ t; the ancestors of v are all in t as well.
(c) If v ∈ t, v = wi then wj ∈ t for all j ≤ i; the older siblings of v are all in t as well.

Given a subtree t of U , for v ∈ t we write c(v; t) = max(i : vi ∈ t); this is the outdegree, or
number of children of v in t, and it may be infinite. We also write tn := t ∩Nn, and t≤n =

⋃n
m=0 tm

and the like.
A subtree t ⊂ U is finite if |t| < ∞. It is locally finite if tn := t ∩ Nn is finite for all n. Its height is

ht(t) := max(n : tn 6= ∅).
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From now on, the word “tree” means “subtree of U”, and we write T for the set of locally
finite trees. We wish to consider random trees, and for this we need to turn the set of trees into a
measurable space.

Definition 14.1. For a tree t and an integer n ≥ 0, let [t]≤n = {trees t′ : t′≤n = t≤n}.

It’s useful to also introduce the notation [ ]<n := [ ]≤n−1. The equivalence relation [ ]≤n parti-
tions the set of trees into countably many equivalence classes; we letFn = σ({[t]≤n : t ∈ T }), and
let F = σ(

⋃
n≥0Fn). Note that [ ]≤n+1 refines [ ]≤n, which implies that (Fn, n ≥ 0) is a filtration.

Note that since [ ]≤n is an equivalence relation, the sets [t]≤n are all atoms of Fn.)

Fix an offspring distribution µ; this is a probability distribution with µ(Z+) = 1. A random subtree
T of U is Galton-Watson(µ)-distributed (or Bµ-distributed for short) if for all n ≥ 1 and all locally
finite subtrees t of U ,

P {T≤n = t≤n} = Bµ([t]≤n) :=
∏

v∈t<n

µ({c(v; t)}) =
n−1∏
m=0

∏
v∈tm

µ({c(v; t)}).

One “concrete” way to build such a tree T is as follows. Let (Xv, v ∈ U) be independent with
law µ. Then let T be the subtree of U in which the root ∅ has X∅ children and more generally,
inductively, if v ∈ T then c(v, T ) := Xv.

Let T be Bµ-distributed. In what follows we’ll write µ(i) instead of the more cumbersome
µ({i}). Let α :=

∑
i≥1 iµ(i) = |µ|1 and σ2 :=

∑
i≥1 i(i − α)µ(i) = |µ|22 − |µ1|2 be the mean

and variance of the offspring distribution, respectively. The fundamental theorem of branching
processes states that P {|T | = ∞} > 0 if and only if either α > 1 or µ(1) = 1.

Those who took Math 587 in Fall 2018 saw (in particular on the final exam) the following. For
t ∈ T write Zn = Zn(t) = |tn|, setMn(t) := Zn(t)/α

n, and letM(t) = lim supn→∞Mn(t).
Then (Mn) is aP-martingale with respect to the filtration (F◦

n), whereF◦
n := σ(Zm, 0 ≤ m ≤ n),

soMn converges almost surely toM . Moreover, by Fatou’s lemma E [M ] ≤ 1.

Exercise 14.1. (Mn) is also a P-martingale with respect to (F ′
n), where F ′

n = σ(Xv, v ∈ U<n). Equiv-
alently, (Mn) is a Bµ-martingale with respect to (Fn), where Fn = σ({[t]<n : t ∈ T }.

Theorem 14.2 (Fundamental theorem of branching processes). LetB be a non-negative random variable
integer random variable with distribution µ, and let T be Bµ-distributed. Then P {|T | = ∞} > 0 if and only
if one of the following two conditions holds.

• P {B = 1} = 1
• E [B] > 1.

As a warm up, we prove the following lemma.

Lemma 14.3. Let B be µ-distributed. Then for all n, E [Zn] = [EB]n.

Proof. This is obviously true for n = 0. Supposing the equality holds for a given n, we write

E [Zn+1] =

∞∑
i=0

E [Zn+1 | B∅ = i]P {B∅ = i} .

Given thatB∅ = i, the children 1, . . . , i of ∅ are each the root of an independent copy of the whole
process, so

E [Zn+1 | B∅ = i] = iE [Zn] .

We thus have

E [Zn+1] =
∞∑
i=0

iE [Zn]P {B∅ = i} = E [Zn] ·E [B] = [E [B]]n+1,

the last step by induction. □
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Corollary 14.4. If E [B] < 1 then E|T | <∞, so P {|T | = ∞} = 0.
Proof. If E [B] < 1 then

E|T | =
∞∑
n=0

E [Zn] =

∞∑
n=0

(EB)n =
1

1−E [B]
<∞.

It follows by Markov’s inequality that P {|T | = ∞} = 0. □
Now let F (z) = E

[
zB
]
=
∑∞

k=0P {B = k} zk.
Proposition 14.5 (Fundamental theorem of branching processes). If P {B = 1} < 1 then

P {|T | <∞} = min
x≥0

{F (x) = x}.

Proof. Write p = P {|T | <∞}. We prove the proposition in two parts: first we show thatF (p) = p,
and second we show that p is the smallest non-negative solution of F (x) = x.

The proof of the first part is similar to that of the proof of the lemma. We begin by noting that
|T | <∞ ⇔ Zn = 0 for some n,

so

p = P

{ ∞⋃
n=0

Zn = 0

}
.

The events on the right are increasing (if Zn = 0 then Zn+1 = 0) so it follows that
p = lim

n→∞
P {Zn = 0} .

Now write F1(x) = F (x) and for n > 1 write Fn(x) = F (Fn−1(x)), so Fn(x) is the result of
applying F to x n times.

We claim that for all n ≥ 1, P {Zn = 0} = Fn(0). When n = 1, we have F1(0) = F (0) =
P {B = 0} = P {Z1 = 0}. For larger n, we apply the same inductive technique as in Lemma 1.

P {Zn = 0} =
∞∑
i=0

P {Zn = 0 | Z1 = i}P {Z1 = i}

=
∞∑
i=0

P {Zn−1 = 0}iP {B = i}

=
∞∑
i=0

Fn−1(0)
iP {B = i}

= F (Fn−1(0))

= Fn(0).
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We now have
p = lim

n→∞
Fn(0).

Since Fn(0) → p and F is continuous, we also have F (Fn(0)) → F (p). But F (Fn(0)) → p, so
we must have p = F (p).

For the second part, suppose q is any other non-negative solution ofF (x) = x. By differentiation
we see that F is non-decreasing and so since q ≥ 0 we must have q = F (q) ≥ F (0). Repeatedly
applying F we see that we must have q ≥ Fn(0) for all n, and so q ≥ limn→∞ Fn(0) = p. □
Proof of Fundamental Theorem. We already saw that if E [B] < 1 then extinction is certain, so we
assume that E [B] ≥ 1. Case (a) is also obvious so we assume that P {B = 1} < 1. Note that
F (0) = P {B = 0} ≥ 0 and that F ′′(x) > 0 for all x > 0. Also,

F ′(z) = (
∞∑
n=0

P {B = n} zn)′ =
∞∑
n=1

nP {B = n} zn−1,

so F ′(1) =
∑∞

n=1 nP {B = n} = E [B]. If E [B] > 1 then by continuity there is x < 1 such that
F (x) < x, so by the intermediate value theorem, there is 0 ≤ y < x with F (y) = y, and we must
have p < 1. On the other hand, if E [B] = 1 then sinceP {B = 1} < 1 there must be k > 1 such
that P {B = k} > 0. It follows that F ′′(x) > 0 for all x > 0, so we must have F (x) > x for all
0 ≤ x < 1, and so p = 1. □
Exercise 14.2. Let (Zn, n ≥ 0) be the generation sizes in a Galton-Watson process with offspring distributionµ.
LetB be µ-distributed and write α = EB and σ2 = Var (B). We suppose in this question that σ2 ∈ (0,∞)
and that α > 1. Also, writeMn = Zn/(EB)n and letM be the a.s. martingale limit ofMn.

(a) Prove that for every n ≥ 0,
E
{
Z2
n+1

∣∣ Fn

}
= (EB)2Z2

n + σ2Zn.

(b) Prove that for every n ≥ 0,

E
[
Z2
n

]
= α2n +

σ2(αn − α2n)

α(1− α)

(c) Prove thatMn →M in L2 and thatVar (M) = σ2

α(α−1) .

14.2. Branching processes with immigration. These are very natural extensions of branch-
ing processes where at each generation a random number of individuals “immigrate”, joining the
current population. The generation size process (Un)n≥0 of a branching process with offspring
distribution µ and immigration distribution ν may be constructed as follows. Let (Xn,k, n, k ≥ 1)
be IID with law µ, and independently let (Yn, n ≥ 0) be IID with law ν. Then set U0 = Y0 and,
for n ≥ 0 let Un+1 = Yn+1+Xn,1+ . . .+Xn,Un . Note that this construction makes perfect sense
with (Yn, n ≥ 0) replaced by a deterministic vector y = (yn, n ≥ 0) of non-negative integers; this
will be useful below.

The next theorem characterizes when immigration leads to super-exponential population growth.

Theorem 14.6 (Seneta, 1970). Let Y have law ν. If E [max(log Y, 0)] < ∞ then limn→∞ Un/α
n

exists and is almost surely finite. If E [max(log Y, 0)] = ∞ then limn→∞ Un/c
n is almost surely infinite for

all c > 0.

Lemma 14.7. Let (Rn, n ≥ 1) be IID and non-negative.
(a) If ER1 <∞ then almost surely lim supn→∞

Rn
n = 0 and

∑
n≥1 e

Rncn <∞ for all c ∈ (0, 1).
(b) IfER1 = ∞ then almost surely lim supn→∞

Rn
n = ∞ and

∑
n≥1 e

Rncn = ∞ for all c ∈ (0, 1).

Proof. Suppose ER1 <∞ and fix any ϵ > 0. Then∑
n>0

P {Rn ≥ ϵn} =
∑
n>0

P {R1 ≥ ϵn} ≤ 1

ϵ

∑
n≥0

P {R1 ≥ n} =
ER1

n
<∞,
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so by the first Borel-Cantelli lemma, lim supn→∞Rn/n ≤ ϵ almost surely, and since log(1 −
a) < −a for a ∈ (0, 1), letting N0 = sup(n : Rn ≥ ϵn), which is almost surely finite, for all
c ∈ (0, 1− 2ϵ) we have ∑

n≥1

eRncn <
∑
n≥1

eRn+n log(1−2ϵ)

≤
∑
n≥1

eRn−2ϵn

≤
∑
n≤N0

eRn−2ϵn +
∑
n>N0

e−ϵn

<∞ .

Since ϵ > 0 was arbitrary, the first result follows.
Next suppose ER1 = ∞ and fix any C > 1. Then∑

n>0

P {Rn ≥ Cn} =
∑
n>0

P {R1 ≥ Cn} ≥ 1

C

∑
n≥C

P {R1 ≥ n} ≥ ER1 − C

C
= ∞,

so by the second Borel-Cantelli lemma, almost surely Rn/n ≥ C infinitely often. It follows that
almost surely lim supn→∞Rn/n ≥ C, and for any c > 1/C,∑

n>0

eRncn ≥ sup
n>0

eRncn ≥ sup
n>0

(Cc)n = ∞.

Since C > 1 was arbitrary, the second result follows. □

Proof of Theorem 14.6. First suppose that E [max(log Y1, 0)] = ∞. Then for all c > 0,

lim sup
n

Un

cn
≥ lim sup

n
Ync

n = ∞,

the last inequality holding almost surely by Lemma 14.7.
Next suppose that E [max(log Y1, 0)] < ∞. Let Un,k be the number of generation-n descen-

dants of generation-k immigrants. Conditionally given Yk, Un,k is just distributed as the number
of individuals in generation n − k of a branching process started with Yk individuals. Moreover,
Un,k is independent of (Yj , j 6= k), so if G := σ(Yn, n ≥ 1) then

E {Un,k | G} = E {Un,k | Yk} = Ykα
n−k.

Since Un =
∑n

k=0 Un,k it follows that

E
{
α−nUn

∣∣ G} =
∑
k≤n

E
{
α−nUn,k

∣∣ G}
=
∑
k≤n

Yk
αk

. (14.1)

Lemma 14.7 gives that
∑

k≤n
Yk

αk →
∑

n≤0
Yn
αn < ∞ almost surely, so by the conditional Fatou

lemma, almost surely

E
{
lim inf
n→∞

α−nUn

∣∣∣ G} ≤ lim inf
n→∞

E
{
α−nUn

∣∣ G} =
∑
n≤0

Yn
αn

<∞.

Thus, P {lim infn→∞ α−nUn = ∞ | G } = 0 almost surely. But then

P
{
lim inf
n→∞

α−nUn = ∞
}
= E

[
P
{
lim inf
n→∞

α−nUn = ∞ | G
}]

= 0,

so almost surely
lim inf
n→∞

α−nUn <∞.
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It remains to show that α−nUn converges almost surely. For this we use the submartingale con-
vergence theorem, which states that a submartingale which is bounded in expectation converges
almost surely. We have

E {Un+1 | U1, . . . , Un,G} = αUn + Yn+1,

so (α−nUn, n ≥ 0) is a submartingale with respect to its natural filtration given G; the fact that it
is bounded in expectation (given G) follows from (14.1). □

There is a nice construction of branching processes with immigration within the Ulam-Harris
tree. A spinal tree is a pair (t, p), where t ∈ T and p = p0, p1, . . . is a finite or infinite path in t,
starting from the root. We write p≤n for the truncation of p at level n, so if p has at most n nodes
then p = p≤n, and otherwise p≤n = p0, p1 . . . pn.

Let X = (Xv, v ∈ U) be IID with distribution µ. Fix a vector y = (yn, n > 0) of non-negative
integers, and another vector i = (in, n > 0) of integers with 1 ≤ in ≤ yn + 1 for all n > 0. Let
Pn = Pn(i) := i1i2 . . . in, so Pn+1 = Pnin+1 for n ≥ 0, and let P = P0, P1, . . .. Then define a
random tree T = T (X, y, i) containing P (i), as follows.

(1) Let ∅ ∈ T and let p0 = ∅.
(2) For n ≥ 0, given T≤n:

• Let c(Pn;T ) = yn+1 + 1. (Note that in+1 ≤ c(Pn;T ) so Pn+1 ∈ Tn+1.)
• For v ∈ Tn with v 6= Pn, let c(v;T ) = Xv.

Exercise 14.3. The process (|Tn+1| − 1, n ≥ 0) is distributed as a branching process with immigration with
offspring distribution µ and immigration vector y.

We next introduce a sigma-field on spinal trees, much the same as we did for the set of trees T . The
set of spinal trees is

T ∗ = {(t, p) : t ∈ T , p a path in t starting at the root}.

For each n ≥ 0, for each pair (t, v) where t ∈ T and v ∈ tn, we define an equivalence class

[(t, v)]≤n = {(t′, p′) ∈ T ∗ : t′≤n = t≤n, p
′
n passes through v} .

Let F∗
n = σ(

⋃n
m=0{[(t, p)]≤m : (t, p) ∈ T ∗}), and let F∗ = σ(

⋃
n≥0F∗

n). The reason the
definition of F∗

n has a union over m ≤ n is that we allow for finite paths, which may end at some
levelm ≤ n. Again, (F∗

n, n ≥ 0) is a filtration, and it is easy to see that F∗
n refines Fn for each n.

14.3. TheKesten-Stigum theorem. Recall thatMn = Zn/α
n, and thatM = lim supn→∞Mn

is the a.s. martingale limit ofMn. The goal of this section is to prove theKesten-Stigum theorem, which
provides necessary and sufficient conditions forMn to converge toM in L1.

Theorem 14.8 (Kesten-Stigum Theorem). Fix an offspring distribution µ with α =
∑

i≥1 iµ(i) > 1,
Let T be Bµ-distributed, and letMn andM be defined as above. Then the following are equivalent.

(i) P {M = 0} = P {|T | <∞}
(ii) EM = 1
(ii)
∑

i≥1 µ(i) · i log i <∞.

Remarks.
• Note that if ω is such that |T (ω)| < ∞ thenMn(ω) = 0 for all n large, soM(ω) = 0. It
follows that P {M = 0} ≥ P {|T | <∞}.

