1. Measure Theory

Def: Fix a set Ω and a set \mathcal{A} of subsets of Ω with $\emptyset \in \mathcal{A}$.

\mathcal{A} is a ring if

a) If $E, F \in \mathcal{A}$ then $E \cup F \in \mathcal{A}$,

b) If $E, F \in \mathcal{A}$ then $E \setminus F \in \mathcal{A}$.

\mathcal{A} is a π-system if

a) If $E, F \in \mathcal{A}$ then $E \cap F \in \mathcal{A}$,

b) If $E \in \mathcal{A}$ then $E^c \in \mathcal{A}$.

\mathcal{A} is a field if it is a ring and also

b) If $E \in \mathcal{A}$ then $E^c \in \mathcal{A}$.

Exercise: Fields are π-systems.

\mathcal{A} is a σ-field if it is a field and also

a') For any seq. $(A_n, n \geq 1)$ of elements of \mathcal{A}, $\bigcup_{n \geq 1} A_n \in \mathcal{A}$.

Def: For any set \mathcal{A} of subsets of Ω, the σ-field generated by \mathcal{A} is

$$\sigma(\mathcal{A}) := \bigcap \{ \mathcal{F} : \mathcal{F} \text{ a } \sigma\text{-field} \}.$$
The definition in pictures

\[A \rightarrow \sigma(A) = \bigcup \{ \mathcal{F} : \mathcal{F} \text{ is a } \sigma\text{-field}\} \]

Pre-measure \(\mu \) on ring \(A \):
1. \(\mu(\emptyset) = 0 \);
2. If \((A_n)_{n \geq 1} \) disjoint elements of \(A \), then \(\bigcup_{n \geq 1} A_n \) then \(\sum_{n \geq 1} \mu(A_n) = \mu(\bigcup_{n \geq 1} A_n) \)

\[\begin{align*}
\text{Additive:} & \quad \mu(\emptyset \cap F) = 0 \Rightarrow \mu(E \cup F) = \mu(E) + \mu(F) \\
\text{Countably Additive:} & \quad \mu \left(\bigcup_{n \geq 1} E_n \right) = \sum_{n \geq 1} \mu(E_n)
\end{align*} \]
Building measures

Def Fix a ring \(A \) over \(\Omega \). A pre-measure on \(A \) is a function \(\mu : A \to [0, \infty] \) with \(\mu(\emptyset) = 0 \) st.

for any seq. \((A_n, n \geq 1) \) of disjoint elements of \(A \),

if \(\bigcup_{n=1}^{\infty} A_n \in A \) then \(\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n) \)

We then say \((\Omega, A, \mu) \) is a pre-measure space.

Carathéodory Extension Theorem Let \((\Omega, A, \mu) \) be a pre-measure space. Then there exists a \(\sigma \)-field \(\mathcal{F} \) containing \(A \) st. \(\mu \) extends to a measure on \(\mathcal{F} \).

Dynkin's Theorem Let \((\Omega, \mathcal{F}) \) be a set with a \(\sigma \)-field on it, and let \(\mathcal{P} \subset \mathcal{F} \) be a \(\pi \)-system with \(\sigma(\mathcal{P}) = \mathcal{F} \). If \(\mu_1, \mu_2 \) are measures on \(\mathcal{F} \) and \(\mu_1(E) = \mu_2(E) \) for all \(E \in \mathcal{P} \) then \(\mu_1 \equiv \mu_2 \).
Aside

It seems to me that the following should be true.

