2. Covering and differentiation

In the first part of this chapter we prove some covering theorems which
are among the most fundamental tools of measure theory. They are used
to create connections between local and global properties of measures,
and they also reflect the geometry of the space. Covering theorems and
their applications have been studied much more extensively in Federer
[3], Guzmén (1], and Hayes and Pauc [1]. The presentations of Evans
and Gariepy [1], Giusti [1], L. Simon [1] and Ziemer [1] are rather close
to ours.

We prove two types of covering theorems. The difference between
them is that the first ones apply to a larger class of coverings and a
narrower class of measures whereas in the second type the coverings are
more restricted but the measures can be very general; for example all
Radon measures on R" are included. In both cases we first prove a
geometric result on collections of balls in R™ and then apply it to get a
Vitali-type covering theorem for measures.

At the end of this chapter we apply these covering theorems to prove
some basic differentiation theorems for measures.

A 5r-covering theorem

For0<t< oo,z € R* 0 <r < o0, we shall use the notation
tB = B(z,tr) when B = B(z,r).

In a general metric space the centre and radius of a ball need not be
unique and for ¢ = 5 we use the definition

5B =|_J{B': B'is a closed ball with B'N B # 0 and d(B’) < 2d(B)} .

Then d(5B) < 5d(B). The special value t = 5 appears in covering
theorems in a natural way.

A metric space X is called boundedly compact if all bounded closed
subsets of X are compact. The following theorem holds more gener-
ally, for example in separable metric spaces. A similar proof with some
technical complications works in that case.
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24 Covering and differentiation
2.1. Theorem. Let X be a boundedly compact metric space and B a
family of closed balls in X such that
sup {d(B) : B € B} < o0.
Then there is a finite or countable sequence B; € B of disjoint balls such

that
U B C U5Bi.

BeB i
Proof. We simplify slightly by assuming that B is of the form
B = {B(z,r(z)) : ¢ € A},
where A is a bounded subset of X. We comment on the modification
required for the general case at the end of the proof. Let
M =sup{r(z):z € A} and
Ai={zeA:3M/4 < r(z) < M}.

Choose an arbitrary z; € A; and then inductively

k
(1) ks € A1\ | B(zi, 3r(z:))

i=1

as long as 4, \Uf___l B(z;,3r(z;)) # 0. The balls B(z;,r(x;)) thus chosen
are obviously disjoint in view of the definition of A; and lie in a compact
subset of X. We can only have finitely many of them, say k;, since we
cannot pack infinitely many disjoint balls of radius 3M /4 into a compact

subset of X. Thus we have
k1
A C U B(z;, 3r(x;)).
t=1

As r(z) < 2r(z;) for x € Ay, i =1,...,k;, this gives

ki
U B(z,r(z)) C U B(z;,5r(x;)).
i=1

TEA)
Let
4o ={zea:(3)’M<r@) < iM},

k1
- {:c € Ay : B(z,r(z)) N U B(zi,r(z;)) = @}.

i=1
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Ifx € A2\A}, thereisi € {1,...,k;} such that B(z, r(z))NB(zi, 7(z:)) #
@, whence
d(z, ;) < r(z) +r(z:) < 3r(z;).

This shows

k1
(2) A2\ 4 C | B(=:,3r(z:))-

i=1

Choose zx,+1 € A} arbitrarily and then inductively

k
T4 € A3\ U B(z;, 3r(z;)).
i=k;+1

As above there is ko such that the balls B(z;,r(z;)), 1 = 1,...,k2, are
disjoint and

k2
A C U B(z;,3r(x;))-
i=k;+1

Combining this with (2) we get as before

k2
U B r(@) c | B(=:,5r(x:))-
=1

TE€A2

Proceeding in this manner we find the required balls.

We made two restrictions on the family B. First we assumed that for
each z € A there is only one ball B(z,r(z)). We can reduce to this
special case by selecting for each centre z a ball B(z,r(z)) € B such
that r(z) > 15 sup{r : B(zx,r) € B} and by observing that in (1) and
later the number 3 could be replaced by 8/3. Then we can use the above
proof to get the required covering from these balls B(z, r(z)).

Secondly we assumed that the centres lie in a bounded set. To avoid
this the proof can be modified by choosing the new points z; not too far
from a fixed point a € X; for example if z and y were possible selections
and d(y,a) > 2d(z,a) we would make a rule that we cannot pick y. O

Remark. Using the Hausdorff maximality principle one can give a shorter
proof and obtain a much more general result; for example families of
balls can be replaced by many other families of sets, cf. Federer [3,
2.8.4-6).
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Vitali’s covering theorem for the Lebesgue measure

We can now easily derive a Vitali-type covering theorem for the
Lebesgue measure L.