• We have seen (thm/ex references) that EMn → EM if and only if (Mn) is uniformly
integrable (in which caseMn

L1−→M ), so a fourth equivalent condition which can be added
to the Kesten-Stigum theorem is that (Mn) is UI.
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To prove the Kesten-Stigum theorem we use a beautiful method called a “spinal change of mea-
sure”. Recall that the size-biasing µ̂ of µ is the probability distribution with µ̂(i) = iµ(i)/α. Note
that if B as law µ̂ then P {B ≥ 1} = 1.

Let ν be the probability measure on Z+ defined by setting ν(i) = µ̂(i − 1) for all i. Let X =
(Xv, v ∈ U) are independent with law µ, let Y = (Yn, n > 0) be independent with law ν, and
let U = (Un, n > 0) be independent Uniform[0, 1] random variables, with X,Y and U mutually
independent. For n > 0 let In = d(Yn + 1)Une, so that In is a uniformly random element of
{1, . . . , Yn + 1}. Then write BPI∗µ for the law of the pair (T, P ) = (T (X,Y, I), P (I)), and let
BPIµ be the law of the tree T = T (X,Y, I) obtained from (T, P ) by “ignoring the spine”.

Proposition 14.9. For any offspring distribution µ with µ(0) < 1, and any spinal tree (t, p), for all n ≥ 0,

BPI∗µ(t≤n, p≤n) =
1

αn
Bµ(t≤n).

Proof. Let (T, P ) be constructed as above, so that

BPI∗µ(t≤n, p≤n) = P {(T≤n, P≤n) = (t≤n, p≤n)} .
Then write

P {(T≤n, P≤n) = (t≤n, p≤n)} =
n−1∏
i=0

P {Ti+1 = ti+1, Pi+1 = pi+1 | (T≤i, P≤i) = (t≤i, p≤i)} .

Now, given that (t≤i, p≤i), in order to have Ti+1 = ti+1 and Pi+1 = pi+1, the following must
occur: pi must have the right number of children; the correct extension of p≤i must be chosen; and
all the other nodes in ti must also have the right number of children. The probability of all these
occurring is

P {Ti+1 = ti+1, Pi+1 = pi+1 | (T≤i, P≤i) = (t≤i, p≤i)}

= µ̂(c(pi; t)) ·
1

c(pi; t)
·
∏

v∈ti,v ̸=pi

µ(c(v; t))

=
c(pi; t)µ(c(pi; t))

α
· 1

c(pi; t)
·
∏

v∈ti,v ̸=pi

µ(c(v; t))

=
1

α

∏
v∈ti

µ(c(v; t)) ,

which combined with the two previous equations gives

BPI∗µ(t≤n, p≤n) =
n−1∏
i=0

(
1

α

∏
v∈ti

µ(c(v; t))

)
=

1

αn
Bµ(t≤n) . □

Corollary 14.10. For all n ≥ 0,
dBPIµ|Fn

dBµ|Fn

=Mn.

Proof. For any subtree t of U , by definition,

BPIµ(t≤n) =
∑
p

BPI∗µ(t≤n, p),

where the sum is over paths p from the root to generation n in t≤n. But the number of such paths
is just |tn|. Using Proposition 14.9 and the fact thatMn(t) = |tn|/αn, we thus have

BPIµ(t≤n) =
|tn|
αn

Bµ(t≤n) =Mn(t) · Bµ(t≤n).

and the result follows. □
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Before proving the Kesten-Stigum theorem, we need one further lemma.

Lemma 14.11. Either P {M = 0} = P {|T | <∞} or P {M = 0} = 1.

Proof. If i ∈ T1 then the subtree of T rooted at i is itself a Bµ-branching process. Writing

M (i)
n =

1

αn−1
#{v ∈ Tn : 1 is an ancestor of v},

thenM (i)
n is a martingale; writingM (i) for its almost sure limit, we may decomposeM as

M =
1

α

(
M (1)

n + . . .+M
(X∅)
n

)
.

Conditionally given that X = k, the limits M (1)
n , . . . ,M

(k)
n are independent copies of M , and

M = 0 if and only if each ofM (1)
n , . . . ,M

(k)
n equals zero. Thus

p := P {M = 0} =
∑
k≥0

P {X = k}P {M = 0}k = E
[
pX
]
.

The only roots the equation s = E
[
sX
]
are P {|T | <∞} and 1, so the lemma follows. □

Proof of Theorem 14.8. Let X have law µ, let Y have law ν where ν(i) = µ̂(i + 1), and let L =
log(Y + 1). It is easy to verify that EL <∞ if and only if E

[
log+ Y

]
<∞, and

E
[
X log+X

]
=
∑
i>0

(i log i)µ(i) =
∑
i>0

log(i)µ̂(i) = EL,

so by Theorem 14.6BPIµ(M <∞) = 1 if and only ifEL <∞, i.e. if and only ifE
[
X log+X

]
<

∞.
We now use that

M = lim sup
n

Mn = lim sup
n

dB̂µ|Fn

dBµ|Fn

.

by Corollary 14.10. Since

EM =

∫
M(t)Bµ(dt) = Bµ(M),

It follows by Theorem 13.19 that EM = 1 if and only if BPIµ(M <∞) = 1, which occurs if and
only if E

[
X log+X

]
<∞.

Now, if EM = 1 we must have P {M = 0} < 1, in which case P {M = 0} = P {|T | <∞}
by Lemma 14.11.

Finally, if E
[
X log+X

]
= ∞ then BPIµ(M = ∞) = 1, and by Theorem 13.19 this implies

that Bµ(M = 0) = 1, or in other words, that P {M = 0} = 1; we then have EM = 0 < 1. □

15. Transforms 1: Moment-generating functions

15.1. Introduction. Here is a high-level description of many arguments involving transforms in
probability. A transform τ takes as input a random variableX , and outputs some function τX , the
transform ofX . All the transforms τ we study will factor through the set of probability distributions,
in the sense that if X d

= Y then τX = τY . The first property that makes a transform useful is
uniqueness.

(1) [Uniqueness.] There exists a suitably rich collection C of probability measures such that τ
is injective relative to C: if LX ∈ C and LY ∈ C and LX 6= LY then τX 6= τY .

The cumulative distribution function is an example of a transform, and has the uniqueness property
relative to the collection of all probability measures on R.

The second property that makes a transform useful is stability.
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(1) [Stability.] There exists a suitably rich collection C of probability measures such that if
(Xn, 1 ≤ n ≤ ∞) are random variables and and LXn ∈ C for all n ≤ ∞, thenXn

d→ X∞
if and only if τXn → τX∞ , for an appropriately defined notion of convergence of transforms.

Again using the cumulative distribution function as an example, we have thatXn
d→ X∞ if and only

if Fn(x) → F∞(x) for all x which are points of continuity of F∞. Often it takes a little thought to
find the right notion of convergence for the transform. One way to organize this thought is to start
with a naive guess of what notion of convergence to use, then look for counterexamples to stability,
and use the counterexamples to improve the guess of what notion of convergence is reasonable.

Defined earlier, first few
lines here probably
redundant. However, there
is a sign change for earlier
that needs to be propagated!

15.2. Themoment generating function. Given a random variableX with distribution LX =
µ, the moment generating function of X is

GX(s) := E
[
esX
]
=

∫
R
esxµ(dx) =∈ (0,∞] .

Theorem 15.1. If GX is finite in a neighbourhood of s then for all k ≥ 0, XkesX is integrable and

G
(k)
X (s) = E

[
XkesX

]
.

Moreover, if GX is finite in a neighbourhood of 0 then for |s| sufficiently small,

GX(s) =
∞∑
n=0

sn

n!
E [Xn] .

We begin by proving the theorem when GX is finite in neighbourhood of 0.

Proposition 15.2. If GX(s) < ∞ and GX(−s) < ∞ then Xn is integrable for all n and G(s) =∑∞
n=0

sn

n!E [Xn].

Lemma15.3. If random variables (Xn, n ≥ 0) are such that
∑

n≥0E|Xn| <∞ then
∑

n≥0Xn converges
absolutely almost everywhere, its a.e. limit is integrable, and

E
∑
n≥0

Xn =
∑
n≥0

EXn .

Proof. Write Y =
∑

n≥0 |Xn|. Then by the monotone convergence theorem,

E [Y ] =
∑
n≥0

E|Xn| <∞,

so Y is finite almost everywhere. It follows that
∑

n≥0 |Xn| converges almost everywhere, and
thus

∑
n≥0Xn also converges almost everywhere. Moreover, |

∑m
n=0Xn| ≤ Y for all m, so

|
∑

n≥0Xn| ≤ Y and is therefore integrable, and by the dominated convergence theorem

E
∑
n≥0

Xn =
∑
n≥0

EXn. □

Proof of Proposition 15.2. We take Xn = (sX)n/n!, and obtain∑
n≥0

E|Xn| =
∑
n≥0

E
|sX|n

n!
= E

∑
n≥0

|sX|n

n!
,

by the monotone convergence theorem. The last sum is just the Taylor expansion of e|sX|, so∑
n≥0

E|Xn| = Ee|sX| ≤ E
[
esX + e−sX

]
= G(s) +G(−s) <∞,

the last bound by assumption. It follows by Lemma 15.3 that

esX =
∑
n≥0

(sX)n

n!
<∞
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almost everywhere and that

G(s) =
∑
n≥0

E
(sX)n

n!
=
∑
n≥0

sn

n!
E [Xn] .

□

If f : R → R which has a Taylor series expansion f(s) =
∑

n≥0 cns
n around 0, we write

[sn]f(s) := cn. This allows us to refer to coefficients of such an expansion without naming them
explicitly.

Proposition 15.4. If GX is finite in a neighbourhood of 0 then G(k)
X (0) = E

[
Xk
]
for all k ≥ 0.

Proof. Recall21 that if f : R → R has a Taylor series expansion on (−r, r), say f(s) =
∑

n≥0 cns
n,

then f is differentiable on (−r, r), and its derivative has a Taylor series expansion around 0 on
(−r, r) as

f ′(s) =
∑
n≥1

ncns
n−1.

In the shorthand introduced above, this is summarized by the statement that

[sn−1]f ′(s) = n · [sn]f(s)

on (−r, r). In particular, f ′(0) = [s1]f(s). By induction, for all n ≥ k ≥ 1 we have

[sn−k]f (k)(s) = n · (n− 1) · . . . · (n− k + 1)[sn]f(s),

and taking n = k gives f (k)(0) = k![sk]f(s). Applying this to GX(s) =
∑

n≥0(E [Xn] /n!)sn,
we obtain that G(k)

X (0) = k! · (E
[
Xk
]
/k!) = E

[
Xk
]
, as claimed. □

To extend from the case s = 0 to the general case, we use a technique which is also a fundamental
tool in Monte Carlo estimation, in particular for importance sampling: exponential tilting.

Definition 15.5 (Exponential Tilting). Fix s ∈ R withGX(s) finite, and let µs be the probability measure
on R defined by µs(A) = E

[
esX1[X∈A]

]
/GX(s).22. Then the density (Radon-Nikodym derivative) of µs

with respect to µ is esX/GX(s), and we call µs the tilting of µ by esx.

If X̂ has distribution µs then we may also refer to X̂ as a tilting of X by esx.

Proof of Theorem 15.1. It only remains to prove that the statements in the first sentence of the theorem
are true. Suppose that GX is finite near s, and let X̂ be the tilting of X by exs. Then

GX̂(t) =

∫
R
etxµs(dx) =

∫
R
etx

esx

GX(s)
µ(dx) =

GX(s+ t)

GX(s)
,

so GX̂ is finite in a neighbourhood of 0. Proposition 15.2 yields that X̂k is integrable; since X̂
has density esx/GX(s) with respect to LX , it follows thatXkesX is integrable and, using Proposi-
tion 15.4, that

G
(k)

X̂
(0) = E

[
X̂k
]
=

∫
R
xkµs(dx) =

∫
R
xk

esx

GX(s)
µ(dx) =

1

GX(s)
E
[
XkesX

]
.

Also, G(k)

X̂
(0) = G

(k)
X (s)/GX(s), which together with the above gives

G
(k)
X (s) = E

[
XkesX

]
. □

21Or prove it for yourself.
22Exercise: prove it is a probability measure.
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Example 15.6. Let N be standard normal. Then

GN (s) = EesN =
1√
2π

∫
R
esxe−x2/2dx = es

2/2 1√
2π

∫
R
e−(x−s)2/2dx = es

2/2 .

The Taylor expansion of es2/2 around zero is

es
2/2 =

∑
n≥0

1

n!

(
s2/2

)n
=
∑
n≥0

s2n

2nn!
,

so it follows from Theorem 15.1 that the odd moments of N vanish, and that for k ≥ 0,

E
[
N2k

]
= G

(2k)
N (0) =

(2k)!

2kk!
.

Example 15.7. Let P be Poisson(λ), so P {P = k} = λke−λ/k!. Then

GP (s) =
∑
k≥0

eks
λke−λ

k!
= e−λ

∑
k≥0

(λes)k

k!
= eλ(e

s−1) .

We wish to calculate

E
[
P k
]
= G

(k)
P (0) = k![sk]GP (s) = k![sk]eλ(e

s−1).

Since
eλ(e

s−1) =
∑
n≥0

1

n!
(λ(es − 1))n,

it follows that
E
[
P k
]
= k!

∑
n≥0

[sk](λ(es − 1))n =
∑
n≥0

λn[sk](es − 1)n.

To analyze this equation, we again use the Taylor expansion of es − 1 =
∑

m≥1 s
m/m!, to obtain

E
[
P k
]
= k!

∑
n≥0

λn

n!
[sk]

∑
m≥1

sm

m!

n

.

Expanding out the n’th power and gathering like powers of s, the smallest order term will be sn, so if n > k then
the expression is zero. If n ≤ k then

[sk]

∑
m≥1

sm

m!

n

= [sk]
∑

m1,...,mn≥1

m1+...+mn=k

n∏
i=1

smi

mi!
=

∑
m1,...,mn≥1

m1+...+mn=k

1

mi!
=

1

k!

∑
m1,...,mn≥1

m1+...+mn=k

(
k

m1, . . . ,mn

)
.

We now use this in the previous formula (recall that we only need to consider n ≤ k). The k! terms cancel, and we
obtain

E
[
P k
]
=

k∑
n=1

λn
∑

m1,...,mn≥1

m1+...+mn=k

1

n!

(
k

m1, . . . ,mn

)
.

Now,
(

k
m1,...,mn

)
is the number of ways to partition the set {1, . . . , k} into an ordered sequence P1, . . . , Pn of

non-empty parts such that |Pi| = mi for i ≤ i ≤ n; the term 1/n! may be interpreted as saying that the order of
the parts is unimportant. So the inner sum is simply the total number of ways of partitioning the set {1, 2, . . . , k}
into n nonempty parts. This is a Stirling number of the second kind, denoted

{
k
n

}
. We thus obtain

E
[
P k
]
=

k∑
n=1

λn
{
k

n

}
.
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The transform which sends a variable to the sequence of its integer moments is quite natural,
and the question of when it satisfies uniqueness and stability deserving of study. We will return to
this later in the course and in the exercises.

15.3. The moment generating function and uniqueness. In this section we show that the
moment generating function satisfies uniqueness provided we restrict our attention to non-negative
random variables.

Theorem 15.8. If P {X ≥ 0} = 1 then LX can be recovered from GX .

Proof. Since X ≥ 0 almost surely, the moment generating function GX is finite on (−∞, 0]. For
any s > 0, by Theorem 15.1 we have

G
(k)
X (−s) = E

[
Xke−sX

]
.

For t > 0 we then have
⌊st⌋∑
k=0

sk

k!
G

(k)
X (−s) =

⌊st⌋∑
k=0

E

[
(sX)k

k!
e−sX

]
= E

⌊st⌋∑
k=0

(sX)k

k!
e−sX

 .
Now, for anym ∈ N and λ ≥ 0,

m∑
k=0

λk

k!
e−λ = P {Poisson(λ) ≤ m} ,

so we may rewrite the above as
⌊st⌋∑
k=0

sk

k!
G

(k)
X (−s) = E [P {Poisson(sX) ≤ bstc}] .