Let \((\mathcal{M}, \mathcal{P})\) be a set with a \(\pi\)-system on it. Let \(\mu : \mathcal{P} \to [0, \infty)\) be s.t. \(\mu(\emptyset) = 0\) and if \((P_n, n \geq 1)\) are disjoint elements of \(\mathcal{P}\) s.t. \(\bigcup_{n \geq 1} P_n \subseteq Q \in \mathcal{P}\)

\[\text{then } \sum_{n \geq 1} \mu(P_n) \leq \mu(Q) \]

[Note: If \(Q \subseteq \bigcup_{n \geq 1} P_n\), then \(Q = \bigcup_{n \geq 1} Q \cap P_n\)]

Then there exists a measure on \(\sigma(\mathcal{P})\) extending \(\mu\).
Examples

- \(\Omega = \mathbb{R} \), \(A = \) Finite unions of intervals \((a,b] = \mathbb{Z} (a_i, b_i) u \ldots u (a_k, b_k) \)

\[(\text{CDF}: F_x(b) - F_x(a) = \mathbb{P}(x \in (a,b]) = \mu_x(a,b)] \]

\(a_i, \ldots, a_k, b_i, \ldots, b_k \in \mathbb{R}^2 \)

\(A \) is an algebra; want to know that \(F_x \) determines dist. of \(X \).

- \(\Omega = \{0,1\}^\mathbb{N} = \{(x_i, i \geq 1) : x_i \in \{0,1\} \} \).

\(A = \) Cylinder sets. Cylinder set: for \(s \in \mathbb{N} \) finite and \(y = (y_i, i \in s) \),

\[C_y = \{ x \in \Omega : x_i = y_i \ \forall i \in s \} \]

For cylinder set \(C_y \) set \(\mu(C_y) = \left(\frac{1}{2} \right)^{|s|} \) ("IID Fair coins")

Should be able to extend \(\mu \) to a p.m. on \((\Omega, \sigma(A))\); \(\mu \) models "an \(\infty \) sequence of fair coin tosses".
Carathéodory Proof
Idea: Approximate from above.

Let $(\Omega, \mathcal{A}, \mu)$ be a pre-measurable space. For $B \subseteq \Omega$ let

$\mu^*(B) = \inf \left(\sum_{n=1}^{\infty} \mu(A_n) : A_n \subseteq \mathcal{A}, \bigcup_{n=1}^{\infty} A_n \subseteq B \right)$

Prop: μ^* is an outer measure: $\mu^* : 2^{\Omega} \to [0, \infty]$ satisfies

i) $\mu^*(\emptyset) = 0$;
ii) $E \subseteq F \implies \mu(E) \leq \mu(F)$;
iii) if $(E_i, i \geq 1)$ are subsets of Ω then $\mu^*(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} \mu^*(E_i)$.

Def: Given an outer measure μ^* on Ω, say $A \subseteq \Omega$ is μ^*-additive if for all $B \subseteq \Omega$, $\mu^*(B) = \mu^*(A \cap B) + \mu^*(A^c \cap B)$.

Carathéodory Lemma Let $\mathcal{F} = \{ A \subseteq \Omega : A \text{ is } \mu^* \text{-additive} \}$

Define $\mu : \mathcal{F} \to [0, \infty]$ by $\mu(B) = \mu^*(B)$. Then $(\Omega, \mathcal{F}, \mu)$ is a measure space (i.e. \mathcal{F} is a σ-algebra over Ω and μ is a measure on \mathcal{F}).
(i) If \(B \in A \) then \(\mu^*(B) \leq \mu(B) \) since \((B, \phi, \phi, \ldots) \) covers \(B \). In particular \(\mu^*(\phi) \leq \mu(\phi) = 0 \) so \(\mu^*(\phi) = 0 \).

(ii) If \(E \subseteq F \) then any cover of \(F \) is a cover of \(E \) so \(\mu^*(F) \) is an inf over a smaller set so \(\mu^*(F) \geq \mu^*(E) \).

(iii) "Dyadic trick." Given \((E_i, i \geq 1) \) subsets of \(\Omega \). Write \(E = \bigcup_{i \geq 1} E_i \).

We prove: \(\forall \varepsilon > 0, \mu^*(E) \leq \left(\sum_{i \geq 1} \mu^*(E_i) \right) + \varepsilon \).