2.2. Theorem. Let A C R™ and suppose that B is a family of closed
balls in R™ such that every point of A is contained in an arbitrarily

small ball belonging to B, that is,
(1) inf{d(B):z€ BeB} =0 forzeA.

Then there are disjoint balls B; € B such that
£"(A \ UB,-) =0.
Moreover, given € > 0 the balls B; can be chosen so that

> LMB)) < LM(A) +e.

1

Proof. The last statement will be clear from the proof. Assume first
that A is bounded. Choose an open set U such that A C U and

LrU) < (1+77) L*(A).

Applying Theorem 2.1 to the collection of those balls of B which are
contained in U, we find disjoint balls B; = B(z;,r;) € B such that

B; c U and
AcC UB(:B,-,Sri).

Then
57"L™(A) <57 L™(B(xi,5r:)) = Y L™(By),

and so there is k;, such that
k1
67"L"(A) < Y L™(By).
i=1

Letting
ky
Al = A\ U Bi’

=1
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we have
kl kl
o) < £ (UNJ Bi) = £°0) - 3 L7(BY)
=1 i=1
< (1+77" =67 L(4) = uL™(A)
where

u=14+7"-6""<1.

Now A, is contained in the open set R" \Uf;l B;, and therefore we

can find an open set U; such that 4; C U3 C R™\ Uf;l B; and
LU <A +7)LA).

As above there are disjoint balls B; € B, i = k1 + 1,..., k2, for which
B; c U; and
LM(A) < uL™(4;) < ¥ L(A),

where
ko k2
A=A\ | Bi=A\|JB.
i=ky1+1 i=1
Evidently all the balls B;, i = 1,..., ko, are disjoint. After m steps

(A ¥ B;) < u™L™(4),

=1

and the result follows since u < 1.

In the general case we write R® = (J;2, Q; where the Q;’s are closed
cubes such that the corresponding open cubes Q; are disjoint. Ap-
plying the first part of the proof to the sets A N Q; and noting that
LA\ U2, Qi) =0, we complete the proof. a

2.83. Remarks. (1) For families B satisfying condition (1) of Theorem 2.2
the conclusion of Theorem 2.1 can be strengthened: the disjoint sequence
(B;) can be found in such a way that for every m = 1,2,...

m o0
UBclsB:u | sB.
i=1 i=m+1

Essentially the same argument as that of 2.1 applies, see e.g. Federer |3,
2.8.6] or L. Simon (1, 3.4].
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(2) All that we really used of the Lebesgue measure in the proof of
Theorem 2.2 was the equality £*(B(z,5r)) = 5"L*(B(z,r)), in fact
only the inequality “<”. It is rather straightforward to modify the
above proof to see that the theorem remains valid if L™ is replaced by
any Radon measure p on R" such that for some 7, 1 < 7 < 00,

lim sup {u(B(y,mr))/u(B(y,r)) : z € B(y,7)} < 00
for 4 almost all z € R"™.

Moreover, the balls can be replaced by more general families of closed
sets and R™ by more general spaces, see Federer [3, 2.8] for example.
However, the above theorem is not valid even for all very nice Radon
measures on R", as the following example shows.

2.4. Example. Let u be the Radon measure on R? defined by
p(A) = L' ({z €R: (z,0) € A}),
that is, p is the length measure on the z-axis. The family
B={B((z,y),y) :t € R,0<y < o0}

covers A = {(z,0) : z € R} in the sense of Theorem 2.2 but for any
countable subcollection B, Bs,... we have

[,L(A n G Bi) = 0.
i=1

Here A touches only the boundaries of the balls of B. By a slight
modification we could find a family B such that each point of A is an
interior point of arbitrarily small balls of B and yet the conclusion of
Theorem 2.2 fails. However, if we should require that each point of A
is the centre (in fact, not too far from the centre would be enough) of
arbitrarily small balls of B, we would get the conclusion of Theorem 2.2.
Next we shall develop a covering theorem of this type.

Besicovitch’s covering theorem
Again we shall first prove a theorem on families of balls in R™. This is

called Besicovitch’s covering theorem, which originates from Besicovitch
[6] and [7]. More general covering theory was developed simultaneously
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by Morse [1]. For some recent developments concerning the best con-
stants in the Besicovitch covering theorem, see Loeb [1], J. M. Sullivan [1]
and Fiiredi and Loeb [1].

We shall begin with a simple lemma from plane geometry. Instead
of the following elementary geometric considerations one can also easily
deduce it from the cosine formula for the angle of a triangle in terms of

the side-lengths.