The Poisson(λ) distribution has23 mean and variance λ, so for all x < t, by Chebyshev’s inequality

lim inf
s→∞

P {Poisson(sx) ≤ bstc} ≥ lim inf
s→∞

(
1− (bstc − sx)2

sy

)
= 1 (15.1)

and likewise, for all x > t,

lim sup
s→∞

P {Poisson(sx) ≤ bstc} ≤ lim sup
s→∞

(
(sx− bstc)2

sy

)
= 0 (15.2)

For any x < t, we then have
E [P {Poisson(sX) ≤ bstc}] ≥ E

[
P {Poisson(sX) ≤ bstc}1[X≤x]

]
≥ E

[
P {Poisson(sx) ≤ bstc}1[X≤x]

]
= P {Poisson(sx) ≤ bstc}P {X ≤ x} .

Since this holds for all s and for all x < t, using (15.1) we obtain
lim inf
s→∞

E [P {Poisson(sX) ≤ bstc}] ≥ sup
x<t

P {X ≤ x} = P {X < t} .

Similarly, for any x > t,
E [P {Poisson(sX) ≤ bstc}] ≤ P {X < x}+E

[
P {Poisson(sX) ≤ bstc}1[X≥x]

]
≤ P {X < x}+E

[
P {Poisson(sx) ≤ bstc}1[X≥x]

]
≤ P {X < x}+P {Poisson(sx) ≤ bstc}P {X ≥ x} .

Since this holds for all s and for all x > t, using (15.2) we obtain
lim sup
s→∞

E [P {Poisson(sX) ≤ bstc}] ≤ inf
x>t

P {X < x} = P {X ≤ t} .

23Prove it.
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It follows that

lim
s→∞

⌊st⌋∑
k=0

sk

k!
G

(k)
X (−s) = lim

s→∞
E [P {Poisson(sX) ≤ bstc}] = P {X ≤ t} = LX((−∞, t]).

for all t such that P {X = t} = LX({t}) = 0. Finally, for any countable set Q ⊂ R, the set
{(−∞, t], t ∈ R \ Q} is a π-system generating the Borel σ-field B(R). Since LX has at most
countably many atoms, the result follows. □

Note that G(k)
X (−s) = E

[
Xke−sX

]
, so the method of proof is to recover the law of X from

considering the integer moments of large negative exponential tilts of X . However, the proof re-
quires knowledge of all moments for all large negative tilts - a single value of s is not enough. (The
Stieltjes moment problem asks for necessary and sufficient conditions for the existence and uniqueness
of a non-negative random variable with given integer moments; see [2] for recent work on this
question.)

16. Transforms 2: Characteristic functions

In a probabilistic context, Fourier transforms are known as characteristic functions; they capture
a function by decomposing it according to its rotational symmetries. To get a feeling for what this
means, consider the following, very simple way to decompose a function into symmetric pieces. Fix
a function f : R → R, and define feven : R → R and fodd : R → R as

feven(x) =
f(x) + f(−x)

2
, fodd(x) =

f(x)− f(−x)
2

.

We clearly have f ≡ feven + fodd, and the functions feven and fodd each satisfy a natural sym-
metry: feven is even, which means that feven(−x) = feven(x), and fodd is odd, which means that
fodd(−x) = −fodd(x).

The above decomposition is easy to understand but is not particularly useful. The perspective
of Fourier analysis generalizes the even-odd decomposition by viewing −1 = eiπ as a rotation by
π in the complex plane. A first natural generalization is to decompose using the family of rotations
(e2πi/n, 0 ≤ i < n); above we had n = 2. For a function f : C → C, say f is (n, j)-symmetric if
f(e2πi/nz) = (e2πi/n)jf(z).

Proposition 16.1. Fix any function f : C → C. Fix n ≥ 1, write ω = e2πi/n, and for j ∈ Z let

fn,j(z) =
1

2n

n−1∑
k=−n

ω−jkf(ωkz).

Then each function fn,j is (n, j)-symmetric; if f is (n, j)-symmetric then f = fn,j ; and

f ≡
n−1∑
j=−n

fn,j . (16.1)

Proof. First,

fn,j(ωz) =
1

2n

n−1∑
k=−n

ω−jkf(ωk · ωz)

= ωj · 1

2n

n−1∑
k=−n

ω−j(k+1)f(ωk+1z)

= ωj · fn,j(z) ,
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so fn,j is (n, j)-symmetric. Next, if f is (n, j)-symmetric then f(ωkz) = ωjkf(z), so

fn,j(z) =
1

2n

n−1∑
k=−n

ω−jkf(ωkz) =
1

2n

n−1∑
k=−n

f(z) = f(z).

Finally, for all z,
n−1∑
j=0

fn,j(z) =
1

2n

n−1∑
j=−n

n−1∑
k=−n

ω−jkf(ωkz)

=
1

2n

n−1∑
k=−n

f(ωk · z) ·
n−1∑
j=−n

ω−jk

It is straightforward that24
∑n−1

j=−n ω
−jk = 2n1[k=0], so the previous equality gives

n−1∑
j=−n

fj(z) =
1

2n
f(ωk · z) · 2n1[k=0] = f(z). □

Let’s restrict attention to points on the unit circle S1 = {z ∈ C : |z| = 1}. Equation (16.1) gives
that f(1) =

∑n−1
j=−n fn,j(1). Since fn,j is (n, j)-harmonic, for k ∈ Z we then have

f(e2πik/n) =
n−1∑
j=−n

fn,j(e
2πik/n) =

n−1∑
j=−n

e2πi(k/n)·jfn,j(1) . (16.2)

It it also jumps out that the definition of fn,j(1) looks like a Riemann approximation in n:

fn,j(1) =
1

2n

n−1∑
k=−n

ω−jkf(ωk) ≈ 1

4π

∫ 2π

−2π
e−j·ixf(eix)dx =

1

2π

∫ π

−π
eix·jf(eix)dx =: f̂(j) ;

(16.3)
the last definition makes sense provided f is Riemann integrable. In this case, provided f is suffi-
ciently well-behaved, one may take k and n to infinity jointly in such a way that k/n→ x in (16.2),
and obtain the following result.

Theorem 16.2. Suppose that f : S1 → C is continuous and that
∑

j∈Z |f̂(j)| <∞. Then

lim
N→∞

N∑
j=−N

e2πix·j f̂(j) = f(e2πix) ,

uniformly over x ∈ [0, 1).

For a proof, see [4], Chapter 2. It is natural to try to further continuize, taking j ∈ R instead of
j ∈ Z in (16.3); one then guesses at the Fourier inversion formula:

f(e2πix) =

∫
R
f̂(t)e2πix·tdt . (16.4)

We do not prove the Fourier inversion formula in this form, as the natural setting of probability is
not functions on S1 but probability measures. However, having seen the derivation of a Fourier
inversion formula in a simpler setting will help with intuition in what follows. The key points to
remember from the above development are as follows. First, f is recovered from a collection of
its symmetrizations, each of which captures its symmetries with respect to a different oscillatory
frequency. Second, because each symmetrization is symmetric, its behaviour can be recovered
from its value at a single point.

24Prove it
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16.1. Characteristic functions: basic properties and examples. Let X be a real random
variable and write µ = LX for the distribution of X . The characteristic function of X is theCharacteristic function

function φX : R → C given by

φX(t) = E
[
eitX

]
= E [cos(tX)] + iE [sin(tX)] .

Note that if X has density f : R → [0,∞) with respect to Lebesgue measure then by the change
of variables formula,

φX(t) =

∫
R
eitxf(x)dx ;

this corresponds to (16.3) but with the range of integrationR instead of S1 since f now has domain
R.

Proposition 16.3. For any real random variableX , the characteristic function φ = φX satisfies the following
properties

(1) φ(0) = 1

(2) φ(−t) = φ(t)
(3) ‖φ‖∞ ≤ 1
(4) For all t, h ∈ R, |φ(t+ h)− φ(t)| ≤ E|eihX − 1|, so φ(t) is uniformly continuous on R.

Proof. The first property is obvious. The second is an easy calculation using the fact that cos is even
and sin is odd:

φ(−t) = E
[
ei(−tX)

]
= E [cos(−tX)] + iE [sin(−tX)]

= E [cos(tX)]− iE [sin(tX)] = E [cos(tX)] + iE [sin(tX)]

= φ(t) .

Next, for any x ∈ R we have |eitx| = 1, so for all t ∈ R,

|E
[
eitX

]
| ≤ E

[
|eitX |

]
= 1 ,

establishing the third property. For the fourth assertion, we compute

|φ(t+ h)− φ(t)| = |E
[
eitXeihX

]
−E

[
eitX

]
|

= |E
[
eitX(eihX − 1)

]
|

≤ E
[
|eitX(eihX − 1)|

]
= E

[
|eihX − 1|

]
.

□

Fundamental to the utility of characteristic functions in probability is their connection to inde-
pendence. The basic fact is recorded in the following proposition.

Proposition 16.4. Let X,Y be random variables defined on a common space. If X and Y are independent
then for all a ∈ R and all t ∈ R,

φaX+Y (t) = φX(at)φY (t) .

Proof. We use that for bounded, complex-valued random variables U, V , if U and V are indepen-
dent then E [UV ] = E [U ]E [V ]; this can be checked by considering the real and complex parts
separately. We then have

φaX+Y (t) = E
[
eit(aX+Y )

]
= E

[
ei(at)XeitY

]
= E

[
ei(at)X

]
E
[
eitY

]
= φX(at)φY (t) . □
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A special case of the above proposition is that for any a, b ∈ R and t ∈ R, φaX+b(t) =
eitbφX(at); simply take Y to be a random variable which is everywhere equal to b.
Examples.

(1) Poisson distributions. If X is Poisson(λ), then

φX(t) = E
[
eitX

]
=

∞∑
k=0

eitkP {X = k}

=
∞∑
k=0

eitk
λke−λ

k!

= e−λ
∞∑
k=0

(λeit)k

k!

= e−λeλe
it
= eλ(e

it−1) .

(2) Normal distributions. LetX beNormal(0, 1). To computeφX(t)wewill use the Taylor
expansion

eitX =
∑
k≥0

(itX)k

k!
;

we will justify the use of this formula in expectation calculations shortly. Assuming we can
interchange expectation and sum without issue, we then have

φX(t) = E
[
eitX

]
=
∑
k≥0

(it)k

k!
E
[
Xk
]

=
∑
k≥0

(it)2k

(2k)!

(2k)!

2kk!
,

where we have used the formula for the moments of the normal distribution from Exam-
ple 15.6; recall that the odd moments of X vanish. We thus have

φX(t) =
∑
k≥0

1

k!

(
(it)2

2

)k

=
∑
k≥0

1

k!

(
−t2

2

)k

= e−t2/2 .

Note that σX + µ is Normal(µ, σ2), so the characteristic function of any normal can be
easily derived from that of a Normal(0, 1).

(3) Uniform distributions. Let X be Uniform[−a, a]. Then X has density 1/(2a) on the
interval [−a, a], so

φX(t) = E
[
eitX

]
=

∫ a

−a

eitx

2a
dx =

1

2a

[
eitx

it

]a
−a

=
eita − e−ita

2iat
=
sin(at)

at
.

(4) Symmetric simple random walk. Let (Xi, i ≥ 1) be independent fair coin tosses, i.e.,
P {Xi = 1} = P {Xi = −1} = 1/2, and let Sn = n−1/2

∑n
i=1Xi. Then

φXi(t) =
1

2
(eit + e−it) = cos(t) .

Using the factorization formula for characteristic functions, this gives

φSn(t) = E
[
eitSn

]
=
(
E
[
eitX1/n1/2

])n
= (cos(t/n1/2))n ,

so

lim
n→∞

φSn(t) = lim
n→∞

(cos(t/n1/2))n = lim
n→∞

(
1− t2

n
+O

( 1

n2

))n

= e−t2/2.
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In other words, the characteristic function ofSn converges pointwise to that of aNormal(0, 1)
random variable.

The last example above is particularly suggestive; it hints that perhaps the distribution of Sn ap-
proximates that of a Normal(0, 1) when n is large. To turn this from a suggestive observation to
a persuasive mathematical argument, we need to relate convergence of characteristic functions to
convergence in distribution. This is done in the next section.

16.2. The inversion and continuity theorems. In this section we establish the following two
theorems.

Theorem 16.5 (Inversion theorem for characteristic functions). Fix any random variable X and write
µ for the distribution ofX . Then for all a, b ∈ R with a < b,

1

2π
lim
T→∞

∫ T

−T

e−ita − e−itb

it
φX(t)dt = µ(a, b) +

1

2
(µ({a}) + µ({b})) .

In particular, µ can be recovered from φX .

Theorem 16.6 (Continuity theorem for characteristic functions). Fix random variables (Xn, 1 ≤ n ≤
∞). If Xn

d→ X∞ then φXn → φX∞ pointwise. Conversely, if φXn → φ pointwise and φ is continuous at
0, then (Xn, n ≥ 1) converges in distribution to a random variable Y satisfying φY = φ.

The above inversion theorem is an “integrated” version of Fourier inversion, which is the best
we can hope for ifX doesn’t have a density. WhenX does have a density, we can obtain something
which looks more like (16.4).

Exercise 16.1. LetX be a real random variable. Show that ifX has a density then |φX(t)| → 0 as t→ ∞.
Also show that if

∫
R |φX(t)| <∞ then the function defined by

f(x) =
1

2π

∫
R
e−itxφX(t)dt

is a continuous density forX .

IfX has a density, then it follows from the above exercise and the inversion theorem that (ignoring
whether or not Fubini can be applied)

µ(a, b) =

∫ b

a
f(x)dx =

1

2π

∫ b

a

∫
R
e−itxφX(t)dtdx

=
1

2π

∫
R
φX(t)

∫ b

a
e−itxdxdt =

1

2π

∫
R
ϕX(t)

e−ita − e−itb

it
dt .

Before starting the proofs of these theorems, we develop some preliminary estimates for Taylor
expansions of complex exponentials, which also belatedly justify the calculations from examples 2
and 4, above.

Proposition 16.7. For any x ∈ R and integer n ≥ 0,

eix =

n∑
k=0

(ix)k

k!
+
in+1

n!

∫ x

0
(x− s)neisds =

n+1∑
k=0

(ix)k

k!
+
in+1

n!

∫ x

0
(x− s)n(eis − 1)ds

Proof. We begin with the first identity, and first consider the case n = 0. In this case we have
(ix)0

0!
+

i

0!

∫ x

0
(x− s)0eisds = 1 + i

[
eis

i

]x
s=0

= 1 + eix − 1 = eix

as required. For n > 0, suppose inductively that the first identity holds for smaller values of n.
Using integration by parts with u = eis and dv = (x− s)n−1ds, we have∫ x

0
(x− s)n−1eisds =

xn

n
+
i

n

∫ x

0
(x− s)neisds.
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It follows by induction that

eix =
n−1∑
k=0

(ix)k

k!
+

in

(n− 1)!

∫ x

0
(x− s)n−1eisds

=

n−1∑
k=0

(ix)k

k!
+

in

(n− 1)!

xn

n
+

in

(n− 1)!

i

n

∫ x

0
(x− s)neisds

=

n∑
k=0

(ix)k

k!
+
in+1

n!

∫ x

0
(x− s)neisds ,

as required.
Next, rearranging the above integration by parts formula gives that∫ x

0
(x−s)neisds = n

i

∫ x

0
(x−s)n−1eisds− xn

i
=
n

i

∫ x

0
(x−s)n−1eisds− n

i

∫ x

0
(x−s)n−1ds .

Substituting this formula for
∫ x
0 (x−s)

neisds into the first identity, the second identity is immediate.
□

Here are some useful bounds which follow from the above identities. The first bounds the error
terms in the Taylor expansion of eix; the second states a probabilistic consequence of the first.

Corollary 16.8. For any x ∈ R and integer n ≥ 0,∣∣∣∣∣eix −
n∑

k=0

(ix)k

k!

∣∣∣∣∣ ≤ min

(
|x|n+1

(n+ 1)!
,
2|x|n

n!

)
Proof. For the first term, use the first identity from Proposition 16.7 with the bound∣∣∣∣ in+1

n!

∫ x

0
(x− s)neisds

∣∣∣∣ ≤ 1

n!

∫ x

0
|(x− s)neis|ds = |x|n+1

(n+ 1)!
.