Fix \(\varepsilon > 0 \), then for all \(i \geq 1 \), fix a cover \((A_n^i, n \geq 1) \) of \(E_i \) s.t. \(\sum_{n \geq 1} \mu(A_n^i) \leq \mu^*(E_i) + \frac{\varepsilon}{2^i} \).

Then \((A_n^i, n, i \geq 1) \) covers \(E \) so \(\mu^*(E) \leq \sum_{n \geq 1} \mu(A_n^i) \leq \sum_{i \geq 1} \left(\mu^*(E_i) + \frac{\varepsilon}{2^i} \right) = \left(\sum_{i \geq 1} \mu^*(E_i) \right) + \varepsilon \). \(\square \)
Proof of Carathéodory Lemma

Step 1: prove \mathcal{F} is a σ-field

Step 2: Prove μ is a measure on \mathcal{F}.

Step 1: \mathcal{F} abv. closed under complements (def. is invariant to $A \mapsto A^c$)

Closure under \cap trickier. Fix $A_1, A_2 \in \mathcal{F}$ and any $B \subseteq \Omega$.

Write $B = B_0 \cup B_1 \cup B_2 \cup B_{12}$ according to \cap with A_1, A_2.

Then $A_1 \in \mathcal{F}$, $A_2 \in \mathcal{F}$, $B_{12} \in \mathcal{F}$, $B_1 \in \mathcal{F}$.

$$
\mu^*(B) = \mu^*(B \cap A_1) + \mu^*(B \cap A_1^c)
$$

$$
\mu^*(B) = \mu^*(B_1) + \mu^*(B_{12}) + \mu^*(B_0) + \mu^*(B_2)
$$

Also

$$
\mu^*(B \setminus B_{12}) = \mu^*(B_1) + \mu^*(B_0) + \mu^*(B_2)
$$

So

$$
\mu^*(B) = \mu^*(B \setminus B_{12}) + \mu^*(B_{12}) = \mu^*(B \cap (A_1 \cap A_2^c)) + \mu^*(B \cap A_1 A_2)
$$
Countable U: Fix disjoint sets $(A_n, n \geq 1)$ in \mathcal{B}, let $A = \bigcup_{n=1}^{\infty} A_n$ Fix $B \in \mathcal{B}$. Since μ^* is an outer measure, it is subadditive so $\mu(A) \leq \mu(A \cap B) + \mu(A^c \cap B)$; need to prove \geq.

"Cut A into pieces" with A_1, then A_2, etc. Disjointness plus the fact that all $A_i \subset A$ gives

$$
\mu^*(B) = \mu^*(A_1 \cap B) + \mu^*(A_2 \cap B) + \cdots + \mu^*(A_n \cap B) + \mu^*(B \cap \bigcap_{i=1}^{n} A_i^c)
$$

So

$$
\mu^*(B) \geq \mu^*(A_1 \cap B) + \cdots + \mu^*(A_n \cap B) + \mu^*(A^c \cap B)
$$

Take a limit in n to get

$$
\mu^*(B) \geq \sum_{i=1}^{\infty} \mu^*(A_i \cap B) + \mu^*(A^c \cap B)
$$

$$
\geq \mu((\bigcup_{i=1}^{\infty} A_i) \cap B) + \mu^*(A^c \cap B) = \mu(A \cap B) + \mu(A^c \cap B),\text{ so } A \in \mathcal{B}.
$$
We also just proved that if \((A_n, n \geq 1)\) disjoint sets in \(\mathcal{F}\) then
\[
\mu^*(A) = \sum_{i \geq 1} \mu^*(A_i \cap A) + \mu^*(A^c \cap A) = \sum_{i \geq 1} \mu^*(A_i)
\]
so \(\mu^*(A) = \sum_{i \geq 1} \mu^*(A_i)\), i.e. \(\mu\) restricts to a measure on \(\mathcal{F}\).

Proof of Carathéodory Theorem

Let \(\mu^*\) be the outer measure as above.