2.5. Lemma. Suppose that a,b € R%,0< |a| < |a—b] and 0 < |b] <
| — b|. Then the angle between the vectors a and b is at least 60°, that
is,

|a/lal ~ b/Jbl | > 1.

Proof. We have a ¢ B(b, |b|) and b ¢ B(a, |a|). Let L be the mid-normal
to the segment [0, a] with the end-points 0 and a, and let H be the closed
half-plane with boundary L such that O =0 € H. Let T be the triangle

OAB as in Figure 2.1.
Then b € H \ T, which yields that the angle between a and b is at

least 60°. O
2.6. Lemma. There is a positive integer N(n) depending only on n
with the following property. Suppose there exist k points a,, .. .,ax in
R™ and k positive numbers 1, ...,y such that

k
a; ¢ B(a,,r;) forj+#i, and ﬂ B(a;,r;) # 0.

=1
Then k < N(n).

Proof. We may assume a; #0 foralli=1,...,k and
k
0e n B(ai,ri).
i=1

Then
lai] < 7i < |a —a;| fori# j.

Applying Lemma 2.5 with a = a; and b = a; for i # j in the two-
dimensional plane containing 0, a, and a;, we obtain
(1) |a,~/|a,~f-—a,~/|aj||21 for ¢ # j.

Since the unit sphere S™~! is compact there is an integer N(n) with the
following property: if yy,...,yx € S*~! with |y; —y;| > 1 for i # j, then
k < N(n). By (1), N(n) is what we want. a
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a
T
L
lal
A
Figure 2.1.

2.7. Besicovitch’s covering theorem. There are integers P(n) and
Q(n) depending only on n with the following properties. Let A be a
bounded subset of R™, and let B be a family of closed balls such that

each point of A is the centre of some ball of B.
(1) There is a finite or countable collection of balls B; € B such that
they cover A and every point of R™ belongs to at most P(n) balls

B,f, that iS,
xa <Y _xs < P(n).
i

(2) There are families B, ...,Bg(n) C B covering A such that each
B; is disjoint, that is,
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and

BNB =0 for B,B' € B; with B# B'.

Proof. (1) For each x € A pick one ball B(z,r(z)) € B. As A is bounded,

we may assume that
M; =supr(z) < oo.
T€EA

Choose
z1 €A withr(z)) > M;/2

and then inductively
J
Tjy1 € A\ U B(a:i,r(a:i)) with 'I'(:I)j.“) > M1/2
i=1

as long as possible. Since A is bounded, the process terminates, and we
get a finite sequence z,,...,xk,.

Next let
ki
My = sup {r(x) iz €A\ U B(:ci,r(:vi))}.
i=1

Choose
ki
Zk,+1 € A\ |J B(=i, (1)) with r(zk,41) > Ma/2,
i=1
and again inductively

J
zj41 € A\ | B(zi,r(z:)) with r(zj41) > Ma/2.

i=1

Continuing this process we obtain an increasing sequence of integers
0=ko < ki <kz <...,a decreasing sequence of positive numbers M;
with 2M;,; < M;, and a sequence of balls B; = B(z;,r(z;)) € B with
the following properties. Let

Ij={kj_1+1,...,kj} forj=1,2,....
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Then
(3) Mj/2$r(z,~) SMJ fOl‘iGIj,
(4) $j+1€A\LJJBi for j=1,2,...,
=1
(5) l‘iEA\U UBj for i € I.
m#k j€Im

The first two properties follow immediately from the construction. To
verify the third property, let m # k, j € I, and i € Ix. If m < k,
z; ¢ B; by (4). If kK < m, then r(z;) < r(z;), ; ¢ B; by (4), and so
Ty ¢ BJ‘.

Since M; — 0, (3) implies r(z;) — 0, and it follows from the construc-
tion that

oo
Ac|B.
=1

To establish also the second statement of (1), suppose a point z be-
longs to p balls B;, say

P
T € an'.

i=1
We shall show that p < P(n) = 16" N(n) with N(n) as in Lemma 2.6.

Using (5) and Lemma 2.6 we see that the indices m; can belong to at
most N(n) different blocks I;, that is,

card{j: I; n{m; :i=1,...,p} # 0} < N(n).
Consequently it suffices to show that
(6) card (;N{m;:i=1,...,p}) <16" forj=1,2,....
Fix j and write
In{m;:i=1,...,p} = {&,...,4}.
By (3) and (4) the balls B(x,, ir(z¢,)), i = 1,...,q, are disjoint and
they are contained in B(z,2M;). Hence, with a(n) = L*(B(0, 1)),

q
ga(n)(M;/8)" < 3 L7 (B(ze,, 1r(22,))

i=1

< L™(B(z,2M;)) = a(n)(2M;)",
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and so g < 16" as desired. This proves (6), and thus also (1).