For the second term, use the second identity from Proposition 16.7 (note: we use the identity with
the upper limit of the sum equal to n, not n+ 1) with the bound∣∣∣∣ in

(n− 1)!

∫ x

0
(x− s)n−1(eis − 1)ds

∣∣∣∣ ≤ 1

(n− 1)!

∫ x

0
|(x− s)n−1|eis − 1|ds ≤ 2|x|n

n!
. □

Corollary 16.9. Let X be a real random variable. For all n ≥ 0, if E [|X|n] <∞ then∣∣∣∣∣φX(t)−
n∑

k=0

(it)k

k!
E
[
Xk
]∣∣∣∣∣ ≤ Emin

(
|tX|n+1

(n+ 1)!
,
2|tX|n

n!

)
.

Thus, if limn→∞
tn

n!E [|X|n] = 0 then

φX(t) =
∞∑
k=0

(it)k

k!
E
[
Xk
]
.

Here are the cases n = 1, 2 of the above bound, written out explicitly.
(1) If E|X| <∞ then |φX(t)− 1− itE [X] | ≤ Emin((tX)2/2, 2|tX|),
(2) If E

[
X2
]
<∞ then |φX(t)− 1− itE [X] + t2E

[
X2
]
| ≤ Emin(|tX|3/6, (tX)2).

At one point in the proof of the inversion theorem we will also need to know the value of the
following famous integral.

Lemma 16.10. ∫ ∞

0

sinx

x
dx := lim

t→∞

∫ t

0

sin(x)

x
dx =

π

2
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Proof. To compute the integral we introduce a second parameter: set

I(b) :=

∫ ∞

0

sinx

x
e−bxdx.

Our goal is to recover I(0). The point of adding the parameter b is that ∂
∂b

sinx
x e−bx = − sin(x)e−bx,

which is integrable. We then have

I ′(b) =
∂

∂b

∫ ∞

0

sinx

x
e−bxdx =

∫ ∞

0

sinx

x

∂

∂b
e−bxdx = −

∫ ∞

0
sin(x)e−bxdx .

Integration by parts (applied twice) gives that∫ ∞

0
sin(x)e−bxdx =

[
− cos(x)e−bx − sin(x) · be−bx

]∞
0

−
∫ ∞

0
b2e−bx sinxdx,

which on rearrangement gives that

−
∫ ∞

0
sin(x)e−bxdx =

[
e−bx · cosx+ b sinx

b2 + 1

]∞
0

=
−1

b2 + 1

We have calculated that I ′(b) = −1/(b2 + 1) = − d
db tan

−1(b), so I(b) = − tan−1(b) + I(0).
Taking b→ ∞, it follows that

0 = lim
b→∞

∫ ∞

0
sin(x)e−bxdx = lim

b→∞
(− tan−1(b) + I(0)) = −π

2
+ I(0) ;

so I(0) = π/2. □

Proof of Theorem 16.5. First, since φX(t) =
∫
R e

itxµ(dx), we have∫ T

−T

e−ita − e−itb

it
φX(t)dt =

∫ T

−T

∫
R

e−ita − e−itb

it
eitxµ(dx)dt

We would like to change the order of integration; to apply Fubini’s theorem we need to verify that
the integrand is absolutely integrable on the domain of integration. This isn’t too hard: the case
n = 0 of Corollary 16.8 says that |eix − 1| ≤ x, so

|e−ita − e−itb| = |e−itb(e−it(a−b) − 1)| = |e−it(a−b) − 1| ≤ t|a− b| ,

and therefore∫ T

−T

∫
R

∣∣∣∣e−ita − e−itb

it
eitx
∣∣∣∣µ(dx)dt ≤ ∫ T

−T

∫
R
|a− b|µ(dx)dt = 2T |a− b| <∞.

So applying Fubini’s theorem is justified, and we obtain∫ T

−T

e−ita − e−itb

it
φX(t)dt =

∫
R

∫ T

−T

e−ita − e−itb

it
eitxdtµ(dx) .

We next manipulate the inner integral to obtain a real-valued integrand. Using that eix =
cosx+ i sinx we have∫ T

−T

e−ita − e−itb

it
eitxdt

=

∫ T

−T

cos(t(x− a))− cos(t(x− b))

it
+

sin(t(x− a))− sin(t(x− b))

t
dt

We wish to split the latter integral in two; to apply linearity of integration we need to know that the
terms in the integrand are absolutely integrable. This is true for the first fraction since | cos(t)/it| =
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| cos(t)/t| = O(t) as t ↓ 0. For the second it is true by Lemma 16.10. We thus have∫ T

−T

e−ita − e−itb

it
eitxdt

=

∫ T

−T

cos(t(x− a))− cos(t(x− b))

it
dt+

∫ T

−T

sin(t(x− a))− sin(t(x− b))

t
dt

= 2

∫ T

0

sin(t(x− a))− sin(t(x− b))

t
dt ,

where in the last step we have used that cos is even and that sin is odd.
This identity implies that∫ T

−T

e−ita − e−itb

it
φX(t)dt = 2

∫
R

∫ T

0

sin(t(x− a))− sin(t(x− b))

t
dtµ(dx) ,

so

lim
T→∞

∫ T

−T

e−ita − e−itb

it
φX(t)dt

= lim
T→∞

2

∫
R

(∫ T

0

sin(t(x− a))

t
dt−

∫ T

0

sin(t(x− b))

t
dt

)
µ(dx)

= 2

∫
R

(
lim
T→∞

∫ T

0

sin(t(x− a))

t
dt− lim

T→∞

∫ T

0

sin(t(x− b))

t
dt

)
µ(dx) .

Lemma 16.10 implies the the inner integrals are bounded, so the bounded convergence theorem
justifies moving the limit under the integral sign in the last equality above.

Finally, we have

lim
T→∞

∫ T

0

sin(t(x− a))

t
dt = lim

T→∞

∫ T

0

sin(t(x− a))

(x− a)t
· (x− a)dt =

π

2
sign(x− a)

and likewise limT→∞
∫ T
0

sin(t(x−b))
t dt = (x− b) · π

2 sign(x− b), so

lim
T→∞

∫ T

−T

e−ita − e−itb

it
φX(t)dt = 2

∫
R

π

2
sign(x− a)− π

2
sign(x− b)µ(dx)

= π

∫
R
sign(x− a)− sign(x− b)µ(dx) .

The integrand is 1 if x ∈ {a, b}, is 2 if x ∈ (a, b), and is 0 otherwise; so the last expression is
precisely π(µ({a}) + µ({b})) + 2πµ(a, b). □

We now turn our attention to the inversion theorem. Its proof has two steps, one “hard” (more
quantitative) and one “soft” (more qualitative). The hard step is to show that convergence of char-
acteristic functions implies tightness of the family of random variables. The soft step is to show
that tightness together with pointwise convergence of characteristic functions implies convergence
in distribution; this step uses the fact that the map X 7→ φX is injective, which is implied by the
inversion theorem.

We begin with the more quantitative step.

Lemma 16.11. For any real random variableX , for all u > 0,

P {|X| ≥ 2/µ} ≤ 1

u

∫ u

−u
(1− φX(t))dt

Proof. Write µ for the distribution of X . If |x| ≥ 2/µ then

2

(
1− sin(ux)

ux

)
≥ 2

(
1− 1

|ux|

)
≥ 1 ,
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so

P

{
|X| ≥ 2

u

}
=

∫
|x|≥2/µ

1µ(dx) ≤ 2

∫
|x|≥2/µ

(
1− 1

|ux|

)
µ(dx) ≤ 2

∫
|x|≥2/µ

(
1− sin(ux)

ux

)
µ(dx) .

Integrating over R rather than over {x : |x| ≥ 2/µ} can only increase the integral; using this and
the fact that 2 sin(ux)/x =

∫ u
−u e

itxdt, we obtain that

P

{
|X| ≥ 2

u

}
≤ 2

∫
R

(
1− sin(ux)

ux

)
µ(dx)

= 2− 1

u

∫
R

∫ u

−u
eitxdtµ(dx)

=
1

u

∫ u

−u
(1− φX(t))dt ,

where in the last step we have used Fubini’s theorem. □
Here is the key consequence of the preceding bound. We say a collection (Xi, i ∈ I) of random

variables is tight if the corresponding family of probability measures is tight.Explain this when tightness
is first introduced?

Corollary 16.12. Fix real random variables (Xn, n ≥ 1). If φXn converges pointwise to some function φ
and φ is continuous at zero then (Xn, n ≥ 1) is a tight family.

Proof. Fix ϵ > 0. Since φXn → φ pointwise, φ(0) = 1. Since φ is continuous at zero, we may thus
choose u > 0 such that φ(t) > 1− ϵ/2 for |t| < u. Then

1

u

∫ u

−u
(1− φ(t))dt ≤ 1

u

∫ u

−u

ϵ

2
= ϵ.

By the bounded convergence theorem,

lim
n→∞

1

u

∫ u

−u
(1− φn(t))dt =

1

u

∫ u

−u
(1− φ(t))dt ,

so there is n0 ∈ N such that 1
u

∫ u
−u(1− φXn(t))dt < ϵ for all n > n0; by the lemma it follows that

sup
n>n0

P {|Xn| ≥ 1/u} < ϵ.

Now choose K > 1/u large enough that maxn≥n0 P {|Xn| ≥ 1/u} < ϵ; then by the previous
bound we have supn≥1P {|Xn| ≥ K} < ϵ. Since ϵ > 0 was arbitrary, it follow that (Xn, n ≥ 1)
is a tight family. □

We now turn to the more qualitative arguments. The first is a lemma which is broadly applicable
and has nothing to do with characteristic functions.

Lemma 16.13. If (Xn, n ≥ 1) is a tight family of random variables, then there exists an increasing sequence
(nk, k ≥ 1) such that (Xnk

, k ≥ 1) converges in distribution.

Proof. Let Fn be the cumulative distribution function of Xn. By a diagonalization argument, there
exists an increasing sequence (nk, k ≥ 1) such that Fnk

(q) converges for all q ∈ Q. Call the
subsequential limit G(q), and define a function F : R → [0, 1] by F (r) = inf(G(q) : q > r, q ∈
Q).

The function F is clearly non-decreasing. It is also right-continuous, because for any ϵ > 0 there
is q > r such that G(q) < F (r) + ϵ, so F (s) < F (r) + ϵ for s ∈ (r, q). Moreover, for all ϵ > 0
there isM ∈ N such that P {|Xn| ≥M} < ϵ, so

F (−M − 1) ≤ sup
k≥1

Fnk
(−M) < ϵ and F (M) ≥ inf

k≥1
Fnk

(M) > 1− ϵ .

It follows that limM→−∞ F (M) = 0 and limM→∞ F (M) = 1, so F is the cumulative distribution
function of some random variable X .
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Finally, if F is continuous at x then

lim inf
k→∞

Fnk
(x) ≥ sup

s∈Q,s<x
lim
k→∞

Fnk
(s) = sup

s∈Q,s<x
G(s) = F (s)

and
lim sup
k→∞

Fnk
(x) ≤ inf

s∈Q,s>x
lim
k→∞

Fnk
(s) = inf

s∈Q,s>x
G(s) = F (x) .

Thus Fnk
→ F at continuity points of F ; so Xnk

d→ X (find lemma reference from earlier in the
text for the last implication). □

So is the second.

Lemma 16.14 (Subsubsequence principle). Let (Xn, 1 ≤ n ≤ ∞) be a tight family. ThenXn
d→ X∞

if and only if for any increasing sequence (nk, k ≥ 1), ifXn
d→ Y for some random variable Y , then Y d

= X∞.

Proof. First suppose that Xn
d→ X∞. Then for any increasing sequence (nk, k ≥ 1), Xnk

d→ X∞;
this shows that one of the two implications holds.

For the other implication, suppose that Xn 6 d→ X∞. Then by definition there is some x ∈ R
such thatP {X∞ = x} = 0 and such thatP {Xn ≤ x} 6→ P {X∞ ≤ x}. We may thus find ϵ > 0
and an increasing sequence (mk, k ≥ 1) such that

inf
k≥1

|P {Xn ≤ x} −P {X∞ ≤ x} | > ϵ.

Since (Xn, n ≥ 1) is tight, (Xmk
, k ≥ 1) is also tight, so by Lemma 16.13 there is an increasing

subsequence (nk, k ≥ 1) of (mk, k ≥ 1) such that Xnk

d→ Y for some random variable Y . If
P {Y = x} > 0 then clearly Y 6 d= X∞, and if P {Y = x} = 0 then

P {Xnk
≤ x} → P {Y ≤ x}

so |P {Y ≤ x}−P {X∞ ≤ x} | ≥ ϵ and againX∞ 6 d= Y . This establishes the second implication.
□

We’ll now put the two preceding lemmas together with information about convergence of char-
acteristic functions to prove the continuity theorem.

Proof of Theorem 16.6. First, if Xn
d→ X∞ then for all t ∈ R,

E [sin(tXn)] → E [sin(tX∞)] and E [cos(tXn)] → E [cos(tX∞)] ,

so φXn(t) = E
[
eitXn

]
→ E

[
eitX∞

]
= φX∞(t).

Next, if φXn → φ pointwise and φ is continuous at zero, then by Corollary 16.12, (Xn, n ≥ 1)

is a tight family. Let (nk, k ≥ 1) be any increasing sequence along which Xnk

d→ Y for some
random variable Y . Then by the first part of the theorem, φXnk

→ φY pointwise, so it must be
that φY = φ. In particular, φ is a characteristic function. Moreover, by the inversion theorem, the
distribution of Y is uniquely determined by φ; so if (mk, k ≥ 1) is any other increasing sequence
such that (Xmk

, k ≥ 1) converges in distribution, then it must be thatXmk

d→ Y as well. It follows
by Lemma 16.14 that (Xn, n ≥ 1) converges in distribution and that the distributional limit has
characteristic function φ. □

16.3. The central limit theorem. Probably the most important use of characteristic functions
is to prove the central limit theorem for iid random variables with finite second moment. Having
proved the inversion and continuity theorems, we are almost ready to do so; there is just one more
easy analytic estimate we will need in during the proof, which we state in advance: for all a, b ∈ C
with |a− b| ≤ 1, and all n ∈ N,

|an − bn| ≤ n|a− b| (16.5)



MATH 587/589 COURSE NOTES 105

This is easily proved by induction. The case n = 1 is obvious; for the inductive step write an+1 −
bn+1 = (a− b)an + b(an − bn) and apply the triangle inequality.

Theorem 16.15 (Lindberg-Lévy Central Limit Theorem). Let (Xn, n ≥ 1) be independent,
identically distributed random variables with X1 ∈ L2(Ω,F ,P). Write c = E [X1] and σ2 =
Var (X1), and set Sn = X1 + . . .+Xn for n ≥ 1. Then

Sn − cn

σ
√
n

d→ N

where N is a Normal(0, 1) random variable.

Proof. By an affine transformation (replacing Xi by X ′
i = Xi − c) we may assume c = 0, in which

case σ2 = E
[
X2

1

]
.

Let φN (t) = e−t2/2 be the characteristic function of a Normal(0, 1) random variable. By the
continuity theorem it suffices to show that φSn/

√
n → φN pointwise.

Writing φ = φX1 , then

φSn/σ
√
n(t) = E

[
eitSn/

√
n
]
= (φ(t/

√
n))n ,

so to prove convergence of φSn/σ
√
n(t) to φN (t) = e−t2/2, we need to control the behaviour of

φ(x) near x = 0.x or t?

By the case n = 2 of (16.9) we have∣∣∣∣φ(t)− (1− t2σ2

2

)∣∣∣∣ = ∣∣∣∣φ(t)− (1− itEX − t2

2
E
[
X2
] )∣∣∣∣ ≤ t2Emin

(
|t|
6
|X|3, X2

)
.

Writing β(t) for the final term on the right, by the dominated convergence theorem, β(t)/t2 =

Emin
(
|t|
6 |X|3, X2

)
→ 0 as t→ 0.

Using (16.5), we thus have∣∣∣∣φSn/σ
√
n(t)−

(
1− t2

2n

)n∣∣∣∣ = ∣∣∣∣(φ( t

σ
√
n

))n

−
(
1− t2

2n

)n∣∣∣∣
≤ n

∣∣∣∣φ( t

σ
√
n

)
−
(
1− t2

2n

)∣∣∣∣
= nβ

( t

σ
√
n

)
→ 0

the convergence holding as n → ∞ by the previously established control on the behaviour of β
near zero.