Step 1: If \(A \in \mathcal{A}\) then \(\mu^*(A) = \mu(A)\)
(since \(\mu^*\) extends \(\mu\)).

Step 2: \(A \in \mathcal{F}\)
(since \(\mathcal{F}\) extends \(\mathcal{A}\)).

Step 1: We know \(\mu^*(A) \leq \mu(A)\), want rev. ineq.

Let \((A_i, i \geq 1)\) be a cover of \(A\). For \(n \geq 1\) let \(B_n = A_n \setminus (A_1 \cup \cdots \cup A_{n-1})\)

Then \((B_i, i \geq 1)\) is a disjoint cover of \(A\) (\(\bigcap_{i \geq 1} A_i = \bigcap_{i \geq 1} B_i \cup B_n\)), \(\bigcup_{i \geq 1} (B_i \cap A) = A\) so
\[
\mu(A) = \sum_{i \geq 1} \mu(B_i \cap A) \leq \sum_{i \geq 1} \mu(B_i) \leq \sum_{i \geq 1} \mu(A_i).
\]
Take inf over covers \((A_i, i \geq 1)\) of \(A\) to get
\[
\mu(A) \leq \mu^*(A) \quad \square
\]
Step 2: Need to show if \(A \subseteq A \), then \(A \) is \(\mu^* \)-additive: if \(B \subseteq \mathcal{S}_\mu \), \(\mu^*(B) = \mu^*(A \cap B) + \mu^*(A^c \cap B) \).

\[\mu^*(B) = \mu^*(A \cap B) + \mu^*(A^c \cap B) \]

"\(\leq \)" easy (subadditivity)

"\(= \)" Fix \(\varepsilon > 0 \), fix a cover \((A_n, n \geq 1)\) of \(B \) with elements of \(A \)

\[\exists \sum \mu(A_n) \leq \mu^*(B) + \varepsilon \]

Then \((A \cap A_n, n \geq 1)\) covers \(A \cap B \) and \((A^c \cap A_n, n \geq 1)\) covers \(A^c \cap B \), so

\[\mu^*(A \cap B) + \mu^*(A^c \cap B) \leq \sum \mu^*(A \cap A_n) + \sum \mu^*(A^c \cap A_n) \]

\[= \sum \mu^*(A \cap A_n) + \mu^*(A^c \cap A_n) \]

But \(\varepsilon > 0 \) arbitrary so

\[\mu^*(A \cap B) + \mu^*(A^c \cap B) \leq \mu^*(B) + \varepsilon \]
Last class:

Carathéodory Extension Theorem Let $(\Omega, \mathcal{A}, \mu)$ be a pre-measure space. Then there exists a σ-field \mathcal{F} containing \mathcal{A} s.t. μ extends to a measure on \mathcal{F}.

The field \mathcal{F} was the sets E s.t. $\mu(F) = \mu^*(E \cap F) + \mu^*(E^c \cap F)$ for all $F \subset \Omega$.

If $\mathcal{A} = \mathcal{A}(\mathbb{R}) := \{(a,b] \cup \cdots : a_k, b_k \in \mathbb{N}, -\infty < a, b, \ldots < a_k < b_k < \infty \}$

then \mathcal{F} is called the Lebesgue measurable sets of \mathbb{R}; denote this by $\mathcal{L}(\mathbb{R})$.

NB: $\mathcal{A}(\mathbb{R})$ is not the smallest σ-field containing \mathcal{A}. The smallest is $\sigma(\mathcal{A}(\mathbb{R})) = \mathcal{B}(\mathbb{R})$, the Borel σ-field over \mathbb{R}. In fact, $\mathcal{L}(\mathbb{R})$ is the completion of $\mathcal{B}(\mathbb{R})$.