(2) Let By, Bs,... be the balls found in (1). Letting B; = B(z;,r:),
there are for each € > 0 only finitely many balls B; with r; > € because
of (1) and the boundedness of A. Thus we may assume ;> 72 > ....
Let By = B; and then inductively if By ,...,B; ; have been chosen,
By j+1 = By where k is the smallest integer with

J
BN UBl'i = 0.

i=1

We continue this as long as possible getting a finite or countable disjoint

subfamily
B, ={B11,Bi2,...}

of {Bl,Bz, “es }
If A is not covered by |JBi, we define first By ; = By where k is

the smallest integer for which By, ¢ B;. Again we define inductively
B3 j+1 = B with the smallest k such that

J
By n UBZ’i = 0.

1=1

With this process we find subfamilies B;,Bs,... of {Bj, Ba,...}, each
B; being disjoint. We claim that

m
AcC U UB’C for some m < 4"P(n) + 1.
k=1

Suppose m is such that there is z € A\ J;.; UBk. We then have
to show that m < 4"P(n). Since the balls B; cover A we can find
i with £ € B;. Then for each k = 1,...,m, B; ¢ By, which means
by the construction of By that B; N By, # @ for some iy for which
Ti < Tk, Ti and i ;, being the radii of B; and B, , respectively.
Hence there are balls B;, of radius r;/2 contained in (2B;) N By ;, for all
k=1,...,m. Since each point of R" is contained in at most P(n) balls
By,ix, kK =1,...,m, this is also true for the smaller balls B}, that is

m

xs, < P(n)xur B
k=1
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Using the fact B;, C 2B;, we then have

oa(n)rt = L(2B;) > z:"( 0 B,;)
et

/Xu’" p, dL™ > P(n)™ /ZXB’ dcr

= P(n)™! iﬁ"(BL) =mP(n)"!2 " a(n)r}.
k=1

Hence m < 4™ P(n) as required. O
Vitali’s covering theorem for Radon measures

We can now easily establish a Vitali-type covering theorem for arbi-
trary Radon measures on R"™.

2.8. Theorem. Let u be a Radon measure on R*, A C R™ and B a
family of closed balls such that each point of A is the centre of arbitrarily

small balls of B, that is,
inf {r: B(z,r) € B} =0 forz € A.

Then there are disjoint balls B; € B such that
,u(A \U B,:) =0.
i

Proof. We may assume pu(A) > 0. Suppose first A is bounded. By
Definition 1.5 (4) there is an open set U such that A C U and

w(U) < (1+(4Q(n) ™) u(A),

where Q(n) is as in Besicovitch’s covering theorem 2.7. By that theorem
we can find By, ...,Bg(n) C B such that each B; is disjoint and

Q(n)

Ac s cu
i=1

Then
Q(n)

uA4) < ; w(UB),
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and consequently there is an ¢ with

u(4) < Q) u(UB).
Further, for some finite subfamily B; of B; we have
u(4) < 2Q(n) (| UB))-
Letting
A=A\ B
we get

u(an) < w(U\UB) = uv) - u(UB))

< (1+3Q(m) 7 - 1Q(n) ™) u(A) = up(A)

withu=1- —Q(n) < 1. We can now continue by the same principle
as in the proof of Theorem 2.2.

In order to get rid of the assumption that A is bounded, we may mod-
ify the last step of the proof of Theorem 2.2 making use of the fact that
(V) can be positive for at most countably many parallel hyperplanes
V. O

Differentiation of measures
We shall now turn to the differentiation theory of measures.

2.9. Definition. Let u and A be locally finite Borel measures on R™.
The upper and lower derivatives of 1 with respect to A at a point x € R™
are defined by

D(p, )\ z) = hm sup “EBE:':’ :;;
p(B(z,r))
D(p, A\, z) = lim mf W

At the points  where the limit exists we define the derivative of u by

D(p, A, z) = D(u, A\, z) = D(ps, A, z).
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2.10. Remarks. Here we interpret 0/0 = 0. The above derivatives are
Borel functions. Let us consider the proof only in the case A = £, which
is essentially all we shall need. More genecrally, see for example Federer
[3, 2.9.6]. Show first that the function z — pu(B(z,r)) is upper semicon-
tinuous (that is, z; — x implies limsup;_,, p(B(z:, 7)) < pu(B(z,7))).
Then using the facts that u(B(z, 7)) is monotonic and L™(B(z,r)) con-
tinuous in r, prove that the upper and lower limits do not change if r
is restricted to positive rationals. Thus the Borel measurability of the
upper and lower derivatives reduces to the fact that the suprema and
infima of countable families of Borel functions are Borel functions.