Since (1 − t2/(2n))n → e−t2/2 as n → ∞, it follows that φSn/σ
√
n(t) → e−t2/2 = φN (t), as

required. □

16.4. Characteristic functions and moments. It was mentioned in Section 15.3 that knowl-
edge of themoments of a random variableX is in general not sufficient to determine the distribution
ofX . This is even true for distributions that arise in “real-world” situations: ifN is a Normal(µ, σ2)
distributed then eN has all moments finite but its distribution is not determined by its moments.
There are even uncountably many purely discrete distributions with the same moments as eN ; for
more on this see [1, 3].

The paragraph and the three after it can safely be skipped without detracting from the readability
of the rest. Plan for this paragraph: describe the situation for log-normal distributions in more
detail.

Note that if µ and ν are two distributions with the same moments then pµ+ (1 − p)ν also has
the same moments and, more general, the set of distributions with given moments is always convex.
There is a theorem of Riesz (see [3], Theorem 2.14) which says that the extremal points of the set
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of distributions with given moments are precisely the distributions for which there is a Parseval’s
identity. More precisely, fix a sequence of real valuesm = (mn, n ≥ 0) and let

Dm =
{
µ : µ is a probability measure on (R,B(R)); ∀n,

∫
R
tnµ(dt) = mn

}
.

be the set of probability distributions on (R,B(R)) with moments given by m.
If the setDm is non-empty then the momentsm uniquely determine a set of orthogonal polynomials

(pn(x), n ≥ 0) with pn a degree-n polynomial, such that
∫
R pn(x)pm(x)µ(dx) = 0 for all 0 ≤

m 6= n and d
∫
R pn(x)

2µ(dx) = 1 for all n ≥ 0. The definition of the set Dm means it doesn’t
matter which measure µ ∈ Dm is used for the preceding integrals; if the identities hold for one
measure in Dm then they hold for all measures in Dm.

Write L2(µ) for the set of Borel functions f : R → C such that
∫
R |f(t)2µ(dt) < ∞. Think

of (pn)n≥0 as a sort of orthonormal basis for L2(µ). (So maybe the pn should be complex-valued)
For f ∈ L2(µ) write

f̂(n, µ) =

∫
R
f(t)pn(t)µ(dt)

for the “Fourier coefficient” of f relative to (pn)n≥0. Then µ is an extreme point ofDm if and only
if for all f ∈ L2(µ), ∫

R
|f(t)|2µ(dt) =

∞∑
n=0

|f̂(n, µ)|2.

We see that the connection of moment problems to complex analysis runs deep. Though we
won’t exhaustively explore the connection, we will at least prove the following result, whose proof
proceed via characteristic functions.

Theorem16.16. For a real random variableX , ifGX has a positive radius of convergence thenLX is determined
by the moments of X .

We will prove Theorem 16.16 by showing that if GX has a positive radius of convergence then
φX is determined by the moments of X ; we can then apply the inversion theorem to recover LX

from φX . To carry this out, we need the following lemma, a complex-valued analogue of the first
part of Theorem 15.1. Throughout what follows, we’ll work with a fixed random variable X and
write φ = φX .

Lemma 16.17. For all k ∈ N, if E
[
|X|k

]
<∞ then for all t ∈ R we have φ(k)(t) = E

[
(iX)keitX

]
.

Proof. We proceed by induction. For all t ∈ R and h > 0, we have

φ(t+ h)− φ(t)

h
− iXeitX =

ei(t+h)X − eitX

h
− iXeitX

= eitx
eihX − 1− ihX

h
,

so ∣∣∣∣φ(t+ h)− φ(t)

h
− iXeitX

∣∣∣∣ ≤ ∣∣∣∣eitx eihX − 1− ihX

h

∣∣∣∣ ≤ min

(
h|X|2

2
, 2|X|

)
,

where the inequality follows from the case n = 1 of Corollary 16.8. If E|X| < ∞ then the sec-
ond of the two bounds implies that

∣∣∣φ(t+h)−φ(t)
h − iXeitX

∣∣∣ is dominated by an integrable random
variable, so using the first of the two bounds and the dominated convergence theorem we obtain
that

lim sup
h→0

∣∣∣∣φ(t+ h)− φ(t)

h
− iXeitX

∣∣∣∣ ≤ E

[
lim sup
h→0

h

2
|X|2

]
= 0.

This establishes the assertion of the lemma when k = 1.
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Nowfix k ≥ 1, supposeE
[
|X|k+1

]
<∞, and assume by induction thatφ(k)(t) = E

[
(iX)keitX

]
.

Then∣∣∣∣∣φ(k)(t+ h)− φ(k)(t)

h
− (iX)k+1eitX

∣∣∣∣∣ =
∣∣∣∣∣(iX)kei(t+h)X − (iX)keitX

h
− (iX)k+1eitX

∣∣∣∣∣
=

∣∣∣∣(iX)keitX
eihX − 1− ihX

h

∣∣∣∣
≤
∣∣∣∣(iX)k min

(
h|X|2

2
, 2|X|

)∣∣∣∣
= min

(
h

2
|X|k+1, 2|X|k

)
.

From this bound, arguing using the dominated convergence theorem as before shows thatφ(k+1)(t) =
E
[
(iX)k+1eitX

]
. □

We will also use the following lemma which provides a bound on the growth rate of the absolute
moments of a random variable whose moment generating function is finite in a neighbourhood of
the origin.

Lemma 16.18. If GX(s) <∞ and G(−s) <∞ then for all r ∈ (0, s),

rnE [|X|n]
n!

→ 0 ,

as n→ ∞.

Proof. Under the assumptions of the lemma, for all r ∈ (0, s)we haveGX(r) <∞ andGX(−r) <
∞, so by Proposition 15.2 we have

GX(r) =
∑
n≥0

E [Xn]
rn

n!
;

so |E [Xn] r
n

n! | → 0 as n → ∞. It follows that E
[
|X|2k

]
r2k

(2k)! → 0 as k → ∞, since for even
values the moments and absolute moments agree.

To handle odd values, note that for k ≥ 1 we have |rX|2k−1 ≤ 1 + |rX|2k. Moreover, for k
sufficiently large, r2k < s2k/2k, and for such k we have

r2k−1E
[
|X|2k−1

]
= E

[
|rX|2k−1

]
≤ 1 +E

[
|rX|2k

]
≤ 1 +

sk

2k
E
[
|X|2k

]
.

It follows that

lim sup
k→∞

r2k−1E
[
|X|2k−1

]
(2k − 1)!

≤ lim sup
k→∞

1

(2k − 1)!

(
1 +

sk

2k
E
[
|X|2k

])
= lim sup

k→∞

skE
[
|X|2k

]
(2k)!

and the last limit is zero as noted above. □

Proof of Theorem 16.16. Fix r > 0 strictly inside the radius of convergence ofGX . By Corollary 16.8,
for all n ∈ N and x ∈ R we have∣∣∣∣∣eihx −

n∑
k=0

(ihx)k

k!

∣∣∣∣∣ ≤ |hx|n+1

(n+ 1)!
,
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so for t, h ∈ R with |h| ≤ r,∣∣∣∣∣∣φ(t+ h)−
∑
k≤n

φ(k)(t)

k!
hk

∣∣∣∣∣∣ =
∣∣∣∣∣∣E
[
ei(t+h)X

]
−
∑
k≤n

hk

k!
E
[
(iX)keitX

]∣∣∣∣∣∣
=

∣∣∣∣∣∣E
ei(t+h)X ·

eihX −
∑
k≤n

hk

k!
(iX)k

∣∣∣∣∣∣
≤ E

∣∣∣∣∣∣eihX −
∑
k≤n

hk

k!
(iX)k

∣∣∣∣∣∣
≤ E

|hX|n+1

(n+ 1)!
=

hn+1

(n+ 1)!
E
[
|X|n+1

]
.

The final quantity tends to zero as n→ ∞ by Lemma 16.18, and it follows that for such t and h,

φ(t+ h) =
∞∑
k=0

φ(k)(t)

k!
hk . (16.6)

We now argue by induction that for all a ∈ N, the moments of X determine φ(x) for all x ∈
[−ar, ar]. For a = 1, taking t = 0 in (16.6) and using the formula for the derivatives of φ given in
Lemma 16.17, we obtain that for |h| ≤ r,

φ(h) =
∞∑
k=0

φ(k)(0)

k!
hk =

∑
k≥0

E
[
(iX)k

]
k!

hk ,

so φ(h) is determined by the moments ofX . Supposing the claim is true for a given value of a, fix
x with |x| ∈ (ar, (a+1)r]. Then we may write x = t+h with |t| ≤ ar and |h| ≤ r, and by (16.6)
we obtain that

φ(x) = φ(t+ h) =
∞∑
k=0

φ(k)(t)

k!
hk .

By induction, the values φ(k)(t) are determined by the moments ofX ; it follows that φ(x) is deter-
mined by the moments of X as well. □

That’s it for characteristic functions in this section. There are two goals for the rest of the section.
The first is to relate convergence of moments to convergence in distribution. The second is to use
that relation to provide a second proof of a special case of the central limit theorem.

Theorem 16.19. Fix random variables (Xn, 1 ≤ n ≤ ∞) such that E [|Xn|r] < ∞ for all r > 0. If
LX∞ is determined by the moments of X∞, and E [Xr

n] → E [Xr
∞] for all r ∈ N, then Xn

d→ X∞.

Proof. SetK := sup1≤n<∞E
[
X2

n

]
. Since E

[
X2

n

]
→ E

[
X2

∞
]
<∞, we haveK <∞, so for any

M ,

sup
n∈N

P {|Xn| > M} ≤ sup
n∈N

E
[
X2

n

]
M2

≤ K2

M2
.

For any ϵ > 0, it follows that supn∈NP
{
|Xn| > K/ϵ1/2

}
≤ ϵ, so (Xn, 1 ≤ n <∞) is tight.

A similar argument establishes uniform integrability of any fixed powers of the random variables
in the sequence. Recall that for a sequence (Yn, n ≥ 1) of random variables, if supn≥1E

[
Y t
n

]
<∞

for some t > 1 then (Yn, n ≥ 1) is uniformly integrable; we saw this in the course of proving
Theorem 13.15. Now fix integer p ≥ 1; then supn≥1E

[
X2p

n

]
< ∞, so (Xp

n, n ≥ 1) is uniformly Extract UI fact from
Theorem 13.15 as a lemma?

integrable. Since also Xp
n

d→ Xp
∞, it follows that

E [Xp
n] → E [Xp

∞] .
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We now apply the Lemma 16.14 to conclude that Xn
d→ X∞. Fix any increasing sequence

(nk, k ≥ 1) along whichXn
d→ Z for some random variableZ. Then for any integer p > 1, by the

uniform integrability of (Xp
nk , k ≥ 1) it follows thatE [Xp

nk ] → E [Zp]. ThusE [Zp] = E [Xp
∞] for

all p; since LX∞ is determined by the moments ofX∞, it follows that LZ = LX∞ . We have shown
that any subsequential distributional limit ofXn has the same distribution asX∞, so Lemma 16.14
then implies that Xn

d→ X∞. □
Theorem 16.20 (Central limit theorem via moments). Let (Xn, n ≥ 1) be independent identically
distributed random variables with E [X1] = 0, E

[
X2

1

]
= 1, and set Sn := n−1/2Sn = (X1 + . . . +

Xn)/n
1/2. If E [|X1|p] <∞ for all p > 0 then Sn converges in distribution to a Normal(0, 1) as n→ ∞.

The key step in the proof is the following proposition, which is independently interesting.

Proposition 16.21. Let (Xn, n ≥ 1) be independent identically distributed random variables withE [X1] =

0, E
[
X2

1

]
= 1, and set Sn := n−1/2Sn = (X1 + . . .+Xn)/n

1/2. For any p ∈ N, if E [|X1|p] <∞
then Lp := limn→∞E

[
S
p
n

]
exists, and

Lp =

{
p!

2p/2(p/2)!
if p is even

0 if p is odd.

Proof of Theorem . Let N be a Normal(0, 1)-distributed. Then ENp = Lp for all p ∈ N (cite ex-
ample from earlier in text). Moreover, GN has a positive radius of convergence (in fact it con-
verges everywhere), so LN is determined by its moments by Theorem 16.16. Proposition 16.21
says that all moments of (Sn, n ≥ 1) converge to those ofN , and it follows by Theorem 16.19 that
Sn

d→ N . □
Proof of Proposition 16.21. The claim is obvious for p = 1 since E

[
Sn

]
= 0 for all n. It is also easy

for p = 2 since E
[
S2
n

]
=
∑n

i=1E
[
X2

i

]
= n so E

[
S
2
n

]
= 1 = L2.

Now fix p ≥ 2, and suppose inductively that the claim is true for all 1 ≤ q ≤ p. IfE
[
|X1|p+1

]
<

∞ then for any n ∈ N,

E
[
|Sp+1

n |
]
≤

n∑
i1,...,ip+1=1

E

 p∏
j=1

+1X
ij
j

 <∞ ,

the last identity holding by the factorization formula since since in each term in the sum, any single
random variable Xi shows up at most p+ 1 times.

We now write
Sp+1
n = Sp

n(X1 + . . .+Xn) ;

by linearity of expectation and since (X1, . . . , Xn) are identically distributed we then have

E
[
Sp+1
n

]
=

n∑
i=1

E [Sp
nXi] = nE [Sp

nXn] = nE [(Sn−1 +Xn)
pXn] .

Applying the binomial expansion to (Sn−1 +Xn)
p it follows that

E
[
Sp+1
n

]
= n

p∑
j=0

(
p

j

)
E
[
Sj
n−1X

p−j
n Xn

]
= n

p∑
j=0

(
p

j

)
E
[
Sj
n−1

]
E
[
Xp+1−j

n

]
.

The j = p term of the sum is zero since E [Xn] = 0. The j = p − 1 term of the sum is
pE
[
Sp−1
n−1

]
E
[
X2

n

]
= E

[
Sp−1
n−1

]
. So the above identity may be rewritten as

E
[
Sp+1
n

]
= npE

[
Sp−1
n

]
+ n

p−2∑
j=0

(
p

j

)
E
[
Sj
n−1

]
E
[
Xp+1−j

n

]
.
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To obtain an identity for E
[
S
p+1
n

]
we divide through by n(p+1)/2, which yields

E
[
S
p+1
n

]
= p

(
n− 1

n

) p−1
2

E
[
S
p−1
n

]
+

p−2∑
j=0

(
p

j

)
1

n
p−1−j

2

(
n− 1

n

) j
2

E
[
Xp+1−j

n

]
E
[
S
j
n

]
→ pLp−1 = Lp+1 .

□

17. Weak convergence

17.1. Measures on metric spaces; the Portmanteau theorem. In this section we develop
the theory of convergence of probability measures on metric spaces. Throughout what follows, we
fix a metric spaceM = (M,d), and write BM for the Borel σ-field onM . By a probability measure M = (M,d) metric space

BM Borel σ-fieldon M we mean a probability measure on (M,BM).
An M-valued random variable is a (F/BM)-measurable map X : Ω → M , where (Ω,F ,P)

is a probability space. The law LX of X is the push-forward X∗P; in other words, LX(B) =
P {X ∈ B} = P

{
X−1(B)

}
forB ∈ BM. Note that if I :M →M is the identity map then I has

law LX on the probability space (M,BM,LX); this is the basis of the change of variables formula
which says that if f :M → R is measurable and f(X) is non-negative or integrable, then

E [f(X)] =

∫
M
fdLX .

The following is a basic property of probability measures on metric spaces.

Proposition 17.1. Every probability measure µ on (M,BM) is regular: that is to say, for all A ∈ BM and
all ϵ > 0 there exist F ⊆ A ⊆ G with F closed and G open such that µ(G \ F ) < ϵ.

Proof. Let G be the collection of regular sets in BM. We show that G = BM by proving that G is a
σ-field containing the closed sets. Note that G is clearly closed under complements.