This class:

1) Dynkin's Theorem: Let (Ω, \mathcal{F}) be a set with a σ-field on it, and let $\mathcal{P} \subset \mathcal{F}$ be a π-system with $\sigma(\mathcal{P}) = \mathcal{F}$. If μ_1, μ_2 are measures on \mathcal{F} and $\mu_1(E) = \mu_2(E)$ for all $E \in \mathcal{P}$ then $\mu_1 \equiv \mu_2$.

2) Stieltjes Measures
One more definition:
A set $A \subset 2^\Omega$ is a λ-system over A if $\mathcal{A} \in \mathcal{A}$ and
- $E, F \in \mathcal{A}$, $E \subset F \Rightarrow F \setminus E \in \mathcal{A}$
- $E_n \in \mathcal{A}$, $n \geq 1$ with $E_n \cap E = E \in \mathcal{A}$

Exercises
① If A is a σ-field over Ω then A is a λ-system over Ω.
② If $A \subset 2^\Omega$ is a π-system and a λ-system then A is a σ-field.
③ If $\forall \mathcal{V}_i, i \in I$ are λ-systems over Ω then $\bigcap_{i \in I} \mathcal{V}_i$ is a λ-system over Ω.

Dynkin's π-system lemma
Let \mathcal{P} be a π-system over Ω. Then
$$\left[\sigma(\mathcal{P}) := \bigcap \{ \mathcal{P} : \mathcal{P} \text{ a } \sigma\text{-field over } \Omega \} \right] = \bigcup \{ \mathcal{P} : \mathcal{P} \text{ a } \lambda\text{-system over } \Omega \}$$

Proof:
$\lambda(\mathcal{P}) \in \sigma(\mathcal{P})$

By ③, σ-fields are λ-systems, so RHS is an \bigcup of a larger collection of sets.
$\sigma(\mathcal{P}) \subseteq \lambda(\mathcal{P})$ We'll show $\lambda(\mathcal{P})$ is a π-system. Exercise ② then implies $\lambda(\mathcal{P})$ is a σ-field, so $\sigma(\mathcal{P}) = \bigcap \{ \mathcal{P} : \mathcal{P} \text{ a } \sigma\text{-field over } \Omega \}$
Remains to prove $\lambda(P)$ is a π-system

Proof

Must prove: $E \cap F \in \lambda(P)$ for all $E, F \in \lambda(P)$

- Say $E \in \lambda(P)$ is cooperative if $E \cap P \in \lambda(P)$ for all $P \in P$.
- Say $E \in \lambda(P)$ is helpful if $E \cap F \in \lambda(P)$ for all $F \in \lambda(P)$.

If we show all elements of $\lambda(P)$ are helpful then we are done.

Which sets are cooperative?

- Ω is cooperative $\Omega \cap P = P \cap \lambda(P)$ for all $P \in P$.
- If $E \in P$ then $E \cap P \in P$ for all $P \in P$ so E is cooperative.

All sets of P cooperative

- If E, F coop. then $\forall P \in P$, $E \cap P \in \lambda(P)$ and $F \cap P \in \lambda(P)$.
- If also $E \cap F$ then $E \cap P \cap F \cap P$, so $(F \cap E) \cap P = (F \cap P) \setminus (E \cap P) \in \lambda(P)$.

If E, F coop. and $E \cap F$ then $F \setminus E$ coop.
If \((E_n, n \geq 1)\) increasing, \(E_n \uparrow E_\infty\), all \(E_n\) cooperative, then for all \(P \in \mathcal{P}\), \(E_n \cap P \in \lambda(P)\), and \(E_n \cap P \uparrow E_\infty \cap P\) so \(E_\infty \in \mathcal{P}\).

If \(E_n \uparrow E_\infty\), all \(E_n\) coop. then \(E_\infty\) coop

We have showed that \(\{\text{cooperative sets}\}\) is a \(\lambda\)-system containing \(P\), so all sets in \(\lambda(P)\) cooperative.

Which sets are helpful?