Later on we shall encounter other functions of the same kind which
can be shown to be Borel functions by similar reasoning.

2.11. Definition. Let u and A be measures on R™. We say that p is
absolutely continuous with respect to A if

AM(A) =0 implies u(A) =0 forall ACR".

In this case we write
B A

The following theorem contains the basic ingredients of the differen-
tiation of u with respect to A.

2.12. Theorem. Let u and A be Radon measures on R".

(1) The derivative D(u, A\, x) exists and is finite for A almost all x €
R™.
(2) For all Borel sets B C R",

/ D(u, A\ z)drz < p(B)
B

with equality if p < A.
(3) u < X if and only if D(u, A\, x) < oo for p almost all = € R™.

For the proof we will need the following lemma.

2.13. Lemma. Let u and A be Radon measures on R™, 0 < t < o0
and AC R™.

(1) If D{p, A\, x) <t for all x € A, then pu(A) < tA(A).
(2) If D(u, A\, x) > t for all z € A, then u(A) > tA(A).
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Proof. (1) Let ¢ > 0. Using Definition 1.5(4) we find an open set U
such that A C U and A(U) < A(A) +&. An application of Theorem 2.8
gives disjoint closed balls B; C U such that

wB) < (t+e)A(B) and u(4\|JB:)=0.

Then
w(A) < S wB) < (t+e) D AB)
< (tz+ e)AU) < (t+ e;(/\(A) +¢€).
Letting ¢ | 0, we get u(A) < tA(A), which proves (1). (2) can be proven
in the same way. O
Proof of Theorem 2.12. For 0 <r < 00,0 < s <t < oo, let

Asir={x € B(r): D(u,\,x) < s <t < D(uAx)},
Ay ={z € B(r): D(p, M\, z) > t}.

By Lemma 2.13

t/\(As,t,r) < ﬂ(As,t,r) < 3/\(As,t,r) < 00,

M(Auyr) < pAur) < p(B(r)) < oo.
These inequalities yield A(A4s,») = 0 since s < ¢, and A((\,50 Au,r) =
limy o0 A(Ay,r) = 0. But the complement of the set {z : 3D(u, A\, z) <
oo} is the union of the sets As:, and (), Au,r Where s and ¢ run

through the positive rationals with s < ¢ and r runs through the positive
integers. Hence it is of A measure zero, which settles (1).

To prove (2) choose 1 < t < oo and let
B,={z € B:t* < D(p,\z) <t’*'}, p=0,%1,%2,....

Then by part (1) of this theorem already proved and by part (2) of
Lemma 2.13,

/B D(p, A\ z)dI\x = Z

p=—oc

< fj tPHIN(Bp) < t i u(Byp) < tu(B).

p=—o00 p=-—00

] D(u, A\, z)d\x
BP
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Letting ¢ | 1, we get [p D(u, A\, z) dAx < p(B).
If 4 < A, the sets of A measure zero also have p measure zero. Hence,

noting also that by (1) D(p,\,z) = D(A, p,z)~! > 0 for y almost all

x, we have u(B) = 3272 u(Bp), and a similar argument as above
making use of part (1) of Lemma 2.13 gives the opposite inequality.

By (1), D(p, A, z) < oo A almost everywhere, and hence if u < A this
also holds u almost everywhere.

Finally, to prove the other half of (3), suppose D(u, A, z) < oo for p
almost all z € R™. Let A C R™ with A(A) =0. Foru=1,2,... Lemma

2.13(1) gives
p({z € A: D(p, )\ z) <u}) <ur(4) =0,

and so u(A) =0. O

As a corollary we obtain immediately a density theorem and a theorem
on differentiation of integrals.

2.14. Corollary. Let A be a Radon measure on R"™.
(1) If AC R™ is X\ measurable, then the limit

. AMANB(z,r))
= N B@.1)

exists and equals 1 for A almost all z € A and equals 0 for A

almost all € R™ \ A.
(2) If f: R™ — R is locally ) integrable, then

lim 1 fdx = f(z) for A almost all r € R™.

r10 A(B(z,7)) /B2,

Proof. (1) follows from (2) with f = x 4. To prove (2) we may assume
f 2 0. Define the Radon measure u by pu(A) = [, fd\. Then p < A
and Theorem 2.12 (2) gives

/B D(u, A\ z)dAz = p(B) = /B fdx

for all Borel sets B. Obviously this means that f(z) = D(u, ), z) for A
almost all x € R™, which proves (2). O