Fix A ∈ BM closed, let F = A, and let Gn = B(A, 1/n) = {x ∈ M : d(x,A) < 1/n}. Then
Gn is open, and sinceGn ↓ A, it follows by dominated convergence that µ(Gn \F ) = µ(Gn \A) ↓
0. Thus A ∈ G so G contains the closed sets.

Finally, fix any sequence (An, n ≥ 1) of elements of G and let A =
⋃

n≥1An. Given ϵ > 0, for
each n ≥ 1 choose Fn ⊆ An ⊆ Gn such that µ(Gn \ Fn) ≤ ϵ/2n+1. Set F ′ =

⋃
n≥1 Fn and

G =
⋃

n≥1Gn, and choose n0 large enough that µ(F ′\∪n≤n0Fn) < ϵ/2. Taking F =
⋃

n≤n0
Fn,

it follows that F ⊂ A ⊂ G, and

µ(G \ F ) ≤ µ(F ′ \ F ) + µ(G \ F ′) ≤ ϵ

2
+
∑
n≥1

ϵ

2n+1
= ϵ □

We say thatA ⊂ BM is a separating class if for any two probability measures P,Q onM, if P (A) = separating class

Q(A) for all A ∈ A then P = Q. The preceding proposition implies that the collection of closed
sets inM is a separating class (exercise). We saw earlier in the term that the collection {(−∞, q], q ∈
Q} is a separating class for (R,BR).

The next proposition shows that expectations of bounded continuous test functions characterize
probability measures onmetric spaces. We writeCb(M) for the set of bounded continuous functions
f :M → R.

Proposition 17.2. Fix P,Q two probability measures onM. If
∫
fdP =

∫
fdQ for all f ∈ Cb(M) then

P = Q.

Proof. By Proposition 17.1, it suffices to show that P (F ) = Q(F ) for all closed sets F ⊂ M . Fix
such F and for n ≥ 1 define fn :M → [0, 1] by

fn(x) =

{
1− nd(x, F ) if d(x, F ) ≤ 1/n

0 otherwise.
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Then the functions (fn, n ≥ 1) bounded and continuous and are pointwise decreasing to the
function 1[F ], so by dominated convergence and the hypothesis of the proposition,

P (F ) =

∫
1[F ]dP = lim

n→∞

∫
fndP =

∫
fndQ =

∫
IFdQ = Q(F ). □

We pause to to introduce the notation Pf :=
∫
fdP , where P is a probability measure and f is

a non-negative or P -integrable function. Here is the fundamental definition of the section.Pf :=
∫
fdP

Definition 17.3. Given probability measures (Pn, n ≥ 1) and P onM, say Pn converges in distribution
to P , and write Pn ⇒ P , if Pnf → Pf for all f ∈ Cb(M).

Exercise 17.1. Show that if Pn ⇒ P and Pn ⇒ Q then P = Q.

Theorem 17.4 (Portmanteau theorem). Given probability measures (Pn, n ≥ 1) and P on M, the fol-
lowing are equivalent.

(1) Pnf → Pf for all f ∈ Cb(M).
(2) Pnf → Pf for all uniformly continuous finCb(M).
(3) lim supn→∞ Pn(F ) ≤ P (F ) for all F ⊂M closed.
(4) lim infn→∞ Pn(G) ≥ P (G) for all G ⊂M open.
(5) limn→∞ Pn(A) = P (A) for all A ∈ BM with P (∂A) = 0.

Proof. We begin with some easy implications. First note that (1) is equivalent to the following con-
dition.

(1’) Pnf → Pf for all continuous f :M → [0, 1].
Clearly (1) implies (1’); for the reverse implication, replace f by (f/range(f)) − inf(f). Next,
clearly (1) implies (2). Also, (3) and (4) are clearly equivalent (take complements). To conclude the
proof we show that (2) implies (3), that (3) and (4) together imply (5), and that (5) implies (1’).

Suppose that (2) holds, and fix any closed set F ⊂ M and δ > 0. Let m be large enough that
G := B(F, 1/m) has P (G) < P (F ) + δ, and let

f(x) =

{
1−md(x, F ) if d(x, F ) ≤ 1/m

0 otherwise.

Then f is uniformly continuous and 1[F ] ≤ f ≤ 1[G], so

lim sup
n→∞

Pn(F ) = lim sup
n→∞

Pn1[F ] ≤ lim
n→∞

Pnf = Pf ≤ P (G) = P (F ) + δ ;

since δ > 0 was arbitrary, (3) follows.
Suppose (3) and (4) hold. Fix A ∈ BM and write A◦ = A \ ∂A and A+ = A ∪ ∂A for the

interior and closure of A, respectively. ThenA◦, A+

P (A◦) ≤ lim inf
n→∞

Pn(A
◦) ≤ lim inf

n→∞
Pn(A) ≤ lim sup

n→∞
Pn(A) ≤ lim sup

n→∞
Pn(A

+) ≤ P (A+),

where the first and last inequalities follow from (4) and (3), respectively. IfP (∂A) = 0 thenP (A◦) =
P (A+) = P (A), and the above bounds give limn→∞ Pn(A) = P (A).

Finally, suppose (5) holds and fix f : M → [0, 1] continuous. Then ∂{f > t} ⊂ {f = t}, so if
P (∂{f > t}) > 0 then t is an atom of P∗f . Finite probability measures have at most countably
many atoms, so it follows that P ({f > t}) = 0 for Lebesgue-a.e. t ∈ [0, 1]. By (5), it follows that
Pn({f > t}) → P ({f > t}) for Lebesgue-a.e. t ∈ [0, 1], so using Fubini’s theorem,

Pnf =

∫
[0,1]

Pn({f > t})dt→
∫
[0,1]

P ({f > t})dt = Pf,

as n→ ∞. □
Exercise 17.2 (Subsubsequence principle). Show that Pn ⇒ P if and only if for all (nk, k ≥ 1)
increasing sequences of positive integers, there exists a subsequence (mk, k ≥ 1) such that Pmk

⇒ P as k → ∞.



112 LOUIGI ADDARIO-BERRY

17.2. Weights andmeasures. Ametric spaceM = (M,d) is called a Polish space if it is complete
and separable. One of the most important themes of the next part of the notes is how choosing the Polish space

right topology for Polish spaces yields a nice theory of measure.
Throughout this section, unless otherwise stated,M = (M,d) is a Polish space, (and x = {xi, i ≥

1} ⊂M is a countable dense set?) The set of probabilitymeasures on (M,M) is denoted prob(M). x = {xi, i ≥ 1}
countable, dense set

prob(M)We write K ⊂⊂ M to mean that K ⊂ M and K is compact. Recall that if F ⊂ M is closed
andK ⊂⊂M thenK ∩ F is compact.

The relationship between compactness and measures on Polish spaces is is crucial for what fol-
lows. A family C ⊂ prob(M) is tight if for all ϵ > 0 there is K ⊂⊂ M such that infP∈C P (K) > tight

1− ϵ.

Proposition 17.5. Let M = (M,d) be a Polish space. Then {P} is tight for all P ∈ prob(M).

Proof. For each n we have
⋃

i≥1B(xi, 2
−n) =M since x is dense, so there is i(n) ∈ N such that

P

 ⋃
i>i(n)

B(xi, 2
−(n+1))

 <
ϵ

2n
.

Let K = (
⋂

n≥1

⋃
i≤i(n)B(xi, 2

−(n+1)))+; recall that the superscript + denotes closure. Then
since the complement of

⋃
i≤i(n)B(xi, 2

−(n+1)) is contained in
⋃

i>i(n)B(xi, 2
−(n+1)), we have

P {Kc} ≤ P

⋃
n≥1

⋃
i>i(n)

B(xi, 2
−(n+1))

 ≤
∑
n≥1

ϵ

2n
= ϵ,

so to prove the proposition it suffices to show thatK is compact.
We prove this by contradiction; suppose G = (Gj , j ∈ J) is an open cover of K with no finite

subcover. Now,K ⊆
⋃

i≤i(1)B(xi, 2
−1), so there must be j(1) ≤ i(1) such thatK∩B(xj(1), 2

−1)

has no finite subcover from G. However, K ∩ B(xj(1), 2
−1) ⊂

⋃
i≤i(2)B(xi, 2

−2) so there must
be j(2) ≤ i(2) such that

K ∩B(xj(1), 2
−1) ∩B(xj(2), 2

−2)

has no finite subcover fromG. Prodeeding inductively, for each n ≥ 1 we may choose j(n) ≤ i(n)
such that

K ∩B(xj(n), 2
−n) ∩B(xj(n+1), 2

−(n+1))

has no finite subcover from G.
Now choose xn ∈ B(xj(n), 2

−n) ∩ B(xj(n+1), 2
−(n+1)) for each n ≥ 1. Then xn and xn+1

are both in B(xj(n+1), 2
−(n+1)), so d(xn, xn+1) ≤ 2−n. Thus (xn)n≥1 is Cauchy by the triangle

inequality. Since K is complete, it follows that xn → x ∈ K as n → ∞. Since G covers K, it
follows that x ∈ Gj for some j ∈ J . The set Gj is open, so there ism such that B(x, 2−m) ⊂ Gj .
But d(xn, x) ≤ 21−n, so it follows thatB(xj(n), 2

−n) ⊂ Gj for all n ≥ m+2, a contradiction. □

Note that the latter part of the preceding proof is really just the proof that a closed and totally
bounded set is compact (a set is totally bounded if for all r > 0 it can be covered with finitely many
many balls of radius at most r). Also, it follows immediately from the preceding proposition that
any finite collection of probability measures on a Polish space is tight.

Proposition 17.6. Fix C ⊂ prob(M) countable and list the elements of C as (Pn, n ≥ 1). Suppose that
for all r > 0,

lim
m→∞

lim inf
n≥1

Pn(∪m
i=1B(xi, r)) = 1.

Then C is tight.
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Proof. For r > 0, ϵ > 0 andm ∈ N define

F (r,m) :=
m⋃
i=1

B[xi, r].

Then letm1 = m1(r, ϵ) be such that

lim inf
n≥1

Pn(∪m1
i=1B(xi, r)) ≥ 1− ϵ/2 ;

suchm1 exists by hypothesis. Then there must exist n0 = n0(r, ϵ) such that for all n ≥ n0,

Pn(∪m1
i=1B(xi, r)) ≥ 1− ϵ. (17.1)

Now letm2 = m2(r, ϵ) be such that for 1 ≤ n ≤ n0,

Pn(∪m2
i=1B(xi, r)) ≥ 1− ϵ; (17.2)

suchm2 exists since (B(xi, r), i ≥ 1) is a cover and since (Pi, 1 ≤ i ≤ n0) is a finite family.
Takem = m(r, ϵ) = m1 ∨m2; then for all n ≥ 1, by either (17.1) or (17.2),

Pn(F (r,m(r, ϵ)) ≥ 1− ϵ.

Now let
K =

⋂
j≥1

F

(
1

2j
,m

(
1

2j
,
ϵ

2j

))
.

Then Pn(K) ≥ 1 − ϵ for all n, and K is closed (it is the intersection of closed sets) and is totally
bounded so is compact. □
Exercise 17.3. Let (Pn, n ≥ 1) and P be Borel probability measures on a metric spaceM such that Pn ⇒ P .

(a) Prove that ifM is separable then (Pn, n ≥ 1) is tight.
(b) Prove or disprove: if P is tight then (Pn, n ≥ 1) is tight.

17.3. Aside: the existence of non-tight probability measures. Proposition 17.5 says that
any single Borel probability measure on a Polish space is tight. It would be satisfying if I could give
you an example showing that the condition that M be Polish is necessary, but that’s not so easy to
do. Even properly explaining why it’s not easy isn’t easy; it’s the subject of this (optional) section,
which veers into set theory and large cardinal axioms. I’m following the presentation from Fremlin
(cite) here.

For sets η, ξ, write η ≤ ξ if η = ξ or η ∈ ξ. An ordinal is a set ξ such that the following all hold.
• If η ∈ ξ then η is a set and η 6∈ η.
• If η ∈ ζ ∈ ξ then η ∈ ξ.
• The partial order ≤ is a well-ordering of η.

(A well-ordering of a set S is a total ordering of S such that every non-empty subset of S has a least
element under the ordering.)

A cardinal is an initial ordinal: that is, an ordinal η such that for any ξ ∈ η, there is no bijection
between ξ and η. The axiom of choice is equivalent to the statement that for every set S, there is a
unique cardinal η such that there is a bijection between S and η; the cardinal η is called the cardinal
of S, or the cardinality of S.

For any set S we write 2S for the power-set of S. A cardinal κ is measure-free if whenever µ is a
probability measure on (κ, 2κ), there is ξ < κ such that µ({ξ}) > 0.

This paragraph and the next are meant to give a bit of intuition for this definition. The assertion
thatN is measure-free says that if µ is any probability measure on (N, 2N), then there is n ∈ N such
that µ({n}) > 0. This is true by countable additivity.

The assertion that ℵ1 is measure-free says that if µ is any probability measure on (ℵ1, 2
ℵ1), then

there is a (countable) ordinal ξ ∈ ℵ1 such that µ({ξ}) > 0. If R has cardinality ℵ1 (the continuum
hypothesis) then this in particular implies that for any probability measure µ on (R, 2R), there is a
countable set S ⊂ R such that µ(S) > 0. This is not true of Lebesgue measure on R, for example.
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So it follows that, assuming the continuum hypothesis, if all subsets of R are Lebesgue measurable
then ℵ1 is not measure-free.

Given a topological space (M,M), a base forM is a set B ⊂ M such that every open set inM base

is a union of sets in B. The weight of M is the smallest cardinal of a base for M. Any separable
topological space has a finite or countable base, so its weight is finite or countable.

A Hausdorff space is a topological space (M,M) where points are separated: for any x, y ∈M
there are open sets U, V with x ∈ U and y ∈ V and U ∩ V = 0.

Theorem 17.7 (Fremlin Vol 4 page 244). Let (M,M) be a complete Hausdorff space. Then every finite
Borel measure µ on (M,M) is tight if and only if the weight ofM is measure-free.

The assertion that there exist cardinals which are notmeasure free is believed to be independent of
the axiom of choice and the continuum hypothesis (see Fremlin Vol 3 page 310). So one should not
hope for an overly straightforward construction of a space on which there exist non-tight probability
measures.

Billingsley (Convergence of probability measures, Second Edition, exercise 1.13), suggests the
following construction. Write λ for Lebesgue measure on [0, 1]. For a set S ⊂ [0, 1], the Lebesgue
outer measure of S is defined as

λ∗(S) := inf{λ(G) : S ⊂ G,G open} ;
informally, this is the smallest total length of any collection of intervals whose union covers S. The
Lebesgue inner measure of S is

λ∗(S) := sup{λ(K) : K ⊂ S,K closed}.
It is a theorem that the Lebesgue-measurable sets are precisely those for which λ∗(S) = λ∗(S).

Now suppose that S is a subset of [0, 1] with λ∗(S) = 1 and λ∗(S) < 1 (such sets exist assuming
the axiom of choice). For x, y in S let d(x, y) = |x − y|; then (S, d) is a metric space. Now, for
any compactK, we have λ∗(K) = 0, so λ∗ can not be tight.

I don’t understand this construction, because I’m not sure what measurable space λ∗ is supposed
to be a measure on. Presumably (S,F) for some σ-field F , but I’m not sure which. And, it’s not
clear to me how compactness relative to S relates to compactness relative to [0, 1].

17.4. Bounded Lipschitz functions and prob(M). Large parts of the coming material are
drawn from notes written by my friend and collaborator Roberto Imbuzeiro Oliveira, notably the
use of Bounded Lipschitz functions, the notion of consistent weightings, and both of their use in
proving Prokhorov’s theorem. Let BM

BL,∥ · ∥BLBL = BL(M) = {f ∈ Cb(M) : ‖f‖BL <∞},
where

‖f‖BL = ‖f‖∞ + ‖f‖Lip,
and ∥ · ∥Lip

‖f‖Lip = sup
x,y∈M,x ̸=y

|f(x)− f(y)|
d(x, y)

.