- \(\Omega\) is helpful
 \[\Omega \cap F = F \cap \lambda(P)\] for all \(F \in \lambda(P)\).
- If \(E \in \mathcal{P}\) then for all \(E \in \lambda(P)\), \(E\) cooperative so \(E \cap F \in \lambda(P)\); so \(E\) helpful.

All sets of \(\mathcal{P}\) are helpful

- If \(E, F\) helpful then \(\forall G \in \lambda(P)\), \(E \cap G \in \lambda(P)\) and \(F \cap G \in \lambda(P)\)
 \(\mathcal{P}\) a \(\lambda\)-system

If also \(E \subset F\) then \(E \cap G \subset F \cap G\), so \((F \setminus E) \cap G = (F \cap G) \setminus (E \cap G) \in \lambda(P)\)

If \(E, F\) helpful and \(E \subset F\) then \(F \setminus E\) helpful

Likewise, if \((E_n, n \geq 1)\) are helpful and \(E_n \uparrow E_\infty\) then \(E_\infty\) helpful.

So \(\{\text{helpful sets}\}\) is a \(\lambda\)-system containing \(P\); so all sets in \(\lambda(P)\) are helpful. So we are done.
Dynkin's Theorem: Let \((\Omega, \mathcal{F})\) be a set with a \(\sigma\)-field on it, and let \(PC\) be a \(\pi\)-system with \(\sigma(\mathcal{P})=\mathcal{F}\). If \(\mu_1, \mu_2\) are measures on \(\mathcal{F}\) and \(\mu_1(E)=\mu_2(E)\) for all \(E \in \mathcal{P}\) then \(\mu_1 \equiv \mu_2\).

Proof of Dynkin's Thm

Let \(\Lambda = \{F \in \mathcal{F} : \mu_1(F) = \mu_2(F)\}\). Then

- \(PC \Lambda\) by def.
- If \(E, F \in \Lambda, E \subseteq F\) then \(\mu_1(F \setminus E) = \mu_1(F) - \mu_1(E) = \mu_2(F) - \mu_2(E) = \mu_2(F \setminus E)\)

so \(\mu_1(F \setminus E) = \mu_2(F \setminus E)\). If \(E, F \in \Lambda, E \subseteq F\) then \(F \setminus E \in \Lambda\)

- If \(E_n \in \Lambda, n \geq 1\) and \(E_n \uparrow E_\infty\) then \(\lim_{n \to \infty} \mu_1(E_n) = \lim_{n \to \infty} \mu_2(E_n) = \mu_2(E_\infty)\)

If \(E_n \in \Lambda, n \geq 1\) and \(E_n \uparrow E_\infty\) then \(E_\infty \in \Lambda\)

Thus \(\Lambda\) is a \(\pi\)-system containing \(\mathcal{P}\), so \(\Lambda \supseteq \sigma(\mathcal{P})\), so \(\mu_1 \equiv \mu_2\).
Four notes about last class

Examples of \(\pi\)-systems \(\{\text{Open sets}\}; \{\text{Intervals}\}; \{\text{Boxes}\}\):

1. In hypothesis of Dynkin's Theorem we should assume that \(\Omega \in \mathcal{P}\), or equivalently that \(\mu_1(\Omega) = \mu_2(\Omega)\).

2. Def: Given a measurable space \((\Omega, \mathcal{F})\), a measure \(\mu\) on \(\mathcal{F}\) is \(\sigma\)-finite if there exist sets \((\Omega_n, n \geq 1)\) in \(\mathcal{F}\) s.t. \(\Omega_n \uparrow \Omega\) and \(\mu(\Omega_n) < \infty\) for all \(n\).

\(\sigma\)-finiteness should also appear in the hypothesis of Dynkin's Theorem.