Exercise 17.4. The pair (BL, ‖ · ‖BL) is a normed vector space; moreover, if f, g ∈ BL then f ∧ g and
f ∨ g are both in BL.
Exercise 17.5. If A ⊂ M is open then there exist non-negative BL functions (fn)n≥1 such that fn ↑ 1[A]

as n→ ∞. (Consider the functions fn defined by fn(x) = 1 ∧ (nd(x,Ac).)
Exercise 17.6. If A,B ⊂M then ∂(A ∪B), ∂(A ∩B) and ∂(A \B) are all contained in ∂A ∪ ∂B.

Given metric spaces ((Mi, di), i ≥ 1), we define a product space M = (M,d) as follows. First
takeM =

∏
i≥1Mi. Next, for x, y ∈M , writing x = (xi, i ≥ 1) and y = (yi, i ≥ 1), set

d(x, y) = sup
i≥1

min(1, di(xi, yi))

2i
.

http://w3.impa.br/~rimfo/
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It’s not hard to check the following properties.Product space

• If the coordinate spaces ((Mi, di), i ≥ 1) are all complete separable metric spaces then M
is again complete and separable.

• if (x(n), n ≥ 1) is a sequence of elements ofM , then x(n) → x ∈M if and only if x(n)i → xi
for all i ≥ 1.

Due to the second property, the topology on M generated by d is sometimes called the topology of
pointwise convergence.
Proposition 17.8. If M is separable then the Borel σ-field BM on M is precisely the product σ-field.
Proof. Recall that the product σ-field Π is the smallest σ-field which makes the projection maps
πi : M → Mi continuous. These maps are also continuous with respect to d, so the topology
generated by d contains the product topology and thus BM contains Π.

Next, for any x ∈M and r > 0, we have

B[x, r] =
⋂

i≥1:r<2−i

π−1
i (BMi [xi, 2

ir]),

so the product σ-field onM contains the closed balls inM , so the open balls, so (since the space is
separable) the Borel σ-field. □

Given P ∈ prob(M) and a P -integrable function f : M → R, write Pf =
∫
M fdP . ForPf =

∫
M

fdP

bounded measurable f :M → R, defineEf (P ) := Pf

Ef : prob(M) → R
P 7→ Pf .

Write PM for the smallest σ-field which makes the maps
{Ef , f :M → R bounded and measurable}

all themselves measurable. (This looks roughly like a dual space to prob(M) but we haven’t actually
defined prob(M) as a vector space.)
Proposition 17.9. PM is the smallest σ-field which makes the maps {Ef , f ∈ BL} all measurable.
Proof. For the proof, write P∗ for the smallest σ-field which makes the maps {Ef , f ∈ BL} all
measurable. We must show that P∗ = PM . Functions in BL are all bounded and measurable, so
it is immediate that P∗ ⊂ PM .

For the other inclusion, let
H = {f :M → R s.t. Ef is defined and (P∗/BR)-measurable}.

ThenH ⊇ BL, and to prove P∗ ⊃ PM it suffices to show thatH contains all bounded measurable
functions f :M → R.

Note that if f, g ∈ H then Ecf+g and Ecf+g = cEf + Eg, so Ecf+g is (P∗/BR)-measurable
and thus cf + g ∈ H. Also, if (fn, n ≥ 1) and f are in H and 0 ≤ fn ↑ f as n→ ∞, then for all
P ∈ prob(M), by the monotone convergence theorem

EfnP = Pfn =

∫
fndP →

∫
f
dP = Pf = EfP.

In other words, Efn → Ef pointwise on prob(M). Measurability is preserved under pointwise
limits so Ef is measurable so f ∈ H. It follows thatH is a monotone class.

Finally, fixA ⊂M open. Then by Exercise 17.5, there exist functions (fn, n ≥ 1) in BL (and so
inH) such that 0 ≤ fn ↑ 1[A], so 1[A] ∈ H. ThusH ⊃ {1[A] : A ⊂M open}, so by the monotone
class theorem H contains all bounded measurable functions f :M → R, as required. □
Exercise 17.7. Show that two measuresP,Q ∈ prob(M) are equal if and only ifPf = Qf for all f ∈ BL.
Exercise 17.8. Let (S,S) be a measurable space. Then a function Ψ : S → prob(M) is measurable if and
only if Ef ◦Ψ is S/BR-measurable for all f ∈ BL.
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17.5. Recursively partitioning Polish spaces. Fix any sequence r = (rn, n ≥ 1) of real
numbers with rn ↓ 0 as n → ∞. In this section, using x and r, we define a nested sequence of
measurable partitions ofM , each refining the previous one.

Exercise 17.9. The collection (B(xi, rj), i, j ≥ 1) forms a countable base for the topology ofM.

We use the notation of the Ulam-Harris tree U =
⋃

n≥0Nn; recall that N0 := {∅} and ∅ is the
root of U . We also occasionally write Un = Nn. U,Un

(Bn,i, n, i ≥ 1)For i, n ≥ 1, let Bn,i = B(xi, rn) \ (∪i−1
j=1B(xj , rn)); the sets (Bn,i, i ≥ 1) partitionM since

∪i≥0B(xi, rn) =M . We have suppressed the dependence on x and r in the notation Bm,i to keep
things readable; if we need to make this dependence explicit we will write Bx,r

n,i. This dependence
is also left out of the notation introduced next.

SetA(∅) =M . Forn ≥ 1, suppose (A(v), v ∈ Nn−1) is already defined and forms ameasurable
partition ofM . Then for each v ∈ Nn−1 and i ≥ 1, let A(vi) = A(v) ∩Bn,i. Since

⋃
i≥1Bn,i = (A(v), v ∈ U)

M , it follows that (A(v), v ∈ Nn) is indeed a measurable partition refining (A(v), v ∈ Nn−1).

Proposition 17.10. For any n ≥ 1, for any K ⊂⊂ M there is m = m(K,n) such that K ⊂⋃
v∈{1,...,m}n A(v).

Proof. For all n ≥ 0, the collection (B(xi, rn), i ≥ 1) is an open cover ofM , so for any K ⊂⊂ M
there ism = m(K,n) such that

K ⊂
⋃
i≤m

B(xi, rn) =
⋃
i≤m

Bn,i.

Next note that for anym,n ≥ 1,⋃
v∈{1,...,m}n

A(v) =
⋃

u∈{1,...,m}n−1

⋃
i≤m

A(ui)

=
⋃

u∈{1,...,m}n−1

A(u) ∩ ⋃
i≤m

B(xi, rn)


=
⋃
i≤m

B(xi, rn) ∩
⋃

u∈{1,...,m}n−1

A(u),

so by induction ⋃
v∈{1,...,m}n

A(v) =
⋂
j≤n

⋃
i≤m

B(xi, rj) =
⋃
i≤m

B(xi, rn).

In particular ifm = m(K,n) as above thenK ⊂
⋃

v∈{1,...,m}n A(v). □

We record the following fact for later use.

Proposition 17.11. For all v ∈ Nn,

∂A(v) ⊆
⋃
i≥1

⋃
m≤n

∂B(xi, rm) =
⋃
i≥1

⋃
m≤n

{x ∈M : d(x, xi) = rm}.

Proof. If v = ui then A(v) = A(u) ∩ (B(xi, rn) \ ∪j<iB(xj , rn)), so by Exercise 17.6,

∂A(v) ⊂ ∂A(u) ∪
⋃
j<i

∂B(xj , rn).

The result follows by induction. □
In sum, from the sequence r = (rn, n ≥ 1) and the countable dense set x = {xi, i ≥ 1} we

have created a countable base (B(xi, rj), i, j ≥ 1) and a collection of sets (A(v), v ∈ U) such that
for all n ≥ 0, (A(v), v ∈ U , |v| = n) is a partition of U . Moreover, for any n ≥ 1, any compact
K ⊂M is covered by a finite collection of sets from (A(v), v ∈ U , |v| = n).
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Given P ∈ prob(M), let wP : U → [0, 1] be defined by wP (v) = P (A(v)). The function wP

defines a consistent weighting of U ; this means wP satisfies the following properties.
• wP is non-negative and wP (∅)=1.
• For all v ∈ U , if A(v) = ∅ then wP (v) = 0.
• For all v ∈ U , wP (v) =

∑
i≥1wP (vi)

Our next aim is to prove a theorem which provides a sort of converse to this.
The set-up for the theorem requires the axiom of countable choice. Let U+ = {v ∈ U : A(v) 6=

∅} and for n ≥ 0 write U+
n = U+∩Un. Then fix points y = (yv, v ∈ U+) such that for all v ∈ U+,

we have yv ∈ A(v). We will use yv as a representative of the A(v).
Note that since (A(v), v ∈ U+

n ) partitions v and d(xi, yv) ≤ rn if v = wi ∈ U+
n , it follows that

(yv, v ∈ U+) is again a countable dense set in M . Moreover, single points are measurable with
respect to Borel σ-field, so the singleton sets {yv} are all measurable

Exercise 17.10. Endow the set U∗ = {Functions w : U → R} = RU with the product topology (the
topology of pointwise convergence). Let

W = {w ∈ U∗ : w is a consistent weighting}.

Then W is measurable with respect to the Borel σ-field BU∗ .

Given w ∈ W , for each n we can define a probability measure Ψn(w) by

Ψn(w) =
∑
v∈U+

n

w(v)δyv ;

this is an atomic measure assigning mass w(v) to point yv.

Proposition 17.12. Ψn is a measurable map fromW to prob(M).

Proof. For any function f ∈ BL,

(Ef ◦Ψn)(w) = Ef (Ψn(w)) =

∫
fdΨn(w) =

∑
v∈U+

n

w(v)f(yv).

Equivalently, Ef ◦Ψn : W → R is given by

Ef ◦Ψn ≡
∑
v∈U+

n

f(yv)πv,

where πv : U∗ → R is the projection map, πv(w) = w(v).
Since the projection maps are all measurable, it follows that Ef ◦Ψn is BW/BR-measurable for

all f ∈ BL and all n ∈ N. By Exercise 17.8, it follows that Ψn is measurable. Alternately, argue as
follows (this is really the proof of Exercise 17.8): for all f ∈ BL and all D ⊂ R open,

Ψ−1
n (E−1

f (D)) ∈ BW .

Since the sets {E−1
f (D), D ⊂ R open, f ∈ BL} generate PM by Proposition 17.9, it follows that

Ψn is measurable. □

Proposition 17.13. There exists a measurable map Ψ = Ψr,x,y : W → prob(M) such that the following
hold.

(1) for all w ∈ W , for all n ≥ 1 and all f ∈ BL,

|Ψn(w)f −Ψ(w)f | ≤ ‖f‖Lip · 2rn.

(2) For all P ∈ prob(M) we have Ψ(wP ) = P .
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Proof. We define a sequence (Zn, n ≥ 1) of random elements of M on the probability space
(Ω,F ,P) = ([0, 1),B[0,1),Leb) as follows.

Use ≺ for the lexicographic order on U . For each n ≥ 1 and v ∈ Un, define Iv = Iv(w) =
[gv, dv), where gv =

∑
u∈Un,u≺v w(u) and dv =

∑
u∈Un,u⪯v w(u), so that the intervals (Iv, v ∈

Un) partition [0, 1). The resulting partitions inherit the nested structure of the partitions ofM , in
that (Ivj , j ≥ 1) forms a partition of Iv.

Let Zn : [0, 1) → M be given by Zn =
∑

v∈Un
yvδIv ; i.e., if ω ∈ Iv then Zn(ω) = yv ∈ A(v).

Then Zn has distribution Ψn(w):

P {Zn = yv} = P {Zn ∈ Iv} = |Iv| = w(v) = Ψn(w)(v) .

Fix n ≤ m. For all ω ∈ [0, 1), and let u ∈ Un and v ∈ Um be such that ω ∈ Iu and ω ∈ Iv.
then yu ∈ A(u) ⊂ A(v) and yv ∈ A(v), so d(yu, yv) ≤ diam(A(v)) ≤ 2rn. It follows that
d(Zm, Zn) ≤ rn, so (Zn, n ≥ 1) is almost surely (in fact, surely) Cauchy and so convergent. Let
Z : Ω →M be the limiting random variable and let Ψ(w) be its law; then |Zn −Z| ≤ 2rn almost
surely, so for any f ∈ BL, by a change of variables,

|Ψ(w)f −Ψn(w)f | = |E [f(Z)]−E [f(Zn)] | ≤ E [|] f(Z)− f(Zn)| ≤ 2rn · ‖f‖Lip,

which is the first assertion of the proposition.
Before proving the second assertion, we verify the measurability of Ψ. Note that

Ψ(w)f =

∫
fdΨ(w) = Ef (Ψ(w)) = (Ef ◦Ψ)(w)

and likewise Ψn(w)f = (Ef ◦Ψn)(w). The preceding bound then yields that Ef ◦Ψn → Ef ◦Ψ
for all f ∈ BL. Thus Ef ◦Ψ is measurable for all f ∈ BL, so Ψ is measurable by Exercise 17.8.

Now suppose that in factw = wP for some probabilitymeasureP ∈ prob(M). By Exercise 17.7,
to show Ψ(wP ) = P it suffices to show that Pf = Ψ(wP )f for all f ∈ BL. So fix f ∈ BL, and
for v ∈ U define

F (v) =

{ ∫
A(v) fdP

P (A(v)) if P (A(v)) > 0

0 otherwise.

Think of this as the conditional expectation of Y given that Y ∈ A(v), where Y is a random
variable with law P .

We have

Ψn(wP )f =
∑
v∈Un

P (A(v))f(yv) =
∑

v∈Un:P (A(v))>0

P (A(v))f(yv),

so

|Ψn(wP )f − Pf | =

∣∣∣∣∣∣
∑

v∈Un:P (A(v))>0

P (A(v))(f(yv)− F (v))

∣∣∣∣∣∣ . (17.3)

For v ∈ Un, if P (A(v)) > 0 then since A(v) has diameter at most 2rn,

inf(f(y) : y ∈ A(v)) ≤ yv ≤ sup(f(y) : y ∈ A(v)) ≤ 2rn · ‖f‖Lip ;

since F (v) is an average of f over A(v), it is also bounded between inf(f(y) : y ∈ A(v)) and
sup(f(y) : y ∈ A(v)), so (17.3) gives

|Ψn(wP )f − Pf | ≤
∑

v∈Un:P (A(v))>0

P (A(v)) · 2rn · ‖f‖Lip = 2rn · ‖f‖Lip .

Together with the first assertion of the proposition, it follows that Pf = Ψ(wP )f , as required. □
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∥ · ∥BL,∗

17.6. Metrizing weak convergence. Metrize prob(M) via the dual norm

d∗BL(P,Q) = ‖P −Q‖BL,∗ := sup
f∈BL,∥f∥BL ̸=0

|Pf −Qf |
‖f‖BL

.

Theorem 17.14. Assume M is Polish. Fix probability measures (Pn, n ≥ 1) and P from prob(M). Then
Pn ⇒ P if and only if ‖Pn − P‖BL,∗ → 0.

This theorem may seem stronger than we have a right to expect. Weak convergence means
Pnf → Pf for all f ∈ BL. Theorem 17.14 implies that when this occurs, in fact the convergence
is uniform over functions with ‖f‖BL ≤ 1.

Lemma 17.15. Fix a countable dense set x = {xi, i ≥ 1} and a sequence r = (rn, n ≥ 1) with rn ↓ 0,
and letΨ : W → prob(M) be as in Proposition 17.13. Next fix P,Q ∈ prob(M), and consistent weightings
p, q of U such that Ψ(p) = P and Ψ(q) = Q. Then

‖P −Q‖BL,∗ ≤ inf
n≥1

(
4rn +

∑
v∈Un

|p(v)− q(v)|

)
.

Proof. Fix a function f ∈ BL which is not identically zero, and n ≥ 1. We must show that for all
n ≥ 1,

|Pf −Qf | ≤ ‖f‖BL ·

(
4rn +

∑
v∈Un

|p(v)− q(v)|

)
.

We use the triangle inequality to write

|Pf−Qf | = |Ψ(p)f−Ψ(q)f | ≤ |Ψn(p)f−Ψn(q)f |+ |Ψ(p)f−Ψn(p)f |+ |Ψ(q)f−Ψn(q)f | .

By Proposition 17.13, we know that |Ψ(p)f −Ψn(p)f | ≤ ‖f‖Lip · 2rn; the same bound holds for
Ψ(q)f −Ψn(q)f |. We thus have

|Pf −Qf | ≤ |Ψn(p)f −Ψn(q)f |+ 4rn‖f‖Lip

=

∣∣∣∣∣∑
v∈Un

(p(v)− q(v))f(yv)

∣∣∣∣∣+ 4rn‖f‖Lip

≤
∑
v∈Un

|p(v)− q(v)||f(yv)|+ 4rn‖f‖Lip

≤ ‖f‖∞
∑
v∈Un

|p(v)− q(v)|+ 4rn‖f‖Lip .

The bound follows since both ‖f‖Lip and ‖f‖∞ are at most ‖f‖BL. □

Lemma 17.16. Fix a sequence (Qk, k ≥ 1) of elements of prob(M). Suppose that there exists a function
p : U → [0, 1] such that for all n ≥ 1,

lim
k→∞

∑
v∈Un

|p(v)−Qk(A(v))| = 0 .

Then p ∈ W and ‖Qk −Ψ(p)‖BL,∗ → 0 as k → ∞.

Proof. For all v ∈ U ,
|p(v)−Qk(A(v))| → 0;



120 LOUIGI ADDARIO-BERRY

since Qk(A(v)) is non-negative it follows that p(v) ≥ 0; since Qk(∅) = 1 for all k it follows that
p(∅) = 1. Also, if A(v) = ∅ then Qk(A(v)) = 0 for all k so p(v) = 0. Moreover,∣∣∣∣∣∣p(v)−

∑
i≥1

p(vi)

∣∣∣∣∣∣ =
∣∣∣∣∣∣p(v)−Qk(A(v))−

∑
i≥1

(p(vi)−Qk(A(vi)))

∣∣∣∣∣∣
≤ |p(v)−Qk(A(v))| −

∑
i≥1

|p(vi)−Qk(A(vi))| ).

The final bound tends to zero as k → ∞ by assumption, so p(v) =
∑

i≥1 p(vi); thus p is a
consistent weighting, so P := Ψ(p) is defined. Now note that for all n ≥ 1, by Lemma 17.15 and
the assumptions of the Lemma, ,

lim sup
k→∞

‖Qk − P‖BL,∗ ≤ lim sup
k→∞

(
4rn +

∑
v∈Un

|p(v)−Qk(A(v))|

)
= 4rn.

Taking n→ ∞, the result follows. □

Lemma 17.17. Fix a tight sequence (Qk, k ≥ 1) from prob(M), and suppose that there is p : U → [0, 1]
such that Qk(A(v)) → p(v) for all v ∈ U . Then p ∈ W and ‖Qk −Ψ(p)‖BL,∗ → 0 as k → ∞.

Proof. Fix ϵ > 0 and let K ⊂⊂ M be such that infk≥1Qk(K) > 1 − ϵ; such K exists since
(Qk, k ≥ 1) is tight. Now fix n ≥ 1 and let m be such that K ⊂ ∪v∈[m]nA(v); such m exists by
Proposition 17.10. Then∑

v∈Un

|p(v)−Qk(A(v))| =
∑

v∈[m]n

|p(v)−Qk(A(v))|+
∑

v∈Un\[m]n

|p(v)−Qk(A(v))|

The first sum has a finite number of terms so the pointwise convergence of p to Qk implies that

lim
k→∞

∑
v∈[m]n

|p(v)−Qk(A(v))| = 0.

To handle the second, notice that since Qk(A(v)) → p(v) for all v, by Fatou’s lemma we have∑
v∈Un\[m]n

p(v) =
∑

v∈Un\[m]n

lim inf
k→∞

Qk(A(v)) ≤ lim inf
k→∞

∑
v∈Un\[m]n

Qk(A(v)) < ϵ ,

the last bound holding since the sets (A(v), v ∈ Un \ [m]n) are disjoint and their union is contained
inK. It follows that∑

v∈Un\[m]n

|p(v)−Qk(A(v))| ≤
∑

v∈Un\[m]n

p(v) +
∑

v∈Un\[m]n

Qk(A(v)) < 2ϵ .

We thus have
lim sup
k→∞

∑
v∈Un

|p(v)−Qk(A(v))| < 2ϵ ;

since ϵ > 0 was arbitrary the result follows by Lemma 17.16. □

Proof of Theorem 17.14. Suppose Pn ⇒ P . We assume the radii r = (rn, n ≥ 1) are chosen so that
P (∂A(v)) = 0 for all v ∈ V ; this is possible by Proposition 17.11. By the Portmanteau theorem,
it follows that Pn(A(v)) → P (A(v)) for all v ∈ U . Also, the fact that Pn ⇒ P implies that
(Pn, n ≥ 1) is tight (see Exercise 17.3 (b)), and Lemma 17.17 then implies that ‖Pn−P‖BL,∗ → 0
as n→ ∞.

Next suppose that ‖Pn − P‖BL,∗ → 0. Fix G ⊂ M open, and let (fk, k ≥ 1) be BL functions
with ‖fk‖BL 6= 0 and with 0 ≤ fk ↑ 1[G] as k → ∞. Then for all k ≥ 1we have |Pnfk−Pfk| → 0
as n→ ∞, so

lim inf
n→∞

Pn1[G] ≥ lim inf
n→∞

Pnfk = Pfk.
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Since fk ↑ 1[G] as k → ∞, by the monotone convergence theorem it follows that

lim inf
n→∞

Pn1[G] ≥ sup
k≥1

Pfk = lim
k→∞

Pfk = P1[G] .

The Portmanteau theorem now implies that Pn ⇒ P . □
Theorem 17.18 (Prokhorov’s theorem). If (Pn, n ≥ 1) is a tight family of measures from prob(M),then
there exists P ∈ prob(M) and an increasing sequence (nk, k ≥ 1) such that Pnk

⇒ P as k → ∞.

Proof. For each u ∈ U , the sequence (Pn(A(u)), n ≥ 1) is bounded so contains a convergent
subsequence. Since U is countable, a diagonal argument implies that there exists an increasing
sequence (nk, k ≥ 1) and a function p : U → R such that Pnk

→ p pointwise as k → ∞.
Lemma 17.17 now implies that p is a consistent weighting and that ‖Pnk

− Ψ(p)‖BL,∗ → 0 as
k → ∞, and Theorem 17.14 then yields that Pnk

⇒ Ψ(p) as k → ∞. □

17.7. Probability kernels and conditional probabilities. For ameasurable space S = (S,G)
we write prob(S) for the collection of probability measures on S. Given measurable spaces (Ω,F)
and (S,G) =: S, a transition kernel from (Ω,F) to (S,G) is a function

K : Ω → prob(S)

ω 7→ Kω

such that for all B ∈ G, the function ω 7→ Kω(B) is (F/BR)-measurable.Transition kernel

Aside. In the case that (S,G) = (M,BM) for M = (M,BM) a metric space, this is equivalent to
saying that for all f ∈ BL(M),

Ef ◦K : Ω → R
ω 7→ Kωf

is (G/BR)-measurable, or in other words thatK is (F/PM)-measurable; see Exercise 17.8.

Theorem 17.19. Given measurable spaces (Ω,F) and (S,G) =: S and a transition kernel K : Ω →
prob(S), for any probability measureP on (Ω,F) there is a unique measureP⊗K on (Ω×S,F ⊗G) such
that for all A ∈ F and B ∈ G,

(P⊗K)(A×B) =

∫
A
Kω(B)P(dω).

The measure P⊗K has the following property. If f : Ω× S → R is (F × G/BR)-measurable and either f
is non-negative or f ∈ L1(Ω× S,F ⊗ G,P⊗K) then

ω 7→
∫
S
f(ω, s)Kω(ds)

is (F/BR)-measurable and

(P⊗K)f =

∫
Ω

∫
S
f(ω, s)Kω(ds)P(dω) .

Proof. First note that by assumption, Kω(B) is F -measurable as a function of ω, and is bounded,
so we may write∫

A
Kω(B)P(dω) =

∫
A

∫
B
1Kω(ds)P(dω) =

∫
Ω

∫
S
1[A×B](ω, s)K

ω(ds)P(dω)

□
Theorem 17.20. Fix a probability space (Ω,F ,P) and a sub-σ-field G of F . Then for any Polish space
M = (M,d) and any (F/BM)-measurable random variable Y : Ω →M , there exists a probability kernel

P : Ω → prob(M)

ω 7→ Pω
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such that the following holds. If f :M → R is (BM/BR)-measurable and E|f(Y )| <∞, then for almost all
ω ∈ Ω,

Pω|f | <∞ and E {f(Y ) | G} (ω) = Pωf.
Conditional distribution

The last condition means it makes sense to view Pω as the conditional distribution of Y given
G, and we write

P {Y ∈ A | G } : Ω → [0, 1]

ω 7→ Pω(A).

We proceed much as in the development for Prokhorov’s theorem, using approximation by
atomic measures and taking a suitable limit. For ω ∈ Ω and u ∈ U , let

p(u, ω) = E
{
1[Y ∈A(u)]

∣∣ G} (ω) .
Sometimes we hold u fixed and let ω vary; we write pu(ω) = p(u, ω) to emphasize that this is
taking place. Likewise, we sometimes hold ω fixed and think of u as varying, and in these cases
write pω(u) = p(u, ω).

Note that pu : Ω → R is (G/BR)-measurable for each u ∈ U . Since BRU is generated by the
projection maps onto single coordinates, it follows that the map

ω 7→ (pω(u), u ∈ U) (17.4)

from Ω to RU is (G/BRU )-measurable.

Claim 17.21. It holds that pω ∈ W for P-almost all ω ∈ Ω.

Proof. The idea of the proof is this: for a function q : U → R, the property that q ∈ U may be
written as the intersection of countably many “local” properties relating to the value of q at a node
and perhaps at its children. A countable intersection of probability-one events still has probability
one, so it suffices to check that each of these local properties holds almost surely.

More precisely, to prove the claim, it suffices to observe that each of the following holds with
P-probability one.

• pω(∅) = E
{
1[Y ∈M ]

∣∣ G} (ω) = E {1 | G} (ω) = 1. This holds with P-probability one
since 1 is a version of E {1 | G}.

• pω(u) = E
{
1[Y ∈A(u)]

∣∣ G} (ω) is non-negative for all u ∈ U , with equality if A(u) = ∅.
This holds with P-probability one by monotonicity of conditional probability and since 0
is a version of E

{
1[Y ∈∅]

∣∣ G}.
• For all u ∈ U , ∑

i≥1

pω(ui) =
∑
i≥1

E
{
1[Y ∈A(ui)]

∣∣ G} (ω)
= E

∑
i≥1

1[Y ∈A(ui)]

∣∣∣∣∣∣ G
 (ω)

= E
{
1[Y ∈A(u)]

∣∣ G} (ω)
= pω(u) .

This holds with P-probability one by linearity of conditional expectation. □

Proof of Theorem 17.20. Fix Y : Ω → M and f : M → R with E|f(Y )| < ∞ as in the statement
of the theorem. We first assume f ∈ BL.

Let Pω = Ψ(pω) for ω ∈ Ω. As Ψ is (BW/PM)-measurable, by (17.4) it follows that Pω is
(G/PM)-measurable. Since f ∈ BL, by Proposition 17.13 (a) we have

Pωf = Ψ(pω)f = lim
n→∞

Ψn(p
ω)f. (17.5)
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Since
pω(u) = pu(ω) = E

{
1[Y ∈A(u)]

∣∣ G} (ω) ,
we have

Ψn(p
ω) =

∑
u∈Un

E
{
1[Y ∈A(u)]

∣∣ G} (ω) · δyu ,
so

lim
n→∞

Ψn(p
ω)f = lim

n→∞

∑
u∈Un

E
{
1[Y ∈A(u)]

∣∣ G} (ω) · f(yu)
= lim

n→∞
E

{ ∑
u∈Un

1[Y ∈A(u)] · f(yu)

∣∣∣∣∣ G
}
(ω) , (17.6)

the last equality holding for all ω outside of a set of measure 0.
For u ∈ Un, if Y ∈ A(u) then d(Y, yu) ≤ 2rn, so |f(yu)− f(Y )| ≤ 2rn‖f‖Lip. It follows that∣∣∣∣∣f(Y )−

∑
u∈Un

1[Y ∈A(u)] · f(yu)

∣∣∣∣∣ ≤ 2rn‖f‖Lip .

In particular
∑

u∈Un
1[Y ∈A(u)] · f(yu) → f(Y ) and∣∣∣∣∣∑

u∈Un

1[Y ∈A(u)] · f(yu)

∣∣∣∣∣ ≤ |f(Y )|+ 2r1‖f‖∞,

so by the conditional dominated convergence theorem it follows that

lim
n→∞

E

{ ∑
u∈Un

1[Y ∈A(u)] · f(yu)

∣∣∣∣∣ G
}

a.s.
= E {f(Y ) | G} . (17.7)

Combining (17.5), (17.6) and (17.7) we see thatE {f(Y ) | G} (ω) = Pωf forP-almost all ω when
f ∈ BL.

Next, if f = 1[G] for G ⊂ M open, then we may take 0 ≤ fk ↑ f as k → ∞, with fk ∈ BL
for all k. Since Pω ∈ prob(M), it follows that Pωf = limk→∞ Pωfk. The conditional monotone
convergence theorem gives that

E {f(Y ) | G} a.s.
= lim

k→∞
E {fk(Y ) | G} ,

so P-almost surely Pωf = E {f(Y ) | G} (ω) for f the indicator of an open set. The same argu-
ment shows that the set

Good :=
{
Measurable f :M → R, f s.t. P-almost-surely Pωf = E {f(Y ) | G} (ω)

}
is closed under non-negative monotone limits; the closure of this set under affine combinations
follows from linearity of integration/expectation. The monotone class theorem then implies that
Good contains all bounded measurable f : M → R. Applying monotonicity again shows Good
contains all non-negative functions, Finally, if E|f(Y )| < ∞ then writing f = f + −f− where
f+ and f− are the positive and negative parts of f , using linearity of integration completes the
proof. □

It’s worthwhile to briefly discuss the case when G = σ(X), where X : Ω → N takes values in
another Polish space N = (N, dN ). In this case for all u ∈ U ,

pω(u) = E
{
1[Y ∈A(u)]

∣∣ G} (ω)
isP-almost surely constant on fibres {ω : X(ω) = x} for all x ∈ R. Since U is countable it follows
that pω is almost surely constant on fibres, so Pω = Ψ(pω) is as well. Thus Pω factors through N :
there is a (BN/BM )-measurable function Q : N → prob(M) such that P-almost surely

Pω = QX(ω). (17.8)
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It follows that Qx is a probability kernel from N to M. In this case it’s natural to use the notation

P {Y ∈ B | X = x} := Qx(B) ;

for all A ∈ BN and B ∈ BM , we then have

P {X ∈ A, Y ∈ B} = E
[
1[X∈A]1[Y ∈B]

]
= E

[
1[X∈A]E

{
1[Y ∈B]

∣∣ X}]
= E

[
1[X∈A]QX(B)

]
=

∫
Ω
1[A](ω)QX(ω)(B)P(dω) .

The second equality holds by the tower law since 1[X∈A] isX-measurable; the third holds by (17.8)
and the definition of Pω. The change of variables formula then yields

P {X ∈ A, Y ∈ B} =

∫
A
P {Y ∈ B | X = x}LX(dx) .

In other words, the joint distribution of (X,Y ) is given by LX ⊗Q as in Theorem 17.19.

List of notation and terminology

A(R) A(R) = {∪n
i=1(ai, bi] : n ≥ 1,−∞ < a1 ≤ b1 ≤ a2 ≤ . . . ≤ an ≤ bn <

∞}; finite unions of half-open intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
B(R) The Borel σ-field ofM ; smallest σ-field containing all open sets ofM . . . . 12
B(R) The Borel σ-field of R; equals σ(A(R)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
CDF Cumulative distribution function: A Stieltjes functionwithF with limx→−∞ F (x) =

0 and limx→∞ F (x) = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
dµ/dν The Radon-Nikodým derivative of µ with respect to ν. . . . . . . . . . . . . . . . . . 80
EQ {X} “Expectation” notation meaning

∫
XdQ; Q need not be a probability mea-

sure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Field A collection of subsets of a ground set, closed under finite union and comple-

ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
λ-system A set A ⊂ 2Ω with Ω ∈ A, closed under monotone limits and relative com-

plements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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