In that case, if \(\mu_1(E) = \mu_2(E)\) and \(\mu_1(F) = \mu_2(F)\), and \(E \subseteq F\), then

\[
\mu_1(F \setminus E) = \lim_{n \to \infty} \mu_1((F \setminus E) \cap \Omega_n) = \lim_{n \to \infty} (\mu_1(F \cap \Omega_n) - \mu_1(E \cap \Omega_n))
\]

by the assumption.

\[
\mu_2(F \setminus E) = \lim_{n \to \infty} \mu_2((F \setminus E) \cap \Omega_n) = \lim_{n \to \infty} (\mu_2(F \cap \Omega_n) - \mu_2(E \cap \Omega_n))
\]

by the additivity of \(\mu_2\).

3. Recall: \(B(\mathbb{R}) = \sigma(\{U \subseteq \mathbb{R}: U \text{ open}\}) = \sigma(A(\mathbb{R}))\) is called the Borel sets of \(\mathbb{R}\).

Likewise \(B(\mathbb{R}^d) = \sigma(\{U \subseteq \mathbb{R}^d: U \text{ open}\})\).
Key example: Cumulative distribution functions / Stieltjes functions.

Def: A Stieltjes function is a function \(f : \mathbb{R} \to \mathbb{R} \) which is non-decreasing and right-continuous.

It is a CDF if \(F(-\infty) := \lim_{x \to -\infty} F(x) = 0 \) and \(F(\infty) := \lim_{x \to \infty} F(x) = 1 \).

Prop: Let \(F \) be a distribution function, and let \(A = \mathcal{A}(\mathbb{R}) := \{ (a_i, b_i] \cup \ldots \cup (a_k, b_k] \mid k \in \mathbb{N} \} \).

Define \(M = \mathcal{M}_F \) by \(M(\bigcup_{i=1}^{k} (a_i, b_i]) = \sum_{i=1}^{k} F(b_i) - F(a_i) \). \(-\infty < a_i \leq b_i \leq \ldots \leq a_k \leq b_k < \infty \).

Then \(M \) is a pre-measure on ring \(A \).

Proof: We prove this for the special case that \(F(x) = x \) (i.e. Lebesgue measure).

General case: same proof, more notation (in notes!).

Step 1: The definition makes sense.

Suppose \(\bigcup_{i=1}^{k} (a_i, b_i] = \bigcup_{i=1}^{m} (c_i, d_i] \), where both sides are disjoint unions.

Then for \(i \in [n], j \in [m] \), let \(S_{ij} = (a_i, b_i] \cap (c_j, d_j] \). If \(S_{ij} \neq \emptyset \) write \(S_{ij} = (l_{ij}, r_{ij}] \).

Then \(\sum_{i=1}^{k} (b_i - a_i) = \sum_{i=1}^{k} \sum_{j=1}^{m} (r_{ij} - l_{ij}) = \sum_{j=1}^{m} (d_j - c_j) \).

So def. makes sense.
Step 2 \(\mu \) is additive.

If \[\bigcup_{i=1}^{n} (a_i, b_i) \cap \bigcup_{i=1}^{n} (c_i, d_i) = \emptyset \]

then

\[
\mu \left(\bigcup_{i=1}^{n} (a_i, b_i) \cup \bigcup_{i=1}^{n} (c_i, d_i) \right) = \sum_{i=1}^{n} (b_i - a_i) + \sum_{i=1}^{n} (d_i - c_i) = \mu \left(\bigcup_{i=1}^{n} (a_i, b_i) \right) + \mu \left(\bigcup_{i=1}^{n} (c_i, d_i) \right)
\]

So \(\mu \) is additive.

Step 3: \(\mu \) is a pre-measure.

We must show: if \(L = \bigcup_{i=1}^{n} (a_i, b_i) = \bigcup_{i=1}^{n} (c_i, d_i) \), where both are disjoint unions,
then

\[\mu(L) = \sum_{i=1}^{n} (b_i - a_i) = \sum_{i=1}^{n} (d_i - c_i)\]

For all \(m \), \(L \supseteq \bigcup_{i=1}^{m} (c_i, d_i) \), so

\[\mu(L) \geq \sum_{i=1}^{m} (d_i - c_i) = \sum_{i=1}^{m} (d_i - c_i)\]

Thus

\[\mu(L) \geq \sum_{i=1}^{m} (d_i - c_i)\]

For \(m \geq 0 \), write \(\Delta_m = L \setminus \bigcup_{i=1}^{m} (c_i, d_i) \).

We'll show the two sides weren't equal after all.
Then $\Delta_m = \bigcup_{i=1}^{m}(a_i, b_i)$, $\bigcap_{i=1}^{m}(c_i, d_i) \in A$ and $\Delta_m > \Delta_{m+1}$.

with $\Delta_m \downarrow 0$ as $m \to \infty$.

Also, $\mu(\Delta_m)$

$$= \mu\left(L \setminus \bigcup_{i=1}^{m}(c_i, d_i)\right)$$

$$= \mu(L) - \mu\left(\bigcup_{i=1}^{m}(c_i, d_i)\right) = \mu(L) - \sum_{i=1}^{m} (d_i - c_i) \geq 2\varepsilon.$$

Choose $D_m \in A$ with $\overline{D}_m \subset \Delta_m$ s.t. $\mu(\Delta_m \setminus D_m) \leq \frac{\varepsilon}{2^m}$.

For $x \in \Delta_m$, if $\exists i$ s.t. $x \notin D_i$ then $x \in \Delta_i \setminus D_i$

Note that $\Delta_m = \bigcap_{i=1}^{m} D_i \cup \bigcup_{i=1}^{m} (\Delta_m \setminus D_i) \subseteq \bigcap_{i=1}^{m} D_i \cup \bigcup_{i=1}^{m} (\Delta_i \setminus D_i)$, so

monotonicity

$$\mu(\Delta_m) \leq \mu\left(\bigcap_{i=1}^{m} D_i \cup \bigcup_{i=1}^{m} (\Delta_i \setminus D_i)\right)$$

subadditivity

$$\leq \mu\left(\bigcap_{i=1}^{m} D_i\right) + \sum_{i=1}^{m} \mu(\Delta_i \setminus D_i) \leq \sum_{i=1}^{m} \frac{\varepsilon}{2^i} < \varepsilon.$$
Also, \(\mu(\Delta_m) \geq 2\varepsilon \), so \(\mu(\bigcap_i \overline{D_i}) \geq \varepsilon \).

Thus \(\bigcap_i \overline{D_i} \neq \emptyset \) for all \(m \), so \(\bigcap_i \overline{D_i} \neq \emptyset \). But \(\bigcap_i \overline{D_i} \in \bigcap_i \Delta_m = \emptyset \), a contradiction. \(\square \)

Theorem: Let \(F \) be a Stieltjes function. Then there exists a unique measure \(\mu \) on \(\sigma(\mathcal{AC}_\mathbb{R}) \) s.t. \(\mu([a,b]) = F(b) - F(a) \) for all \(-\infty < a < b < \infty \).

Proof:

Existence

By the proposition, there exists a pre-measure \(\mu \) on \(\mathcal{AC}_\mathbb{R} \) with this property.

By CXT, \(\mu \) extends to a measure on \(L(\mathcal{AC}_\mathbb{R}) \supseteq \sigma(\mathcal{AC}_\mathbb{R}) \),

Uniqueness

Suppose \(\mu_1, \mu_2 \) are as in the Theorem statement.

Let \(P = \{ (a,b) : -\infty < a \leq b < \infty \} \).

Then \(P \) is a \(\pi \)-system with \(\sigma(P) = \sigma(\mathcal{AC}_\mathbb{R}) \), so by Dynkin's theorem \(\mu_1 = \mu_2 \).

Exercise If \(\mu \) is a \(\sigma \)-finite measure on \((\mathbb{R}, \mathcal{B}(\mathbb{R})) \) then there exists a Stieltjes \(F \) s.t. \(\mu_F = \mu \).